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Abstract. With-loops are versatile array comprehensions used in the
functional array language SaC to implement aggregate array operations
that are applicable to arrays of any rank and shape. We describe the
fusion of with-loops as a novel optimisation technique to improve both
the data locality of compiled code in general and the synchronisation
behaviour of compiler-parallelised code in particular. Some experiments
demonstrate the impact of with-loop-fusion on the runtime performance
of compiled SaC code.

1 Introduction

SaC (Single Assignment C) [1] is a purely functional array processing language
designed with numerical applications in mind. Image processing and computa-
tional sciences are two examples of potential application domains. The language
design of SaC aims at combining generic functional array programming with a
runtime performance that is competitive with low-level, machine-oriented lan-
guages both in terms of execution time and memory consumption.

The programming methodology of SaC essentially builds upon two princi-
ples: abstraction and composition [1,2,3]. In contrast to other array languages,
e.g. Apl [4], J [5], Nial [6], or Fortran-90, SaC provides only a very small
number of built-in operations on arrays. Basically, there are primitives to query
for an array’s shape, for its rank, and for individual elements. Aggregate array
operations (e.g. subarray selection, element-wise extensions of scalar operations,
rotation and shifting, or reductions) are defined in SaC itself. This is done with
the help of with-loops, versatile multi-dimensional array comprehensions. SaC

allows us to encapsulate these operations in abstractions that are universally ap-
plicable (i.e., they are applicable to arrays of any rank and shape). More complex
array operations are not defined by with-loops, but by composition of simpler
array operations. Again, they can be encapsulated in functions that may still
abstract from concrete ranks and shapes of argument arrays.

Following this technique, entire application programs typically consist of var-
ious logical layers of abstraction and composition. This style of programming
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leads to highly generic implementations of algorithms and provides good oppor-
tunities for code reuse on each layer of abstraction. As a very simple example,
consider a function MinMaxVal that yields both the least and the greatest ele-
ment of an argument array. Rather than implementing this functionality directly
using with-loops, our programming methodology suggests to define the func-
tion MinMaxVal by composition of two simpler functions MinVal and MaxVal
that yield the least and the greatest element, respectively.

Direct compilation of programs designed on the principles of abstraction and
composition generally leads to poor runtime performance. Excessive creation
of temporary arrays as well as repeated traversals of the same array are the
main reasons. Separately computing the minimum and the maximum value of
an array A requires the processor to load each element of A into a register twice.
If the array is sufficiently small, it may entirely be kept in the L1 cache and
the second round of memory loads yields cache hits throughout. However, with
growing array size elements are displaced from the cache before temporal reuse
is exploited, and data must be re-fetched from off-chip L2 cache or even main
memory. In fact, the time it takes to compute minimums and maximums of two
values is completely negligible compared with the time it takes to load data
from memory. Therefore, we must expect a performance penalty of a factor of
two when computing the minimum and the maximum of an array in isolation
rather than computing both in a single traversal through memory.

This example illustrates the classical trade-off between modular, reusable code
design on the one hand and runtime performance on the other hand. Whereas
in many application domains a performance degradation of a factor of 2 or more
in exchange for improved development speed, maintainability, and code reuse
opportunities may be acceptable, in numerical computing it is not. Hence, in
our context abstraction and composition as software engineering principles are
only useful to the extent to which corresponding compiler optimisation technol-
ogy succeeds in avoiding a runtime performance penalty. What is needed is a
systematic transformation of programs from a representation amenable to hu-
mans for development and maintenance into a representation that is suitable for
efficient execution on computing machinery.

In the past, we have developed two complementary optimisation techniques
that avoid the creation of temporary arrays at runtime: with-loop-folding [7]
and with-loop-scalarisation [8]. In our current work we address the problem
of repeated array traversals, as illustrated by the MinMaxVal example. We pro-
pose with-loop-fusion as a novel technique to avoid costly memory traversals
at runtime. To make fusion of with-loops feasible, we extend the internal rep-
resentation of with-loops in order to accomodate the computation of multiple
values by a single with-loop, which we call multi-operator with-loop. We intro-
duce with-loop-fusion as a high-level code transformation on intermediate SaC

code. While the essence of fusion is formally defined in a very restricted setting,
we introduce additional pre- and postprocessing techniques that broaden the
applicability of fusion and improve the quality of fused code.



180 C. Grelck, K. Hinckfuß, and S.-B. Scholz

The remainder of this paper is organised as follows. Section 2 provides a brief
introduction into with-loops. In Section 3 we extend the internal representation
of with-loops to multi-operator with-loops. The base case for with-loop-fusion
is described in Section 4. More complex cases are reduced to the base case using
techniques described in Section 5 and post-fusion optimisations in Section 6.
Section 7 illustrates the combined effect of the various measures on a small case
study while Section 8 reports on a series of experiments. In Section 10 we draw
conclusions and outline directions of future research.

