
With-Loop-Folding in Sac - Condensing
Consecutive Array Operations

Sven-Bodo Scholz

Dept of Computer Science
University of Kiel

24105 Kiel, Germany
e-mail: sbs@informatik.uni-kiel.de

Abstract. This paper introduces a new compiler optimization called
with-loop-folding. It is based on a special loop construct, the with-
loop, which in the functional language Sac (for Single Assignment C)
serves as a versatile vehicle to describe array operations on an element-
wise basis. A general mechanism for combining two of these with-loops
into a single loop construct is presented. This mechanism constitutes
a powerful tool when it comes to generate efficiently executable code
from high-level array specifications. By means of a few examples it is
shown that even complex nestings of array operations similar to those
available in Apl can be transformed into single loop operations which are
similar to hand-optimized with-loop specifications. As a consequence,
the way a complex array operation is combined from primitive array
operations does not affect the runtime performance of the compiled code,
i.e., the programmer is liberated from the burden to take performance
considerations into account when specifying complex array operations.

1 Introduction

The suitability of functional languages for numerical applications critically de-
pends on the compilation of array operations into efficiently executable code. In
the context of lazy functional languages, e.g. Haskell[HAB+95] or Clean[PvE95],
it seems to turn out that this can only be achieved with strict arrays and if
single threading for most of the array operations can be guaranteed statically
[HSB97,Ser97]. Whereas the former restriction in most cases does not affect the
style of programming, the latter requires the programmer to make opportuni-
ties for destructive array updates explicit to the compiler by the introduction of
uniqueness types [SBvEP93] or state monads [LP94].

In contrast to lazy languages, Sisal[MSA+85] demonstrates that strict lan-
guages can be compiled into efficiently executable code without forcing the pro-
grammer to think about single threading of array operations [Can92]. However,
Sisal allows for low-level specifications only. Neither the expressive power of
polymorphism, higher-order functions, and partial applications nor any high-
level array operations are supported. As a consequence, despite a new syntax

Sisal offers few benefits in terms of expressiveness when compared with imper-
ative languages, e.g. Fortran[Weh85] or C[KR90].

The development of the strict functional language Sac[Sch96] constitutes
a different approach. Although Sac as well does not yet support higher-order
functions nor partial applications it differs from Sisal in three respects. Most
important, Sac offers substantial support for the specification of high-level ar-
ray operations, i.e., it provides array operations similar to those available in
Apl[Ive62] as well as a special loop construct, the with-loop, which allows ar-
ray operations to be specified element-wise. All of these language constructs are
designed to facilitate the specification of array operations that can be applied to
arrays of arbitrary dimensionalities and shapes. Furthermore, the syntax of Sac

sticks as close as possible to that of C which does not only facilitate the com-
pilation process but might also increase the acceptance of Sac by programmers
that are used to program in C. Last but not least, Sac provides states, state-
modifications, and I/O-operations [GS95] which are incorporated safely into the
functional framework by means of uniqueness typing [SBvEP93].

The Sac compiler is supported by a type inference system based on a hier-
archy of array types which allows dimension-independent Sac specifications to
be specialized to shape-specific C programs. Although this concept leads to code
which can be executed very efficiently in terms of runtime and space consumption
[Sch97], the compilation of array operations in the current compiler version is
still implemented straightforwardly. Each array operation is compiled into a sep-
arate piece of code, i.e., nestings of array operations are broken up into sequences
of single array operations by the introduction of temporary arrays. Since there
is no optimization between two or several consecutive array operations, the way
a complex array operation is composed from the language constructs available
has a strong influence on the code generated. Different specifications lead to the
introduction of different temporary arrays and thus to different runtime over-
heads. Redundancies within consecutive array operations are not detected and
thus have a direct impact on runtimes as well. As a consequence, the program-
mer has to know about the implementation when it comes to writing programs
that can be compiled to efficiently executable code. Since this runs counter to
the idea of functional programming, which is to liberate the programmer from
low level concerns, an optimization is needed that tries to eliminate temporary
arrays as well as redundancies of consecutive array operations whenever possible.

The basic idea is to use with-loops as a universal representation for array
operations and to develop a general transformation scheme which allows to trans-
form two consecutive with-loops into a single one. With this mechanism, called
with-loop-folding, any nesting of primitive array operations can be transformed
stepwise into a single loop construct which contains an element-wise specification
of the resulting array.

The consequences of this optimization are far-reaching:

– The code generated for any complex array operation specified in Sac be-
comes invariant against the way it is composed from more primitive opera-

tions, i.e., the programmer is not concerned with the low level details any
more.

– In combination with the application of other, well-known optimizations (e.g.
constant-folding, loop unrolling, etc.) most of the redundancies which would
result from a straightforward compilation can be eliminated.

– All primitive array operations of Sac that are similar to those available
in Apl can be defined through with-loops and are implemented via the
standard library rather than by the compiler itself. The only array operation
implemented by the compiler is the with-loop.

– Since the primitive array operations are defined in the standard library, they
can be adjusted to the programmers needs easily.

The paper is organized as follows: While the following section gives a short
introduction into the basic language concepts of Sac, Section 3 presents the basic
with-loop-folding mechanism. An extended example is discussed in Section 4.
It demonstrates nicely how even complex nestings of array operations can be
folded into a simple loop construct. Some implementation issues are discussed
in Section 5. These include some restrictions which are imposed on with-loop-
folding in order to guarantee its statical applicability as well as some performance
considerations. Section 6 points out the relationship of with-loop-folding to
other optimization techniques. Some concluding remarks finally can be found in
Section 7.

