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Abstract. Sac is a functional C variant with e�cient support for high-

level array operations. This paper investigates the applicability of a Sac

speci�c optimization technique called with-loop-folding to real world

applications. As an example program which originates from the Numeri-

cal Aerodynamic Simulation (NAS) Program developed at NASA Ames

Research Center, the so-called NAS benchmark MG is chosen. It com-

prises a kernel from the NAS Program which implements 3-dimensional

multigrid relaxation.

Several run-time measurements exploit two di�erent bene�ts of with-

loop-folding: First, an overall speed-up of about 20% can be observed.

Second, a comparison between the run-times of a hand-optimized speci�-

cation and of Apl-like speci�cations yields identical run-times, although

a naive compilation that does not apply with-loop-folding leads to slow-

downs of more than an order of magnitude. Furthermore, With-loop-

folding makes a slight variation of the algorithm feasible which substan-

tially simpli�es the program speci�cation and requires less memory dur-

ing execution.

Finally, the optimized run-times are compared against run-times gained

from the original Fortran program, which shows that for di�erent prob-

lem sizes, the code generated from the Sac program does not only reach

the execution times of the code generated from the Fortran program

but even outperforms them by about 10%.

1 Introduction

Sac[21] is a functional programming language aimed at numerical applications.

Basically, it can be considered a functional subset of C augmented with an array

concept that allows for the speci�cation of array operations that are applicable to

arrays of any dimensionality. The central language construct for such high-level

array operations is a dimension-invariant form of array comprehensions called

with-loops. They allow for the de�nition of basic array operations similar to

those available in array processing languages, such as Apl[14],Nial[15], or J[7],

which subsequently can be combined to more sophisticated array operations [24].

Assuming a straightforward compilation scheme, this style of programming in-

herently leads to the creation of many superuous intermediate array structures.



To avoid this overhead, a high-level optimization called with-loop-folding has

been proposed in [23].

This paper investigates the e�ects of with-loop-folding on real world appli-

cations. For several reasons the NAS multigrid relaxation benchmark MG [3] is

chosen as example: �rst of all, the benchmark is a suitable representative for

many numerical applications. Furthermore, since the benchmark is designed for

exploiting the capabilities of Fortran compilers a reasonable Fortran version

is commonly available. This allows for an easy inter-language run-time compar-

ison. Another motivation for the choice of the benchmark MG is the fact that

the suitability of Sac for the dimension-invariant speci�cation of multigrid re-

laxation algorithms in general is studied in [22]. Therefore, this paper can focus

on the new aspects introduced by with-loop-folding.

In particular, the paper addresses the following questions:

{ Does with-loop-folding yield an overall run-time improvement? How does

that compare against implementation in other languages, such as Fortran?

{ Does with-loop-folding allow for more speci�cational freedom without the

loss of run-time e�ciency? If so, does that have an impact on the program-

ming style?

The paper is organized as follows: In the next section a brief overview on

the NAS benchmark MG is given. Section 3 investigates the e�ect of with-loop-

folding on the overall run-time of the benchmark and compares those �gures

against a Fortran77 and a Sisal implementation. Section 4 compares run-

times obtained from di�erent speci�cations on varying levels of abstraction for

one part of the benchmark, the so-called relaxation kernel. After exploiting the

e�ects ofwith-loop-folding for the given multigrid algorithm, Section 5 proposes

a slight variant of the algorithm which allows for a far more elegant speci�ca-

tion of the given approximation problem and furthermore improves the space

consumption of the program. Section 6 puts the work presented in this paper

into the context of other research done on the fusion of operations on large data

structures. Finally, a conclusion is given in Section 7.

2 An Introduction to the NAS Benchmark MG

The NAS benchmark MG implements the V-cycle multigrid algorithm [4,5] to

approximate a solution u of the discrete Poisson problem r

2

u = v on a 3-

dimensional grid with periodic boundary conditions. The V-cycle algorithm con-

sists of a recursive nesting of relaxation steps and smoothing steps on grids of

di�erent granularity as well as mappings between these grids. The upper part of

Fig. 1 for a single V-cycle on a 64x64x64 grid depicts the order in which these

transformations are applied (horizontal axis) and which grid sizes are involved

(vertical axis).