2 With-Loops in SAC

As the name suggests, SaC is functional subset of C, extended by multi-dimen-
sional arrays as first class citizens. We have adopted as much of the syntax of
C as possible to ease adaptation for programmers with a background in imper-
ative programming, the prevailing paradigm in our targeted application areas.
Despite its C-like appearance, the semantics of SaC code is defined by context-
free substitution of expressions. “Imperative” language features like assignment
chains, branches, or loops are semantically explained and internally represented
as nested let-expressions, conditional expressions, and tail-end recursive func-
tions, respectively. Nevertheless, whenever SaC code is syntactically identical to
C code, the functional semantics of SaC and the imperative semantics of C also
coincide. Therefore, the programmer may keep his preferred model of thinking,
while the SaC compiler may exploit the functional semantics for advanced op-
timisations. Space limitations prevent us from further elaborating on the design
of SaC, but a rule of thumb is that everything that looks like C also behaves
as in C. More detailed introductions to SaC and its programming methodology
may be found in [1,2,3].

In contrast to other array languages SaC provides only a very small set of
built-in operations on arrays. Basically, they are primitives to retrieve data per-
taining to the structure and contents of arrays, e.g. an array’s rank (dim(array)),
its shape (shape(array)), or individual elements (array[index-vector]). Aggre-
gate array operations are specified in SaC itself using powerful array compre-
hensions, called with-loops. Their syntax is defined in Fig. 1.

WithExpr ⇒ with Generator : Expr Operation
Generator ⇒ ( Expr <= Identifier < Expr [Filter ] )
Filter ⇒ step Expr [ width Expr ]
Operation ⇒ genarray ( Expr [ , Expr ] )

| fold ( FoldOp , Expr )

Fig. 1. Syntax of with-loop expressions

A with-loop is a complex expression that consists of three parts: a generator,
an associated expression and an operation. The operation determines the overall
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meaning of the with-loop. There are two variants: genarray and fold. With
genarray( shp, default) the with-loop creates a new array of shape shp .
With fold( foldop, neutral) the with-loop specifies a reduction operation
with foldop being the name of an appropriate associative and commutative
binary operation with neutral element neutral .

The generator defines a set of index vectors along with an index variable rep-
resenting elements of this set. Two expressions, which must evaluate to integer
vectors of equal length, define lower and upper bounds of a rectangular index
vector range. For each element of this set of index vectors the associated expres-
sion is evaluated. Depending on the variant of with-loop, the resulting value is
either used to initialise the corresponding element position of the array to be
created (genarray) or it is given as an argument to the fold operation (fold).
In the case of a genarray-with-loop, elements of the result array that are not
covered by the generator are initialised by the (optional) default expression in
the operation part. For example, the with-loop
with ([1,1] <= iv < [3,4]) : iv[0] + iv[1]
genarray( [3,5], 0)

yields the matrix

�
�

0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

�
�. The generator in this example with-loop defines

the set of 2-element vectors in the range between [1,1] and [3,4]. The index
variable iv represents elements from this set (i.e. 2-element vectors) in the as-
sociated expression iv[0] + iv[1]. Therefore, we compute each element of the
result array as the sum of the two components of the index vector, whereas the
remaining elements are initialised with the value of the default expression. The
with-loop
with ([1,1] <= iv < [3,4]) : iv[0] + iv[1]
fold( +, 0)

sums up all non-zero elements of the above matrix and evaluates to 21. An
optional filter may be used to further restrict generators to periodic grid-like
patterns, e.g.,
with ([1,1] <= iv < [3,8] step [1,3] width [1,2]) : 1
genarray( [3,10], 0)

yields the matrix

�
�

0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 0 0
0 1 1 0 1 1 0 1 0 0

�
� .

3 Multi-operator With-Loops

The aim of with-loop-fusion is to avoid the repeated traversal of argument ar-
rays by computing multiple values in a single sweep. Hence, a major prerequisite
for fusion is the ability to represent the computation of multiple values by a sin-
gle with-loop. Regular with-loops, as described in the previous section, define
either a single array or a single reduction value. To overcome this limitation we
extend the internal representation of with-loops to multi-operator with-loops,
as illustrated in Fig. 2.
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MultiOpWith ⇒ with [Generator : Expr [ , Expr ]* ]+[Operation ]+
Generator ⇒ ( Expr <= Identifier < Expr [Filter ] )
Filter ⇒ step Expr [ width Expr ]
Operation ⇒ genarray ( Expr )

| fold ( FoldOp , Expr )

Fig. 2. Pseudo syntax of multi-operator with-loop expressions

Internal multi-operator with-loops differ from language-level with-loops in
various aspects:
– They have a non-empty sequence of operations rather than exactly one.
– They have a non-empty sequence of generators rather than exactly one.
– Each generator is associated with a non-empty, comma-separated list of ex-

pressions rather than a single one.
– There is no default expression in genarray operations.