2 Sac - a Short Introduction

Sac is a strict, purely functional language whose syntax in large parts is identical
to that of C. In fact, Sac may be considered a functional subset of C extended
by high-level array operations which may be specified in a shape-invariant form.
It differs from C proper mainly in that

– it rules out global variables and pointers to keep functions free of side-effects,
– it supports multiple return values for user-defined functions, as in many

dataflow languages [AGP78,AD79,BCOF91],
– it supports high-level array operations, and
– programs need not to be fully typed.

With these restrictions / enhancements of C a transformation of Sac pro-
grams into an applied λ-calculus can easily be defined. The basic idea for doing so
is to map sequences of assignments that constitute function bodies into nestings
of let-expressions with the return-expressions being transformed into the in-
nermost goal expressions. Loops and if-then-else statements are transformed
into (local) letrec- expressions and conditionals respectively. For details see
[Sch96].

An array in Sac is represented by a shape vector which specifies the number
of elements per axis, and by a data vector which lists all entries of the array.

For instance, a 2× 3 matrix
(

1 2 3
4 5 6

)
has shape vector [2, 3] and data vector

[1, 2, 3, 4, 5, 6]. The set of legitimate indices can be directly inferred from the
shape vector as

{[i1, i2] | 0 ≤ i1 < 2, 0 ≤ i2 < 3}

where [i1, i2] refers to the position (i1 ∗ 3 + i2) of the data vector. Generally,
arrays are specified as expressions of the form

reshape(shape vector, data vector)

where shape vector and data vector are specified as lists of elements enclosed in
square-shaped brackets. Since 1-dimensional arrays are in fact vectors, they can
be abbreviated as

[v1, ..., vn] ≡ reshape([n], [v1, ..., vn]) .
Several primitive array operations similar to those in Apl, e.g. dim and shape

for array inspection, take, drop, cat, and rotate for array manipulation, and
psi for array element / subarray selection, are made available. For a formal
definition of these see [Sch96,Sch97].

All these operations have in common that they, in one way or another, affect
all elements of the argument array(s) in the same way. To have a more versatile
language construct at hands which allows to specify array operations dimension
independently on arbitrary index ranges, Sac also supports so called with-loops.
They are similar to array comprehensions as known from Haskell or Clean

as well as to the for-loops in Sisal.
The syntax of with-loops1 is outlined in Fig. 1. Basically, they consist of

WithExpr ⇒ with (Generator) Operation

Generator ⇒ Expr <= Identifier <= Expr

Operation ⇒ [{ LocalDeclarations }] ConExpr

ConExpr ⇒ genarray (Expr , Expr)
| modarray (Expr , Expr , Expr)

Fig. 1. with-loops in Sac.

two parts: a generator part and an operation part. The generator part defines
lower and upper bounds for a set of index vectors and an ’index variable’ which
represents a vector of this set. The operation part specifies the operation to
be performed on each element of the index vector set. Two different kinds of
operation parts for the generation of arrays are available in Sac (see ConExpr
in Fig. 1). Their functionality is defined as follows:

1 Actually, only a restricted form of the with-loops in Sac is presented here which suf-
fices to explain the with-loop-folding mechanism. An extension to the full-featured
with-loops is straightforward and will not be further addressed.

Let shp and idx denote Sac-expressions that evaluate to vectors, let array
denote a Sac-expression that evaluates to an array, and let expr denote an
arbitrary Sac-expression. Then

– genarray(shp, expr) generates an array of shape shp whose elements are
the values of expr for all index vectors from the specified set, and 0 otherwise;

– modarray(array, idx, expr) returns an array of shape shape(array)
whose elements are the values of expr for all index vectors from the specified
set, and the values of array[idx] at all other index positions.

To increase program readability, local variable declarations may precede the
operation part of a with-loop. They allow for the abstraction of (complex)
subexpressions from the operation part.

3 Folding With-Loops

The key idea of with-loop-folding is to provide a universal mechanism that trans-
forms functional compositions of array operations into single array operations
which realize the functional composition on an element-wise basis. This avoids
the creation of temporary arrays as well as redundancies within consecutive op-
erations. Since most of the primitive array operations of Sac can be specified
as with-loops the folding scheme not only can be applied to user-defined with-
loops but serves as tool for the optimization of nested primitive array operations
as well.

The most basic situation for such a transformation is the composition of two
with-loops which simply map functions f and g to all elements of an array. From
the well known fact that map f ◦ map g ≡ map (f ◦ g) we directly obtain:

Let A be an array of arbitrary shape with elements of type τ and let f and g
be functions of type τ → τ . Then

{...

B = with(0*shape(A) <= i_vec <= shape(A)-1)

modarray(A, i_vec, f(A[i_vec]));

C = with(0*shape(B) <= j_vec <= shape(B)-1)

modarray(B, j_vec, g(B[j_vec]));

...}

can be substituted by

{...

C = with(0*shape(A) <= j_vec <= shape(A)-1)

modarray(A, j_vec, g(f(A[j_vec])));

...}

provided that B is not referenced anywhere else in the program which can be
checked statically since the scope of B is well defined (for details see [Sch96]).