This sequence of operations can easily be described by means of a recursive

function v cyc as speci�ed in the lower part of Fig. 1. The function mgrid given
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double[] mgrid( double[] u,

double[] v,

int iter)

{

for( i=0; i<iter; i++) {

r = relax( u, v);

u = u + v_cyc( r);

}

return(u);

}

double[] v_cyc( double[] r)

{

if( coarsest( r)) {

z = smooth_prime( r);

}

else {

rn = fine2coarse( r);

zn = v_cyc( rn);

z = coarse2fine( zn);

r = relax( z, r);

z = smooth( z, r);

}

return(z);

}

Fig. 1. An Outline of the V-cycle.

there as well, initiates iter V-cycles on a given 3-dimensional grid v and an

initial approximation of the solution u.

1

The functions relax and smooth merely re-compute the elements of an ar-

gument grid as weighted sums of their neighbor elements. Since the benchmark

requires periodic boundary conditions the missing neighbors of border elements

have to be taken from the \opposite side" of the grid. Fig. 2 depicts the situa-

tion in the 1-dimensional case. While all inner elements are re-computed using

their direct neighbors, each of the two border elements has to be computed dif-

ferently. Carrying over this principle to problems of higher dimensionalities, the

sets of elements which require special treatment increase. In the 2-dimensional

1

Note, that in real world applications the number of V-cycles applied depends on the

convergence properties of the problem.



Fig. 2. Relaxation on 1-Dimensional Arrays.

case 9 di�erent operations have to be performed, in case of three dimensions 27

operations are required.

To avoid such complicated speci�cations, the Fortran program given in the

benchmark (see hhttp://www.nas.nasa.gov/NAS/NPB/i) represents the grids

by arrays which have 2 more elements in each dimension. These hold copies of

the values of the missing neighbor �elds. Fig. 3 depicts a relaxation step for

the 1-dimensional case using such extra elements. Since the border elements of

grid elements

extra element extra element

Fig. 3. Relaxation on 1-Dimensional Arrays Using Border Elements.

the arrays solely provide missing neighbor elements, the relaxation step itself

becomes a unique operation for all inner elements of the array as shown in the

upper part of Fig. 3. Subsequently, the border elements of the array have to be

updated accordingly so that they hold the correct values from the \opposite side"

of the grid (lower part of Fig. 3). For the 1-dimensional case as depicted here,

this extended grid representation does not o�er any bene�ts; still three di�erent

operations are required: the unique relaxation step, the updating of the leftmost

element, and the updating of the rightmost element. However, for problems of

higher dimensionalities this grid representation is advantageous since the number

of di�erent operations required does not grow exponentially but linearly, i.e., for

the 2-dimensional case 5 operations and for the 3-dimensional case 7 operations

are needed.

A dimension-invariant realization of relax and smooth based on such ex-

tended grids in Sac can be deduced straightforwardly. Let A and S be program

constants that hold the arrays of weights needed for the computation of weighted

sums of neighbor elements in relax and smooth, respectively. Then these func-

tions can be speci�ed as:



double[] relax( double[] u, double[] v)

{

r = with( 0*shape(u)+1 <= x <= shape(u)-2)

modarray( u, x, v[x] - weighted_sum( u, x, A));

r = setup_periodic_border(r);

return(r);

}

double[] smooth( double[] z, double[] r)

{

z = with( 0*shape(r)+1 <= x <= shape(r)-2)

modarray( r, x, z[x] + weighted_sum( r, x, S));

z = setup_periodic_border( z);

return( z);

}

inline double weighted_sum( double[] u, int[] x, double[] w)

{

res = with( 0*shape(w) <= dx < shape(w) )

fold( +, u[x+dx-1] * w[dx]);

return(res);

}

where setup periodic border for each dimension copies those elements into

the border elements that are needed for the next relaxation/smoothing step.

Re-using weighted sum the mapping from �ne grids to coarse grids can be

speci�ed in a similar way:

double[] fine2coarse( double[] r)

{

rn = with( 0*shape(r)+1 <= x<= shape(r) / 2 -1)

genarray( shape(r) / 2 + 1, weighted_sum( r, 2*x, P));

rn = setup_periodic_border(rn);

return(rn);

}

The speci�cation of mappings from coarse to �ne grids is more complicated.

As explained in detail in [22], a dimension-invariant speci�cation of that opera-

tion requires two consecutive with-loops:



double[] coarse2fine( double[] rn)

{

r = with( 0*shape(rn) <= iv <= 2*shape(rn)-3 step 0*shape(rn)+2 )

genarray( 2*shape(rn)-2, rn[iv/2] );

r = with( 0*shape(r) < iv < shape(r)-1 ) {

val = relaxkernel( r, iv, Q);

} modarray( r, iv, val);

r = setup_periodic_border(r);

return(r);

}

This two-step process for 1-dimensional grids is depicted in Fig. 4. In the �rst

step, the elements from the coarse grid are copied into every other position of a

new array of double the size. The elements in between are initialized with zeros.