In the internal representation of with-loops, the default case is made explicit
by creating a full partition of the index space. If necessary, additional generators
are introduced that cover those indices not addressed by the original generator.
These generators are explicitly associated with the default expression. A side
condition not expressed in Fig. 2 is that all generators must be associated with
the same number of expressions, and this number must match the number of
operations. More precisely, the first operation corresponds to the first expression
associated with each generator, the second operation corresponds to each second
expression, etc. For example, the function MinMaxVal from the introduction can
be specified by the following multi-operator with-loop for argument arrays of
any rank and shape:
int, int MinMaxVal( int[*] A)
{

Min, Max = with (0*shape(A) <= iv < shape(A)) : A[iv], A[iv]
fold( min, MaxInt())
fold( max, MinInt());

return( Min, Max);
}

The multi-operator with-loop yields two values, which are bound to two vari-
ables using simultaneous assignment. While this simple example only uses fold
operations, fold and genarray operations are generally mixed. We do not fea-
ture multi-operator with-loops on the language level because they run counter
the idea of modular generic specifications. We consider the above representation
of MaxMinVal the desired outcome of an optimisation process, not a desirable
implementation.

4 With-Loop-Fusion — The Base Case

In the following we describe with-loop-fusion as a high-level code transforma-
tion. The base case for optimisation is characterised by two with-loops that
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have the same sequence of generators and no data dependence (i.e., none of the
variables bound to individual result values of the first with-loop is referred to
within the second with-loop). A formalisation of with-loop-fusion for this base
case is shown in Fig. 3. We define a transformation scheme

WLFS[[pattern]] = expr | guard

that denotes the context-free replacement of an intermediate SaC program frag-
ment pattern pattern by the instantiated SaC expression expr provided that the
guard expression guard evaluates to true.

With-loop-fusion systematically examines intermediate SaC code to identify
pairs of suitable with-loops. The guard condition for applying WLFS is two-
fold. Firstly, all operation parts of type genarray must refer to the same shape.
Secondly, the two with-loops under consideration must be free of data depen-
dences. For the formalisation of this property we employ a function FV that
yields the set of free variables of a given SaC expression. The third prerequi-
site (i.e. the equality of the generator sequences) is expressed by using the same
identifiers in the pattern part of the transformation scheme. Here, we ignore
the fact that generators actually form a set rather than a sequence in order to
simplify our presentation. In the implementation we resolve the issue by keeping
generators sorted in a systematic way.

Since with-loop-fusion can be applied repeatedly, we define the transforma-
tion scheme WLFS on multi-operator with-loops. Hence, Ids(a) matches a
non-empty, comma-separated list of identifiers rather than a single identifier. No
special treatment of language-level with-loops is required. If all conditions are
met, WLFS takes two assignments with with-loops on their right hand sides
and concatenates

1. the sequences of assigned identifiers,
2. the sequences of expressions associated with each generator, and
3. the sequences of operations.

Intermediate SaC code is represented in a variant of static single assignment
form [9]. Therefore, index variables used in the two with-loops to be fused have
different names. In the transformation scheme WLFS we address this issue by
keeping the index variable of the first with-loop. All associated expressions that
originally stem from the second with-loop are systematically α-converted to
use the index variable of the first with-loop, too. In Fig. 3, this is denoted by
[expr]iv

(a)

iv(b) meaning that all free occurrences of iv(b) in expr are replaced by iv(a).
The transformation scheme WLFS as presented in Fig. 3 is meaning-preserv-

ing as it preserves the one-to-one correspondence between associated expressions,
with-loop operations, and bound variables. In the absence of data dependences,
the associated expressions and operations of the second with-loop may safely be
moved out of the scope of the identifiers bound by the first with-loop without
penetrating the static binding structure.
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WLFS

2
6666666666666666666666666664

2
6666666666666666666666666664

Ids(a) = with

( lb1 <= iv(a) < ub1 step s1 width w1 ) :

expr
(a)
1,1 , . . . , expr

(a)
1,m

· · ·
( lbk <= iv(a) < ubk step sk width wk ) :

expr
(a)
k,1, . . . , expr

(a)
k,m

operation
(a)
1 . . . operation

(a)
m ;

Ids(b) = with

( lb1 <= iv(b) < ub1 step s1 width w1 ) :

expr
(b)
1,1, . . . , expr

(b)
1,n

· · ·
( lbk <= iv(b) < ubk step sk width wk ) :

expr
(b)
k,1, . . . , expr

(b)
k,n

operation
(b)
1 . . . operation

(b)
n ;

3
7777777777777777777777777775

3
7777777777777777777777777775

=

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Ids(a), Ids(b) = with

( lb1 <= iv(a) < ub1 step s1 width w1 ) :

expr
(a)
1,1 , . . . , expr

(a)
1,m,

[expr
(b)
1,1]

iv(a)

iv(b) , . . . , [expr
(b)
1,n]iv

(a)

iv(b)