However, as soon as the with-loop is used in a more general fashion the trans-
formation scheme becomes more complicated since it does not correspond to a
simple mapping function anymore. In the following we want to generalize the
above scheme in three respects:

1. the with-loops to be folded may have non-identical index sets in their gen-
erator parts;

2. the second with-loop may contain several references to the array defined by
the first one;

3. the access(es) to the array defined by the first with-loop may be non-local,
i.e., instead of B[j vec] expressions of the form B[I op(j vec)] are allowed
where I op projects index vectors to index vectors.

An example that covers all these aspects and therefore will be referred to
throughout the whole section is the piece of a Sac program given in the upper
part of Fig.2. It consists of two with-loops which successively compute vectors B

{...

B = with([0]<= i_vec <= [39])

modarray(A, i_vec, A[i_vec] + 3);

C = with([20]<= j_vec <= [79])

modarray(B, j_vec, B[j_vec] + B[j_vec - [10]]);

... }

[0] [40] [80]

B = A[i vec] + 3 A[i vec]

[0] [20] [80]

C = B[j vec] B[j vec] + B[j vec-[10]]

Fig. 2. Two successive with-loops with overlaping index ranges and multiple refer-
ences.

and C from a given vector A. Each of these vectors consists of 80 integer numbers.
While the first with-loop defines B to differ from A in that the first 40 elements
are increased by 3, the second with-loop defines C to differ from B in that the
last 60 elements of C are computed as the sum of two elements of B, the actual
one and the one that is located at the actual index position minus 10.

A graphical representation of these with-loops is given in the lower part of
Fig.2: Each horizontal bar represents all elements of the vector named to the
left of it. The index vectors on top of the bars indicate the positions of the
respective elements within the bars. The Sac expressions annotated in the bars
define how the vector elements are computed from the elements of other vectors.
Since different computations are required in different index vector ranges the
bars are divided up by vertical lines accordingly.

Instead of first computing B from A then C from B, the array C can be com-
puted from the array A directly. This operation requires four index ranges of C
to be treated differently, as depicted in Fig.3.

[0] [40] [80]

B = A[i vec] + 3 A[i vec]

[0] [20] [80]

C = B[j vec] B[j vec] + B[j vec-[10]]

⇓

[0] [20] [40] [50] [80]

C = A[j vec] + 3 s

- (A[j vec] + 3) + (A[j vec-[10]] + 3)

s

- A[j vec] + (A[j vec-[10]] + 3)

s
- A[j vec] + A[j vec-[10]]

Fig. 3. Substituting two successive array modifications by a single one.

Due to the four index ranges whose array elements have to be treated differ-
ently the resulting operation cannot be expressed by a single with-loop. There-
fore, at least at the level of compilation, a more general version of with-loops
has to be introduced. It generalizes the possibility to specify a single operation
on a subset of array indices in that it allows different operations on arbitrary
partitions of array indices to be specified. Throughout this paper the following
notation will be used to denote such internal with-loop representations:

Let S denote the set of legal indices for an array of shape [s1, ..., sn],
i.e., S := { [i1, ..., in] | ∀j ∈ {1, ..., n} 0 ≤ ij < sj }. Furthermore, let
IV1, ..., IVm be a partition of S and let Op1(i vec), ..., Opm(i vec)
be expressions that evaluate to data structures of type τ if i vec ∈ S. Then

A = internal with(i vec) {
IV1 : Op1(i vec)
...

...
IVm : Opm(i vec)

}

defines an array A of shape [s1, ..., sn] with element type τ where

A[i vec] := Opj(i vec) ⇔ i vec ∈ IVj. 2

With this notation at hands, our example problem can be specified as follows:

2 Note, that A is well defined since IV1, ..., IVm is a partition of S

Find a transformation scheme which transforms

B = internal with(i vec) {
[0]→[39] : A[i vec] + 3

[40]→[79] : A[i vec]

}
C = internal with(j vec) {

[0]→[19] : B[j vec]

[20]→[79] : B[j vec] + B[j vec - [10]]

}

into

C = internal with(j vec) {
[0]→[19] : A[j vec] + 3

[20]→[39] : (A[j vec] + 3) + (A[j vec - [10]] + 3)

[40]→[49] : A[j vec] + (A[j vec - [10]] + 3)

[50]→[79] : A[j vec] + A[j vec - [10]]

}

where [from1, ..., fromn]→[to1, ..., ton] denotes the set of index vec-
tors {[i1, ..., in] | ∀j∈ {1, ..., n} : fromj ≤ ij ≤ toj}.

The basic idea to a general solution is to formulate a scheme which stepwise
replaces all references to ”temporary arrays” (the array B in our example) by
their definitions. Once all references to a temporary array are replaced, the with-
loop by which it is defined does not contribute to the program’s result anymore
and thus can be eliminated.