Subsequently, a relaxation step is performed whose array of weights determines

the interpolation of the values initialized with zero. For the 1-dimensional case,

[ 0.5, 1, 0.5] serves as array of weights. Although in principle all elements

are computed by the same scheme, the placement of zeros forces several values

to be neglected as indicated by the dotted lines in Fig. 4. As a consequence,

the elements of the resulting �ner grid are computed from the elements of the

coarser grid basically by two di�erent operations: all elements with even indices

(starting by index [0]) are simply copied from the coarser grid, whereas the other

elements are averages of two adjacent elements of the coarser grid. Note here,

that for problems of dimensionality n a choice of appropriate arrays of weights

implicitly generates the required 2

n

di�erent operations.
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Fig. 4. Coarse-to-Fine-Mapping on 1-Dimensional Arrays.



3 Applying With-Loop-Folding to Mgrid

In this section the e�ect of with-loop-folding to the Sac speci�cation of the

benchmark outlined in the previous section is examined. Furthermore, the run-

times are compared against those obtained from running compiled Fortran

and Sisal solutions.

All those measurements are done in the same setting as in [22], i.e., a Sun

UltraSparc-170 with 192MB of main memory serves as hardware platform.

The Fortran program is compiled by the Sun Fortran compiler f77 version

4.2 which generates native code directly. The Sisal program is compiled by

osc version 13.0.2 which generates C code that subsequently is compiled into

native code by gcc version 2.7.2.1. The optimization ags used are \-O4" for the

Fortran compiler and \-O -nobounds -CC=gcc -cc=-O3 -seq" for the Sisal

compiler.

The Sac program is compiled by the new sac2c compiler version 0.7 which

in comparison to the version used in [22] does not only include with-loop-folding

but has an improved \back-end" for the generation of C code from with-loops.

gcc version 2.7.2.1 with optimization level 3 is used again as the compiler for

the C-code generated by Sac2c.

Fig. 5 shows the run-times relative to the time needed by the compiled For-

tran program for three di�erent problem sizes
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Fig. 5. Run-times for 3-Dimensional Multigrid Relaxation.

are 3-dimensional grids with 32, 64, and 128 elements per axis.

The Sisal implementation turns out to be the slowest solution. It runs about

40% slower than the Fortran program and about 50% slower than the opti-

mized Sac version. While the Sac program compiled without with-loop-folding

(Sac -noWLF) is about 10% slower than the Fortran solution, the version gen-

2

The absolute run-times for one V-cycle are denoted inside the bars.



erated from the Sac program using with-loop-folding (Sac) is about 10% faster

than the Fortran program.

The reason for the speed-up of about 20% gained bywith-loop-folding can be

attributed to the mapping from coarse to �ne grids coarse2fine. As explained

in the previous section, it has to be speci�ed as a two-step process in order

to allow for a dimension-invariant program. Together with a specialization of

coarse2fine to 3-dimensional arguments of speci�c shapes as done by the type

inference system of Sac, with-loop-folding converts this operation into a direct

computation of �ne grids from coarse grids.

Fig. 6 depicts the e�ect ofwith-loop-folding for 1-dimensional grids.Whereas

0r = 

rn =
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Fig. 6. Applying With-Loop-Folding to coarse2fine.

the version using two with-loops (left part of Fig. 6) subsequently applies two

unique operations on the elements of the array representing the coarse grid, the

version obtained by with-loop-folding (right part of Fig. 6) directly computes

the resulting �ne grid from the coarse grid by using two di�erent operations:

elements at odd index positions (marked in light grey in Fig. 6) are computed

as average of two adjacent elements of the coarse grid, and elements at even

index positions (marked in dark grey) are simply copied from the coarse grid.

As a consequence, the intermediate data structure as well as any superuous

computation (dotted lines in Fig. 6) can be avoided resulting in a speed-up of

about 20%.

4 With-Loop-Folding and Speci�cational Freedom

One of the aims ofwith-loop-folding is to provide a uniformoptimization scheme

which does not only allow for more modular speci�cations of array operations

without substantial loss of run-time e�ciency, but encourages the programmer

to do so. This section investigates that e�ect in the context of the benchmark.

Instead of re-coding the whole benchmark, only a part of it, namely the function

relax (cf. Section 2), is examined more closely. This on the one side allows for

a smaller scope during testing and on the other side carries over to the major

part of the benchmark since most kernel routines of the benchmark (smooth and

fine2coarse) are only slight variations of relax.