· · ·
( lbk <= iv(a) < ubk step sk width wk ) :

expr
(a)
k,1, . . . , expr

(a)
k,m,

[expr
(b)
k,1]

iv(a)

iv(b) , . . . , [expr
(b)
k,n]iv

(a)

iv(b)

operation
(a)
1 . . . operation

(a)
m

operation
(b)
1 . . . operation

(b)
n

˛̨
˛̨̨
˛̨̨
˛̨
˛̨̨
˛̨

∀i ∈ {1, . . . , m} : ∀j ∈ {1, . . . , n} :
operation

(a)
i ≡ genarray(shape

(a)
i )

∧ operation
(b)
j ≡ genarray(shape

(b)
j )

=⇒ shape
(a)
i = shape

(b)
j

Ids(a) ∩
kS

i=1

nS
j=1

FV( expr
(b)
i,j ) = ∅

Fig. 3. Basic with-loop-fusion scheme

5 Enabling With-Loop Fusion

The transformation scheme WLFS, as outlined in the previous section, is only
applicable in a very restricted setting. In particular, adjacency in intermediate
code and the need for identical generator sets are difficult to meet in practice.
Instead of extending our existing transformation scheme to cover a wider range
of settings, we accompany WLFS by a set of preprocessing code transformations
that create application scenarios.
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Intermediate code between two with-loops under consideration for fusion
must be moved ahead of the first with-loop if it does not reference any of the
variables bound by it. The remaining code must be moved below the second
with-loop if it does not bind variables referenced within the second with-loop.
Any remaining code constitutes an indirect data dependence between the two
with-loops and prevents their fusion. The referential transparency of a single
assignment language like SaC substantially facilitates code reorganisation and
is one prerequisite to make with-loop-fusion effective in practice.

IS

2
66666666664

2
66666666664

with

gen
(a)
1 : exprs

(a)
1

· · ·
gen

(a)
k : exprs

(a)
k

operator
(a)
1

· · ·
operator

(a)
p

3
77777777775

3
77777777775

2
66666666664

2
66666666664

with

gen
(b)
1 : exprs

(b)
1

· · ·
gen

(b)
l : exprs

(b)
l

operator
(b)
1

· · ·
operator

(b)
q

3
77777777775

3
77777777775

=

8>>>>>>>>>>><
>>>>>>>>>>>:

with

GEN
hh
gen

(a)
1 : exprs

(a)
1

iihh
gen

(b)
1 · · · gen

(b)
l

ii
· · ·

GEN
hh
gen

(a)
k : exprs

(a)
k

iihh
gen

(b)
1 · · · gen

(b)
l

ii
operator

(a)
1

· · ·
operator

(a)
p

GEN
hh
gen(a) : exprs

iihh
gen

(b)
1 · · · gen

(b)
l

ii

=

8>><
>>:

CUT
hh
gen(a) : exprs

iihh
gen

(b)
1

ii
· · ·

CUT
hh
gen(a) : exprs

iihh
gen

(b)
l

ii

CUT
hh
(lb(a) <= iv(a) < ub(a)) : exprs

iihh
(lb(b) <= iv(b) < ub(b))

ii

= ELIM
hh
(max(lb(a),lb(b)) <= iv(a) < min(lb(a),lb(b))) : exprs

ii

ELIM[[([lb1, . . . , lbn] <= iv < [ub1, . . . , ubn]) : exprs]]

=
j

./. | ∃ i ∈ {1, . . . n} : lbi ≥ ubi

([lb1, . . . , lbn] <= iv < [ub1, . . . , ubn]) : exprs | otherwise

Fig. 4. Intersection of generators

We unify generator sets of two with-loops by systematically computing inter-
sections of each pair of generators from the first and from the second with-loop.
This code transformation is formalised by the compilation scheme IS, defined in
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Fig. 4. IS takes two arguments: firstly, the with-loop whose generator set is to
be refined and, secondly, the with-loop which is under consideration for later fu-
sion. Each generator of the first with-loop is associated with the entire sequence
of generators of the second with-loop. The auxiliary scheme GEN effectively
maps the generator/expression pair that originates from the first with-loop to
each generator originating from the second with-loop. Finally, the auxiliary
scheme CUT defines the intersection between two individual generators. For the
sake of clarity we restrict our presentation to generators without step and width
specifications and refer to [10] for more details.

The resulting number of generators equals the product of the numbers of
generators of the individual with-loops. However, in practice many of the po-
tential generators refer to empty index sets. Therefore, we add another auxiliary
scheme ELIM that identifies and eliminates these generators. In addition, we
use a compile time threshold on the number of generators in fused with-loops
to prevent accidental code explosion in rare cases. We illustrate the unification
of generator sets in Fig. 5. We start with two language-level with-loops and as
a first step introduce additional generators that make each with-loop’s default
rule explicit. In a second step, we unify the two generator sets by computing all
pairwise intersections between generators, and, eventually, we apply with-loop-
fusion itself.

Another common obstacle to with-loop-fusion are data dependences between
with-loops. If the sets of generators are sufficiently simple or similar to make
fusion feasible, it is often beneficial to eliminate the data dependence by a for-
ward substitution of associated expressions of the first with-loop into the second
with-loop. More precisely, we analyse the second with-loop and replace every
reference to an element of an array defined by the first with-loop with the
corresponding defining expression.