The central rule which defines the replacement of array references by their
definitions is specified in Fig.4. For an application of the rule, it is anticipated
that all with-loops have been replaced by equivalent internal with-loop con-
structs beforehand. The upper part of Fig.4 shows the most general situation
in which a replacement can be made: two array definitions are given within one
scope (e.g. a function body) whose second one refers to (an) element(s) of the
first one. For the sake of generality it is assumed that the first array, named A,
is defined by m expressions Op1,1(i vec), ..., Op1,m(i vec) on m disjoint sets
of index vectors IV1,1, ..., IV1,m, and that the second array B is defined by n
expressions Op2,1(j vec), ..., Op2,n(j vec) on sets of index vectors IV2,1, ...,
IV2,n. Furthermore, we assume that Op2,i(j vec) is an expression that contains
a subexpression A[I op(j vec)] as indicated by a . . .A[I op(j vec)]. . . `.
If A[I op(j vec)] is to be replaced by parts of the definition of A, it has to
be determined to which element of A the index vector I op(j vec) refers. Since
these index vectors, in general, may be spread over the whole array A, the set
of index vectors IV2,i has to be divided up into sets IV2,i,1, ..., IV2,i,m with
respective expressions Op2,i,1(j vec), ..., Op2,i,m(j vec) where each expression
Op2,i,j(j vec) is derived from Op2,i(j vec) by replacing A[I op(j vec)] by
Op1,j(I op(j vec)) as specified in Fig.4.

Applying this transformation rule to our example problem we get a sequence
of program transformations as shown in Fig.5. Starting out from the two given

{ ...
A = internal with(i vec) {

IV1,1 : Op1,1(i vec)
...

...

IV1,m : Op1,m(i vec)

}
...
B = internal with(j vec) {

IV2,1 : Op2,1(j vec)
...

...

IV2,i : Op2,i(j vec)=a . . .A[I op(j vec)]. . . `
...

...

IV2,n : Op2,n(j vec)

}
...}

⇓

{ ...
A = internal with(i vec) {

IV1,1 : Op1,1(i vec)
...

...

IV1,m : Op1,m(i vec)

}
...
B = internal with(j vec) {

IV2,1 : Op2,1(j vec)
...

...

IV2,i,1 : Op2,i,1(j vec)=a . . .Op1,1(I op(j vec)). . . `
...

...

IV2,i,m : Op2,i,m(j vec)=a . . .Op1,m(I op(j vec)). . . `
...

...

IV2,n : Op2,n(j vec)

}
...}

with IV2,i,1 := { j vec | j vec ∈ IV2,i ∧ I op(j vec) ∈ IV1,1}
...

...

IV2,i,m := { j vec | j vec ∈ IV2,i ∧ I op(j vec) ∈ IV1,m}

Fig. 4. Single with-loop-folding step.

B = internal with(i vec) {
[0]→[39] : A[i vec] + 3

[40]→[79] : A[i vec]

}
C = internal with(j vec) {

[0]→[19] : B[j vec]

[20]→[79] : B[j vec] + B[j vec - [10]]

}

(a)

⇓

C = internal with(j vec) {
[0]→[19] : A[j vec] + 3

[20]→[79] : B[j vec] + B[j vec - [10]]

}

(b)

⇓

C = internal with(j vec) {
[0]→[19] : A[j vec] + 3

[20]→[39] : (A[j vec] + 3) + B[j vec - [10]]

[40]→[79] : A[j vec] + B[j vec - [10]]

}

(c)

⇓

C = internal with(j vec) {
[0]→[19] : A[j vec] + 3

[20]→[39] : (A[j vec] + 3) + (A[j vec - [10]] + 3)

[40]→[79] : A[j vec] + B[j vec - [10]]

}

(d)

⇓

C = internal with(j vec) {
[0]→[19] : A[j vec] + 3

[20]→[39] : (A[j vec] + 3) + (A[j vec - [10]] + 3)

[40]→[49] : A[j vec] + (A[j vec - [10]] + 3)

[50]→[79] : A[j vec] + A[j vec - [10]]

}

(e)

Fig. 5. Stepwise with-loop-folding at the example presented in Fig.3

with-loops in internal representation (Fig.5(a)), a stepwise transformation of
the second with-loop construct is presented until the final version in Fig.5(e) is
reached which does not contain any references to the array B anymore. Each of
these steps results from a single application of the with-loop-folding rule from
Fig.4; the references to B which are to be replaced in the next transformation
step in each of the intermediate forms Fig.5(a) to Fig.5(d) are marked by boxes
which surround them.

4 Simplifying Nestings of Apl-like Operations

As mentioned in the previous section, with-loop-folding is not solely ment for
the optimization of user defined with-loops but as a universal tool for the opti-
mization of nested primitive array operations as well. This requires all, or at least
most, of the primitive array operations to be defined in terms of with-loops.

At this point, one of the major design principles for with-loops in Sac,
namely to support the specification of shape-invariant array operations, pays
off. It turns out that all primitive array operations of Sac can be defined as
with-loops within a standard library rather than being implemented as part of
the compiler. As an example, the definitions for take, and rotate are given in
Fig.6.

inline double[] take(int[] new_shp, double[] A)

{

B = with (0*new_shp <= i_vec <= new_shp-1)

genarray(new_shp, A[i_vec]);

return(B);

}

inline double[] rotate(int dim, int num, double[] A)

{

max_rotate = shape(A)[[dim]];

num = num % max_rotate;

if(num < 0)

num = num + max_rotate;

offset = modarray(0*shape(A), [dim], num);

slice_shp = modarray(shape(A), [dim], num);

B = with (offset <= i_vec <= shape(A)-1)

modarray(A, i_vec, A[i_vec-offset]);

B = with (0*slice_shp <= i_vec <= slice_shp-1)

modarray(B, i_vec, A[shape(A)-slice_shp+i_vec]);

return(B);

}

Fig. 6. Library definitions of take and rotate.

take expects two arguments, a vector new shape and an array A, where
new shape indicates the number of elements to be selected from the ”upper left
corner” of A. While this operation can easily be specified as a single with-loop
that simply copies the requested elements from A, the definition of rotate is a
bit more complex.

rotate expects three arguments: two integer numbers dim and num, and an
array A, whose elements are to be rotated num positions along the axis dim. In
order to avoid modulo operations for the computation of each element of the
resulting array B, two different offsets to the index vectors i vec are computed:
one for those elements which have to be copied from positions with lower in-
dex vectors to positions with higher index vectors (offset) and another one

(shape(A)-slice shp) for those elements that have to be copied from positions
with higher index vectors to positions with lower index vectors. The usage of two
different offsets on two disjoint ranges of index vectors leads to the specification
of two consecutive with-loops.

With these definitions at hands, even rather complex nestings of primitive
array operations can be transformed into sequences of with-loops which subse-
quently can be folded into single loop constructs. To illustrate this, the trans-
formation of a simplified version of two-dimensional Jacobi relaxation [Bra96] is
outlined in the remainder of this section. Given a two-dimensional array A with
shape [m,n] all inner elements, i.e., all those elements with non-maximal and
non-minimal index components, have to be replaced by the sums of their re-
spective neighbor elements. Although this algorithm could be specified elegantly
by a single with-loop, we want to examine an artificially complex specification
that uses the primitive array operations of Sac only in order to illustrate the
strengths of with-loop-folding in the context of these operations:

double[] relax(double[] A)

{

m = psi([0], shape(A));

n = psi([1], shape(A));

B = rotate(0, 1, A) + rotate(0, -1, A)

+ rotate(1, 1, A) + rotate(1, -1, A);

upper_A = take([1,n], A);

lower_A = drop([m-1,0], A);

left_A = drop([1,0], take([m-1,1], A));

right_A = take([m-2,1], drop([1,n-1], A));

inner_B = take([m-2,n-2], drop([1,1], B));

middle = cat(1, left_A, cat(1, inner_B, right_A));

result = cat(0, upper_A, cat(0, middle, lower_A));

return(result);

} .

The key idea of this piece of Sac-program is to specify the summation of
neighbor elements as the summation of rotated arrays. Since in the resulting
array B the boundary elements are modified as well, these elements have to be
replaced by those of the initial array A. This is done by first cutting off the
first row of A (upper A), the last row of A (lower A), the first and last column
of the inner rows of A (left A and right A respectively), as well as the inner
elements of B. Subsequently, these vectors/arrays are re-combined by successive
catenation operations.

Due to the complexity of this example, we want to focus on the transforma-
tion of the nesting of array operations that specifies the computation of the array
B first. Before an inlining of the function applications of rotate takes place, the
nesting of array additions is transformed into a sequence of assignments whose
right hand sides only consist of one array operation each, i.e.,

{ ...

B = rotate(0, 1, A) + rotate(0, -1, A)

+ rotate(1, 1, A) + rotate(1, -1, A);

... }

is transformed into

{ ...

tmp0 = rotate(0, 1, A);

tmp1 = rotate(0, -1, A);

tmp2 = tmp0 + tmp1;

tmp3 = rotate(1, 1, A);

tmp4 = tmp2 + tmp3;

tmp5 = rotate(1, -1, A);

B = tmp4 + tmp5;

... } .

After the complete program is transformed in a similar way, standard opti-
mizations e.g. function inlining, constant folding, constant propagation or vari-
able propagation (for surveys see [ASU86,BGS94,PW86,Wol95,ZC91]) are ap-
plied, which introduce several with-loops into our example. For the inlined ver-
sion of the first application of the function rotate we obtain:

{ ...

tmp0_B = with ([1,0] <= i_vec <= shape(A)-1)

modarray(A, i_vec, A[i_vec-[1,0]]);

tmp0 = with ([0,0] <= i_vec <= [0,n-1])

modarray(tmp0_B, i_vec, A[[m-1,0]+i_vec]);

... } .

Transforming the with-loops into internal representations yields:

{ ...
tmp0 B = internal with(i vec) {

[0,0]→[0,n-1] : A[i vec]

[1,0]→[m-1,n-1] : A[i vec-[1,0]]

}
tmp0 = internal with(i vec) {

[0,0]→[0,n-1] : A[[m-1,0]+i vec]

[1,0]→[m-1,n-1] : tmp0 B[i vec]

}
... } .

To these two with-loops the folding mechanism from Section 3 can be applied,
which leads to the elimination of array tmp0 B:

{ ...
tmp0 = internal with(i vec) {

[0,0]→[0,n-1] : A[[m-1,0]+i vec]

[1,0]→[m-1,n-1] : A[i vec-[1,0]]

}
... } .

Likewise, we obtain for the next application of rotate as well as for the appli-
cation of + to the two intermediates tmp0 and tmp1:

{ ...

tmp0 = internal with(i vec) {
[0,0]→[0,n-1] : A[[m-1,0]+i vec]

[1,0]→[m-1,n-1] : A[i vec-[1,0]]

}
tmp1 = internal with(i vec) {

[0,0]→[m-2,n-1] : A[[1,0]+i vec]

[m-1,0]→[m-1,n-1] : A[i vec-[m-1,0]]

}
tmp2 = internal with(i vec) {

[0,0]→[m-1,n-1] : tmp0[i vec]+tmp1[i vec]

}
... } .