Technically, the forward substitution of expressions from one with-loop into
another resembles with-loop-folding. However, it is of little help here as with-
loop-folding only performs the forward substitution of an associated expression
if the original with-loop eventually becomes obsolete in order to avoid duplica-
tion of work. Exactly this prerequisite is not met in a fusion scenario because the
values defined by both with-loops under consideration are necessarily needed in
subsequent computations. However, if we are sure to apply with-loop-fusion as
well and if the second with-loop solely references elements of the first with-loop
at the position of the index variable, we can guarantee that the duplication of
work introduced by forward substitution will be undone by subsequent transfor-
mations. This is demonstrated by means of a more realistic example, which we
discuss in Section 7.

6 Post-fusion Optimisations

After successful fusion of with-loops, generators are associated with multiple
expressions. The expressions themselves, however, are left unmodified. Taking
the definition of the function MinMaxVal introduced in Section 3 as an example,
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A = with ([1,1] <= iv < [6,6]) : 0
genarray( [9,9], 1);

B = with ([2,3] <= iv < [6,6]) : 2
genarray( [9,9], 3);

⇓ Making default rule explicit ⇓
A = with ([0,0] <= iv < [1,9]) : 1

([1,0] <= iv < [6,1]) : 1
([1,1] <= iv < [6,6]) : 0
([1,6] <= iv < [6,9]) : 1
([6,0] <= iv < [9,9]) : 1

genarray( [9,9]);

B = with ([0,0] <= iv < [2,9]) : 3
([2,0] <= iv < [6,3]) : 3
([2,3] <= iv < [6,6]) : 2
([2,6] <= iv < [6,9]) : 3
([6,0] <= iv < [9,9]) : 3

genarray( [9,9]);

⇓ Computing intersections ⇓
A = with ([0,0] <= iv < [1,9]) : 1

([1,0] <= iv < [6,1]) : 1
([1,1] <= iv < [2,6]) : 0
([1,6] <= iv < [6,9]) : 1
([2,1] <= iv < [6,3]) : 0
([2,3] <= iv < [6,6]) : 0
([6,0] <= iv < [9,9]) : 1

genarray( [9,9]);

B = with ([0,0] <= iv < [1,9]) : 3
([1,0] <= iv < [6,1]) : 3
([1,1] <= iv < [2,6]) : 3
([1,6] <= iv < [6,9]) : 3
([2,1] <= iv < [6,3]) : 3
([2,3] <= iv < [6,6]) : 2
([6,0] <= iv < [9,9]) : 3

genarray( [9,9]);

⇓ Fusing with-loops ⇓
A,B = with ([0,0] <= iv < [1,9]) : 1, 3

([1,0] <= iv < [6,1]) : 1, 3
([1,1] <= iv < [2,6]) : 0, 3
([1,6] <= iv < [6,9]) : 1, 3
([2,1] <= iv < [6,3]) : 0, 3
([2,3] <= iv < [6,6]) : 0, 2
([6,0] <= iv < [9,9]) : 1, 3

genarray( [9,9])
genarray( [9,9]);

Fig. 5. Example illustrating the systematic intersection of generators
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fusion has changed the order in which elements of the argument array A are
accessed, but the number of accesses is still the same. This change in the order
of memory accesses improves temporal locality. In fact, every second access is
guaranteed to be an L1 cache hit. Nevertheless, it would be even more desirable
to avoid the second memory access at all and to directly take the value from the
destination register of the first memory load.

Min, Max = with (0*shape(A) <= iv < shape(A)) : A[iv], A[iv]
fold( min, MaxInt())
fold( max, MinInt());

⇓ Abstraction into local assignment block ⇓
Min, Max = with (0*shape(A) <= iv < shape(A)) : { tmp1 = A[iv];

tmp2 = A[iv];
}: tmp1, tmp2

fold( min, MaxInt())
fold( max, MinInt());

⇓ Conventional optimisations ⇓
Min, Max = with (0*shape(A) <= iv < shape(A)) : { tmp1 = A[iv];

}: tmp1, tmp1
fold( min, MaxInt())
fold( max, MinInt());

Fig. 6. Illustration of post-fusion optimisation

Unfortunately, our current representation, which associates a sequence of un-
related expressions with each generator, effectively hinders our standard opti-
misations to further improve the code. Therefore, we introduce a block of local
variable bindings between each generator and its associated expressions. At the
same time, we restrict these expressions to be identifiers bound in that block.
Fig. 6 illustrates this transformation by means of the MinMaxVal example. Here,
we assume tmp1 and tmp2 to be fresh, previously unused identifiers. This rather
simple postprocessing step allows us to apply the full range of optimisation
techniques available in SaC. In the example common subexpression elimination
and variable propagation succeed in reducing the effective number of memory
references by one half.

7 Case Study

We illustrate the various code transformation steps involved in with-loop-fusion
by means of a small case study. Fig. 7 shows a dimension-invariant SaC imple-
mentation of a simple convolution algorithm with periodic boundary conditions
and convergence test. Within the function convolutionwe iteratively compute a
single relaxation step (relax) and evaluate a convergence criterion (continue).
Relaxation with periodic boundary conditions is realised by rotating the ar-
gument array one element clockwise and one element counterclockwise in each
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dimension. The convergence criterion continue yields true iff there is an index
position for which the absolute difference of the corresponding values in argu-
ment arrays A and B exceeds the given threshold eps. All array operations are
imported from the SaC standard array library and are themselves implemented
in SaC by means of with-loops.

double[+] relax (double[+] A)
{

for (i=0; i<dim(A); i+=1) {
R = R + rotate( i, 1, A) + rotate( i, -1, A);

}

return( R / (2 * dim(A) + 1));
}

bool continue (double[+] A, double[+] B, double eps)
{

return( any( abs( A - B) > eps));
}

double[+] convolution (double[+] A, double eps)
{

do {
B = A;
A = relax( B);

}
while (continue( A, B, eps));

return( A);
}

Fig. 7. Dimension-invariant specification of convolution

Specialisation of the dimension-invariant code to a concrete shape of argument
arrays and preceding optimisations, mostly function inlining and with-loop fold-
ing, lead to the intermediate SaC code shown on top of Fig. 8. In each iteration
of the convolution algorithm we essentially compute the relaxation step by a sin-
gle genarray-with-loop and the convergence test by a single fold-with-loop.
For illustrative purposes we assume a specialisation to 9-element vectors.

Fig. 8 illustrates the various steps required for even this simple example to
achieve successful fusion of the two with-loops. The first step is the unification
of the two generator sequences. The single generator of the fold-with-loop is
split into three parts and the associated expression is duplicated accordingly,
as described in Section 5. Unfortunately, the result of the relaxation step is
required for evaluating the convergence test. This data dependence still pre-
vents with-loop fusion. We eliminate it by replacing the reference to array A
in the fold-with-loop by the corresponding expression that defines the value
of this element of A in the genarray-with-loop. As the corresponding genera-
tors from both with-loops are treated in the same way from here on, we show
only one.
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A = with ([0]<=iv<[1]): (B[iv+8]+B[iv]+B[iv+1])/3
([1]<=iv<[8]): (B[iv-1]+B[iv]+B[iv+1])/3
([8]<=iv<[9]): (B[iv-1]+B[iv]+B[iv-8])/3

genarray( [9]);
c = with ([0]<=jv<[9]): abs(A[jv]-B[jv])>=eps

fold( ||, false);

⇓ Generator unification ⇓
A = with ([0]<=iv<[1]): (B[iv+8]+B[iv]+B[iv+1])/3

([1]<=iv<[8]): (B[iv-1]+B[iv]+B[iv+1])/3
([8]<=iv<[9]): (B[iv-1]+B[iv]+B[iv-8])/3

genarray( [9]);
c = with ([0]<=jv<[1]): abs(A[jv]-B[jv])>=eps

([1]<=jv<[8]): abs(A[jv]-B[jv])>=eps
([8]<=jv<[9]): abs(A[jv]-B[jv])>=eps

fold( ||, false);

⇓ Data dependence elimination ⇓
A = with ...

([1]<=iv<[8]):(B[iv-1]+B[iv]+B[iv+1])/3
genarray( [9]);

c = with ...
([1]<=jv<[8]): abs(((B[jv-1]+B[jv]+B[jv+1])/3)-B[jv])>=eps

fold( ||, false);

⇓ With-loop fusion ⇓
A,c = with ...

([1]<=iv<[8]): (B[iv-1]+B[iv]+B[iv+1])/3,
abs(((B[iv-1]+B[iv]+B[iv+1])/3)-B[iv])>=eps

genarray( [9])
fold( ||, false);

⇓ Abstraction into local assignment block ⇓
A,c = with ...

([1]<=iv<[8]):
{ tmp1 = (B[iv-1]+B[iv]+B[iv+1])/3;

tmp2 = abs(((B[iv-1]+B[iv]+B[iv+1])/3)-B[iv])>=eps
}: tmp1, tmp2

genarray( [9])
fold( ||, false);

⇓ Conventional optimisations ⇓
A,c = with ...

([1]<=iv<[8]):
{ tmp0 = B[iv];

tmp1 = (B[iv-1]+tmp0+B[iv+1])/3;
tmp2 = abs(tmp1-tmp0)>=eps;

}: tmp1, tmp2
genarray( [9])
fold( ||, false);

Fig. 8. Illustration of fusion steps for convolution example
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We now apply with-loop fusion as defined in Section 4. Abstraction of subex-
pressions into a joint block of local variable bindings, as described in Section 6,
follows next. This opens up a plethora of further optimisation opportunities.
Most notable, common subexpression elimination avoids the repeated compu-
tation of the relaxation step introduced when eliminating the data dependence
between the two initial with-loops. The overall outcome of this sequence of code
transformations is an intermediate code representation that computes both the
relaxation step and the convergence test in a single sweep.