This sequence of with-loops again allows for the application of with-loop-
folding. As a consequence, the temporary arrays tmp0 and tmp1 are of no further
use and the specification of the loop construct which defines tmp2 is split up into
three disjoint ranges of index vectors: the left column, all inner columns , and
the right column.

{ ...

tmp2 = internal with(i vec) {
[0,0]→[0,n-1] : A[[m-1,0]+i vec] + A[[1,0]+i vec]

[1,0]→[m-2,n-1] : A[i vec-[1,0]] + A[[1,0]+i vec]

[m-1,0]→[m-1,n-1] : A[i vec-[1,0]] + A[i vec-[m-1,0]]

}
... }

Applying these optimizations further, we obtain for the generation of B a
single loop construct with nine disjoint sets of array elements to be computed
differently.

Similarly, the other temporary arrays specified explicitly in the function
relax can be folded into single with-loops, e.g.

{ ...

inner_B = take([m-2,n-2], drop([1,1], B));

... }

is transformed into

{ ...

inner B = internal with(i vec) {
[0,0]→[m-3,n-3] : B[i vec+[1,1]]

}
... } .

which finally leads to a single with-loop that implements the entire relaxation
step:

double[] relax(double[] A)

{

m = psi([0], shape(A));

n = psi([1], shape(A));

result = internal with(i vec) {
[0,0]→[0,n-1] : A[i vec]

[1,0]→[m-2,0] : A[i vec]

[1,1]→[m-2,n-2] : A[i vec-[1,0]] + A[[1,0]+i vec]

+ A[i vec-[0,1]] + A[[0,1]+i vec]

[1,n-1]→[m-2,n-1] : A[i vec]

[m-1,0]→[m-1,n-1] : A[i vec]

}

return(result);

} .

5 Implementing With-Loop-Folding

After a formal description of with-loop-folding in Section 3 and a case study of
its applicability in the context of Apl-like operations in the last section a few
implementation issues have to be discussed. Since this is work in progress only
two questions will be addressed here:

– Which impact does with-loop-folding have on the runtime performance of
compiled Sac programs?

– How can with-loop-folding be implemented as a (statical) compiler opti-
mization?

The general problem concerning runtimes is that we have performance gains
due to the elimination of ”temporary arrays” on one side, and potential per-
formance losses due to the loss of sharing of the computations for individual
elements of these arrays on the other side. Therefore, an exact prediction of
the runtime impact of with-loop-folding would require a cost analysis for all
operations involved, which in case of element computations that depend on the
evaluation of conditionals is not statically decidable.

To guarantee speedups, as a first conservative approach, we restrict with-
loop-folding to situations where it can be guaranteed that no sharing is lost at
all. A simple criterion which is sufficient to exclude a loss of sharing is to demand
that the ”temporary arrays” may only be referenced once within the body of the
second with-loop, and that the index vector projection used for the selection of
elements of the ”temporary array” (I op from Fig.4) is surjective. Despite being
quite restrictive these two conditions are met for the relaxation example from
the last section. However, practical experiences from the application of with-
loop-folding to real world examples will have to show whether this restriction is
acceptable, or more elaborate criteria have to be developed.

The implementation of with-loop-folding as part of the compilation process
imposes other restrictions on its applicability. The central problem in this context
is that the index vector sets involved have to be known statically. Although
this for the general case is not possible, in most situations it nevertheless can
be done. The reason for this situation is that most generator parts of with-
loops are specified relative to the shape of their argument arrays. Since the
type inference system of Sac infers the exact shapes of all argument arrays,
most of these index vector sets can be computed statically by simply applying
constant folding. But infering the index vector sets of the initial with-loops does
not suffice to do with-loop-folding statically. Another important prerequisite is
to be able to compute intersections of such index vector sets as well as their
projection by index vector mapping functions (I op from Fig.4). Therefore, the
projection functions have to be restricted to a set of functions which are ”simple
enough” to render these computations possible.

As a conservative approach we restrict these projection functions to linear
projections, i.e., we allow element-wise multiplications and element-wise addi-
tions with n-ary vectors. For this restriction we can easily define a simple nota-
tion for index vector sets which is closed under intersection building and linear
projection:

Let l = [l1, . . . , ln], u = [u1, . . . , un], and s = [s1, . . . , sn] denote vectors of
length n ∈ N. Then l

s→u defines the set of Index vectors

{[i1, . . . , in] | ∀j∈{1,...,n} : (lj ≤ ij ≤ uj ∧ ∃kj∈N0 : ij = lj + kjsj)} .

With this notation of index vector sets, intersections can be computed as follows:
Let A = lA

sA→uA and B = lB
sB→uB denote two index vector sets of index vectors

of length n ∈ N. Then we have

A∩B =

 l
lcd(sA,sB)→ min(uA, uB) iff ∃x,y∈Nn

0 :
l = lA + x ∗ sA = lB + y ∗ sB
∧ (max(lA, lB) ≤ l)
∧ (l < max(lA, lB) + lcd(sA, sB))

∅ otherwise

where lcd(a, b) denotes the element-wise least common denominator of the n-ary
vectors a and b, and max, and min denote the element-wise maxima and minima
respectively.

Furthermore, linear projections of such index vector sets can directly be
expressed by other index vector sets of this kind, i.e., with m = [m1, . . . ,mn]
denoting a vector of n integers we have

m ∗ (l s→u) = (m ∗ l) (m∗s)→ (m ∗ u)

and
(l s→u) +m = (l +m) s→ (u+m)

where * and + are understood as element-wise extensions of multiplication and
summation for sets and vectors.

Similar to the restrictions imposed in order to guarantee runtime improve-
ments empiric tests on real world examples will have to show whether these
restrictions are appropriate or more complex projection functions have to be
included.

6 Related Work

Although with-loop-folding is tailor-made for the with-loops provided by Sac

and makes use of the particular properties of that language construct, some
relations to other compiler optimizations can be observed.

From the functional point of view, it can be considered a special case of de-
forestation [Wad90,Chi94,Gil96]. Both optimizations, with-loop-folding and the
deforestation approach, aim at the elimination of intermediate data structures
that are used only once. The basic idea of deforestation is to identify nestings
of functions that recursively consume data structures with other functions that
recursively produce these structures. Once such a nesting can be identified, the
two recursions can be fused into a single one that directly computes the result
of the consuming function.

Considering the basic case of with-loop-folding, where both with-loops ap-
ply a uniform operation to all array elements the first with-loop corresponds
to a producing function whereas the second with-loop corresponds to a con-
suming function. For this case the only difference between the two optimizations
is that with-loops operate on a single data structure whose size is statically
known whereas deforestation deals with a recursive nesting of data structures of
unknown depth.

Turning to the general case of with-loop-folding, the situation becomes more
difficult since it allows the with-loops to apply different operations on disjoint
sets of index vectors. In fact, such with-loops represent several different func-
tions each of which computes a part of the elements of the resulting array,
namely those that are characterized by a single set of index vectors. In order
to be able to apply deforestation, a one-to-one correspondence between the pro-
ducing and consuming functions is needed, i.e., the index vector sets have to
be split up accordingly, which is exactly what with-loop-folding does. For the
deforestation approach these particular situations cannot be detected as easily
since that approach applies to the more general case where neither the complete
data structure nor the producing and consuming functions are known explicitly
as for with-loops in Sac.

Besides the relationship to deforestation, with-loop-folding can also be seen
as a special combination of loop fusion, loop splitting and forward substitution,
all of which are well-known optimization techniques in the community of high-
performance computing (for surveys see [BGS94,PW86,Wol95,ZC91]). Although
it is possible to draw the connection between these optimizations and with-
loop-folding in the same manner as done for the deforestation approach, again
the traditional optimization techniques suffer from their generality. In contrast,
with-loop-folding can utilize several properties which for with-loops per defi-

nition hold, but for other loop constructs are often undecidable: There are no
dependencies between the computations for different elements of the same array,
and there is no other effect of these loops but the creation of a single array; any
temporary variable used within the ”loop body” cannot be referenced anywhere
else.

7 Conclusions

Sac is specifically designed for the compilation of high-level array operations
into efficiently executable code. One of the major design principles of Sac is
to support the specification of shape-invariant array operations. As a conse-
quence, the programmer can stepwise abstract high-level array operations from
primitive array operations by the definition of Sac functions. This includes the
definition of functions, which are similar to the array operations available in Apl

or other languages that focus on the manipulation of arrays (e.g. Nesl[Ble94], or
Nial[JJ93]). The basic language construct for the definition of such functions is
the with-loop, a special loop construct for element-wise specifications of array
manipulations.

This paper introduces a new compiler optimization, called with-loop-folding,
for the transformation of two consecutive with-loops into a single one. As an
extended example, a simplified version of Jacobi relaxation, specified by means
of high-level array operations similar to those available in Apl, is examined. It
is shown that with-loop-folding in combination with standard optimizations,
e.g. function inlining, constant folding, etc., allows the relaxation algorithm to
be folded into a single loop construct that directly implements one relaxation
step. A runtime comparison shows that this loop compiles to code which executes
about 5 times faster than code which is compiled directly from the initial nesting
of Apl-constructs.

From a theoretical point of view, any nesting of primitive array operations
can be folded into a single loop which defines the nested array operation as
an element-wise direct computation of the resulting array from the argument
array(s). As a consequence, the code compiled from an array operation becomes
invariant against the number and kind of temporary arrays specified, i.e., the
programmer is liberated from low level concerns.

However, with respect to the implementation of with-loop-folding, a couple
of questions have not been addressed yet: Since the Sac compiler heavily spe-
cializes the source programs in order to be able to infer the exact shapes of all
arrays statically, for real world examples, it may be necessary to apply with-
loop-folding very often. Due to the complexity of the optimization this may lead
to large compiler runtimes. Therefore, a sophisticated scheme for the execution
order of with-loop-folding and standard optimizations may be required.

Another problem not yet addressed is the influence of caches on the rela-
tionship between with-loop-folding and the runtime behavior of compiled Sac

programs. A trivial example for such a situation is a multiple access to the
elements of an array in column major order. Since the arrays are stored row

major order, such accesses lead to bad cache behavior. This can be improved
significantly by the explicit creation of a transposed array. To avoid slowdowns
due to such problems, rules have to be established that determine which folding
operations are favorable and which are unfavorable. For a more general solu-
tion, the development of other transformation schemes may be needed which
analyze the array access schemes and after the application of with-loop-folding
(re-)introduce temporary arrays whenever appropriate.

References

[AD79] W.B. Ackerman and J.B. Dennis: VAL-A Value-Oriented Algorithmic Lan-
guage: Preliminary Reference Manual. TR 218, MIT, Cambridge, MA, 1979.