8 Experimental Evaluation

We have conducted several experiments in order to quantify the impact of with-
loop-fusion on the runtime performance of compiled SaC code. Our test system
is a 1100MHz Pentium III based PC running SuSE Linux, and we used gcc 3.3.1
as backend compiler to generate native code.

The first experiment involves our initial motivating example: computing mini-
mum and maximum values of an array. Fig. 9a shows runtimes for three different
problem sizes with and without application of with-loop-fusion. As expected,
there is almost no improvement for very small arrays. The benefits of fusion in
this example are two-fold. We do save some loop overhead, but our experiments
show this to be marginal. Therefore, the main advantage of fusion in this example
is that we can avoid one out of two memory accesses. However, as long as an
argument array easily fits into the L1 cache of the processor, the penalty turns
out to be negligible. As Fig. 9a shows, this situation changes in steps as the array
size exceeds L1 and later L2 cache capacities. In the latter case, with-loop-fusion
reduces program execution time by almost 50%.

100%
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25%

100%

75%

50%

25%

No Fusion Fusion

10x10 100x100 1000x1000 10,000 100,000 1,000,000 25x25 150x150
a) MinMaxVal b) Convolution c) SPEC Tomcatv

100x100

Fig. 9. Impact of with-loop-fusion on program execution times for computing mini-
mum and maximum element values (left), convolution with periodic boundaries and
convergence test (centre), and the SPEC benchmark tomcatv (right) for varying prob-
lem sizes

Our second benchmark is the convolution algorithm used as a case study in
Section 7. Fig. 9b shows our measurements. For a small problem size fusion again
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has no visible impact on performance, but with growing problem size a nearly
25% reduction can be observed. While this is truly a substantial performance
gain, we had anticipated more. For the given example, with-loop-fusion should
reduce the number of memory load operations in the inner loop from 5 (3 in
the relaxation kernel and 2 in the convergence criterion) to only 3. Keeping in
mind that this numerical kernel is fully memory bound, one would expect a
speedup of 40% rather than only 25%. However, a closer look at the generated
assembly code revealed that both short and simple loop kernels in the non-fused
case exclusively operate on registers, whereas the larger and more complex loop
kernel derived from the fused code partially operates on the stack. This explains
the sub-optimal performance gain observed.

The last experiment is based on a SaC implementation of the SPEC bench-
mark tomcatv. As shown in Fig. 9c, substantial performance gains can be ob-
served for this benchmark with growing problem size. Improvements of up to
80% must be attributed to the fact that unlike in the previous examples more
than two with-loops are fused at a time.

Having demonstrated the significant performance impact of with-loop-fusion,
it would be similarly interesting to see how many application cases exist across
a representative suite of programs. However, the answer critically depends on
programming style. In fact, we consider with-loop-fusion, as with-loop-folding
and with-loop-scalarisation, an enabling technology to make our propagated
programming methodology based on the principles of abstraction and composi-
tion feasible in practice. Rather than generally improving the runtime behaviour
of existing programs, with-loop-fusion eliminates the performance penalty of
compositional specifications and, thus, enables us to write code that is easier to
maintain and to reuse without sacrificing performance.

9 Related Work

With-loop-fusion is the third and last missing optimisation technique to system-
atically transform generic SaC programs into efficiently executable code. It is
orthogonal to our previously proposed optimisations, with-loop-folding [7] and
with-loop-scalarisation [8], in the sense that each of the three optimisations ad-
dresses a specific type of composition. With-loop-folding resolves vertical com-
positions of with-loops, where the result of one array operation becomes the
argument of subsequent array operations (i.e., program organisation follows a
producer-consumer pattern). With-loop-scalarisation addresses nested compo-
sitions of with-loops, where for each element of the set of indices of an outer
with-loop a complete inner with-loop is evaluated (i.e., in each iteration of the
outer with-loop a temporary array is created). Thus, both with-loop-folding
and with-loop-scalarisation aim at avoiding the actual creation of temporary
arrays at runtime. In contrast, with-loop-fusion addresses with-loops that are
unrelated in the data flow graph or that can be made so by preprocessing tech-
niques. In this case, fusion of with-loops does not change the number of data
structures created at runtime, but it reduces some loop overhead and — most
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important — it changes the order of references into existing arrays in a way that
improves data locality in memory hierarchies.

The wish to avoid the repeated traversal of large data structures is neither
specific to generic array programming in general nor to SaC in particular. In the
context of algebraic data types tupling [11] has been proposed to avoid repeated
traversals of list- and tree-like data structures. Rather than gathering two values
from the same data structure one after the other, tupling aims at gathering the
tuple of values in a single traversal, hence the name. Whereas, the underlying
idea essentially is the same in tupling and with-loop-fusion the different settings
make their concrete appearances fairly different.

Fusion techniques have a long tradition in research on implementation of func-
tional languages [12,13,14,15]. The growing popularity of generic programming
techniques [16,17] has created additional optimisation demand [18]. All these
approaches follow the mainstream of functional languages in that they focus on
lists or on algebraic data types. Much less work has been devoted to arrays, one
exception being functional array fusion [19]. All these techniques aim at iden-
tifying and eliminating computational pipelines, where a potentially complex
intermediate data structure is synthesised by one function for the sole purpose
to be analysed by another function later on. In contrast, the objective of with-
loop-fusion is not the elimination of intermediate data structures, which in SaC

is taken care of by with-loop-folding [7]. The essence of with-loop-fusion is more
similar to the aims of traditional loop fusion in high performance computing in
reducing loop overhead and the size of memory footprints.

There is a plethora of work on fusion of Fortran-style do-loops [20,21,22,23].
While the intentions are similar to the objectives of with-loop-fusion, the setting
is fairly different. Despite their name, our with-loops represent potentially com-
plex array comprehensions with abstract descriptions of multi-dimensional index
spaces rather than conventional loops. Whereas with-loops define the compu-
tation of an aggregate value in an abstract way, do-loops merely define a control
flow that leads to a specific sequence of read and write operations. Since the
fusion of do-loops changes this sequence a compiler must be sure that both the
old and the new sequence are semantically equivalent and that the new sequence
is beneficial with respect to some metric. Both require the compiler to develop
a deeper understanding of the programmer’s intentions. Consequently, much of
the work on loop fusion in Fortran is devoted to identification of dependences
and anti-dependences on a scalar or elementary level. In contrast, the functional
setting of SaC rules out anti-dependences and discloses the data flow. Rather
than reasoning on the level of scalar elements, with-loop-fusion addresses the
issue on the level of abstract representations of index spaces.

10 Conclusion and Future Work

Engineering application programs based on the principles of abstraction and
composition as in SaC leads to well-structured and easily maintainable software.
However, the downside of this approach is that it requires non-trivial compilation
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techniques which systematically restructure entire application programs into a
form that allows for efficient execution on real computing machinery.

In the current work, we have described with-loop-fusion as one mosaic stone
of this code restructuring compiler technology. With-loop-fusion takes two
with-loops and transforms them into a single generalised variant named multi-
operator with-loop, which we have introduced as a compiler internal intermedi-
ate code representation for exactly this purpose. The positive effect of with-loop
fusion is to avoid repeated traversals of the same array and replace memory load
and store operations by equivalent but much faster register accesses. In several
experiments we have demonstrated the potential of with-loop-fusion to achieve
substantial reductions of execution times. In fact, it has proved to be a major
prerequisite to make the modular programming style of SaC feasible in practice.

Individual with-loops also form the basis of compiler-directed parallelisation
of SaC programs following a data parallel approach [24]. Like folding and scalar-
isation with-loop-fusion has the effect to concentrate computational workload
scattered throughout multiple with-loops within a single one. Therefore, with-
loop-fusion also improves the quality of parallelised code by reducing the num-
ber of synchronisation barriers and the need for communication. Furthermore,
dealing with larger computational workload improves both the quality and the
efficiency of scheduling workload to processing units.

In the future, we plan to extend with-loop-fusion to handle genarray-with-
loops that define arrays of non-identical shape. The idea is to create a joint
with-loop whose generators cover the convex hull of the individual with-loop’s
index spaces. Index positions not existing in one or another result array would
be associated with a special value none and ignored by compiled code. Another
area of future research is the selection of with-loops for fusion. As fusion of two
with-loops may prevent further fusion with a third with-loop, we may want to
identify the most rewarding optimisation cases on the basis of heuristics.
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gramming Languages, Lübeck, Germany (2005)

11. Chin, W.: Towards an Automated Tupling Strategy. In: Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantic-Based Program Ma-
nipulation (PEPM’97), Copenhagen, Denmark, ACM Press (1993) 119–132

12. Wadler, P.: Deforestation: Transforming Programs to Eliminate Trees. Theoretical
Computer Science 73 (1990) 231–248

13. Gill, A., Launchbury, J., Peyton Jones, S.: A Short Cut to Deforestation. In: Pro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture (FPCA’93), Copenhagen, Denmark, ACM Press (1993) 223–232

14. Chin, W.: Safe Fusion of Functional Expressions II: Further Improvements. J. Func-
tional Programming 4 (1994) 515–550

15. van Arkel, D., van Groningen, J., Smetsers, S.: Fusion in Practice. In: Proceedings
of the 14th International Workshop on Implementation of Functional Languages
(IFL’02), Madrid, Spain, Selected Papers. LNCS 2670, Springer-Verlag (2003)

16. Alimarine, A., Plasmeijer, R.: A Generic Programming Extension for Clean. In:
Proceedings of the 13th International Workshop on Implementation of Functional
Languages (IFL’01), Stockholm, Sweden, Selected Papers. LNCS 2312, Springer-
Verlag (2002) 168–186
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