[AGP78] Arvind, K.P. Gostelow, and W. Plouffe: The ID-Report: An asynchronous
Programming Language and Computing Machine. Technical Report 114,
University of California at Irvine, 1978.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman: Compilers - Principles, Techniques,
and Tools. Addison-Wesley, 1986. ISBN 0-201-10194-7.

[BCOF91] A.P.W. Böhm, D.C. Cann, R.R. Oldehoeft, and J.T. Feo: SISAL Reference
Manual Language Version 2.0. CS 91-118, Colorado State University, Fort
Collins, Colorado, 1991.

[BGS94] D.F. Bacon, S.L. Graham, and O.J. Sharp: Compiler Transformations for
High-Performance Computing. ACM Computing Surveys, Vol. 26(4), 1994,
pp. 345–420.

[Ble94] G.E. Blelloch: NESL: A Nested Data-Parallel Language (Version 3.0).
Carnegie Mellon University, 1994.

[Bra96] D. Braess: Finite Elemente. Springer, 1996. ISBN 3-540-61905-4.
[Can92] D.C. Cann: Retire Fortran? A Debate Rekindled. Communications of the

ACM, Vol. 35(8), 1992, pp. 81–89.
[Chi94] W.-N. Chin: Safe Fusion of Functional Expressions II: Further Improve-

ments. Journal of Functional Programming, Vol. 4(4), 1994, pp. 515–550.
[Gil96] A. Gill: Cheap Deforestation for Non-strict Functional Languages. PhD

thesis, Glasgow University, 1996.
[GS95] C. Grelck and S.B. Scholz: Classes and Objects as Basis for I/O in SAC.

In T. Johnsson (Ed.): Proceedings of the Workshop on the Implementation
of Functional Languages’95. Chalmers University, 1995, pp. 30–44.

[HAB+95] K. Hammond, L. Augustsson, B. Boutel, et al.: Report on the Programming
Language Haskell: A Non-strict, Purely Functional Language. University
of Glasgow, 1995. Version 1.3.

[HSB97] J. Hammes, S. Sur, and W. Böhm: On the effectiveness of functional lan-
guage features: NAS benchmark FT. Journal of Functional Programming,
Vol. 7(1), 1997, pp. 103–123.

[Ive62] K.E. Iverson: A Programming Language. Wiley, New York, 1962.
[JJ93] M.A. Jenkins and W.H. Jenkins: The Q’Nial Language and Reference Man-

uals. Nial Systems Ltd., Ottawa, Canada, 1993.
[KR90] B.W. Kernighan and D.M. Ritchie: Programmieren in C. PC professionell.

Hanser, 1990. ISBN 3-446-15497-3.
[LP94] J. Launchbury and S. Peyton Jones: Lazy Functional State Threads. In

Programming Languages Design and Implementation. ACM Press, 1994.

[MSA+85] J.R. McGraw, S.K. Skedzielewski, S.J. Allan, R.R. Oldehoeft, et al.: Sisal:
Streams and Iteration in a Single Assignment Language: Reference Man-
ual Version 1.2. M 146, Lawrence Livermore National Laboratory, LLNL,
Livermore California, 1985.

[PvE95] M.J. Plasmeijer and M. van Eckelen: Concurrent Clean 1.0 Language Re-
port. University of Nijmegen, 1995.

[PW86] D.A. Padua and M.J. Wolfe: Advanced Compiler Optimizations for Super-
computers. Comm. ACM, Vol. 29(12), 1986, pp. 1184–1201.

[SBvEP93] S. Smetsers, E. Barendsen, M. van Eeklen, and R. Plasmeijer: Guaran-
teeing Safe Destructive Updates through a Type System with Uniqueness
Information for Graphs. Technical report, University of Nijmegen, 1993.

[Sch96] S.-B. Scholz: Single Assignment C – Entwurf und Implementierung einer
funktionalen C-Variante mit spezieller Unterstützung shape-invarianter
Array-Operationen. PhD thesis, Institut für Informatik und Praktische
Mathematik, Universität Kiel, 1996.

[Sch97] S.-B. Scholz: On Programming Scientific Applications in Sac - A Func-
tional Language Extended by a Subsystem for High-Level Array Operations.
In Werner Kluge (Ed.): Implementation of Functional Languages, 8th In-
ternational Workshop, Bad Godesberg, Germany, September 1996, Selected
Papers, LNCS, Vol. 1268. Springer, 1997, pp. 85–104.

[Ser97] P.R. Serrarens: Implementing the Conjugate Gradient Algorithm in a Func-
tional Language. In Werner Kluge (Ed.): Implementation of Functional Lan-
guages, 8th International Workshop, Bad Godesberg, Germany, September
1996, Selected Papers, LNCS, Vol. 1268. Springer, 1997, pp. 125–140.

[Wad90] P.L. Wadler: Deforestation: transforming programs to eliminate trees. The-
oretical Computer Science, Vol. 73(2), 1990, pp. 231–248.

[Weh85] H. Wehnes: FORTRAN-77: Strukturierte Programmierung mit FORTRAN-
77. Carl Hanser Verlag, 1985.

[Wol95] M.J. Wolfe: High-Performance Compilers for Parallel Computing. Addison-
Wesley, 1995. ISBN 0-8053-2730-4.

[ZC91] H. Zima and B. Chapman: Supercompilers for Parallel and Vector Com-
puters. Addison-Wesley, 1991.