The similarity of these routines leads to the �rst variant of relax which

allows for more code re-use. The central idea is to abstract the with-loop in



the body of relax into a new function relax kernel. As a consequence, the

di�erence of v and a weighted sum of some elements in u can be speci�ed as an

array operation rather than element-wise:

double[] relax( double[] u, double[] v)

{

res= v - relax_kernel( A, u);

res = setup_periodic_border( res);

return( res);

}

inline double[] relax_kernel( double[] w, double[] u)

{

res = with( 0*shape(u)+1 <= x <= shape(u)-2) {

val = weighted_sum( u, x, w));

} modarray( u, x, val);

return( res);

}

A more sophisticated variant of relax is based on the idea of replacing the

element-wise speci�cation of the re-computation of inner elements by operations

on entire arrays. This turns the explicit selection and summation of neighbor

elements in the body of weighted sum into rotations and additions of entire

arrays, respectively. Thus the function weighted sum is not needed anymore

and relax kernel can be speci�ed as:

inline double[] relax_kernel( double[] w, double[] u)

{

res = with( 0*shape(w) <= dx < shape(w) )

fold( +, rotate_vec( dx-1, u) * w[dx]);

return(res);

}

where the function rotate vec rotates the array u along all axes according to

the rotation vector given by dx-1. In turn, rotate vec can be de�ned in terms

of rotate which is de�ned in the standard array library and rotates a given

array a by num elements along a pre-speci�ed axis dimen:

inline double[] rotate_vec( int[] rv, double[] a)

{

for( i=0; i<shape(rv)[0]; i=i+1)

a = rotate( i, rv[[i]], a);

return(a);

}



inline double[] rotate( int dimen, int num, double[] a)

{

max_rotate = shape(a)[[dimen]];

num = num % max_rotate;

if( num < 0) { num = num + max_rotate;}

offset = modarray( 0*shape(a), [dimen], num);

slice_shp = modarray( shape(a), [dimen], num);

B = with ( offset <= i_vec < shape(a))

modarray( a, i_vec, a[i_vec-offset]);

B = with ( 0*slice_shp <= i_vec < slice_shp)

modarray( B, i_vec, a[shape(a)-slice_shp+i_vec]);

return(B);

}

Fig. 7 compares the run-times for the three di�erent versions of relax in-

troduced so far. The problem size examined here are 15 relaxation steps on a

2-dimensional array with 1000 elements per axis. All run-times are measured on

the same architecture as the previous examples. Whereas the left column shows

WLF noWLF

Direct speci�cation of relax 4.9s 4.9s

relax using relax kernel 4.9s 5.5s

relax using rotate 4.9s 77.1s

Fig. 7. Run-times With and Without With-Loop-Folding.

the run-times of the three versions using with-loop-folding, the right column

contains those obtained without. The direct solution as explained in Section

2 is not a�ected by with-loop-folding since that version does not contain any

consecutive with-loops at all. In the second version, the subtraction operation

without applying with-loop-folding leads to a single superuous array which

causes a slowdown of about 10%. In contrast, for the high-level speci�cation

which completely forgos any explicit indexing a non-folding compilation leads to

a slowdown of about 1500%!

Despite these slowdowns introduced by a naive compilation, the run-times

for the optimized versions are identical. Analyzing the generated C-code yields

that the with-loops eventually generated by with-loop-folding in all three cases

are almost identical.

5 A Variant Without Borders

The results of the previous section show that a speci�cation based on the sum-

mation of rotated arrays does not lead to any performance losses in terms of

run-time. The main di�erence of that solution in comparison to the others con-

sidered is that the border elements are re-computed as well. These computations



are superuous since setup periodic border copies these elements from inner

elements of the array anyway. Having a closer look at the operations performed

on the border elements yields that they are computed as weighted sums of their

\neighbor elements" as well. Since rotate shifts the elements of an array cyclicly,

missing neighbors implicitly are taken from the \opposite side" of the array. In

fact, this algorithm performs an operation on the complete array that satis�es

the original problem speci�cation (cf. Fig. 2 in Section 2).

Therefore, the data layout for the arrays holding the grid elements can be

simpli�ed throughout the entire program by cutting o� the border elements.

As a result, the function setup periodic border becomes redundant and most

other functions can be further simpli�ed, for example, relax can be speci�ed as:

double[] relax( double[] u, double[] v)

{

return( v - relax_kernel( A, u));

}

This exactly resembles the mathematical speci�cation given in [3]. Besides

the speci�cational advantages of that solution it decreases the overall memory

consumption and thus improves the overall performance.

6 Related Work

The e�ects of fusion techniques have been studied in various contexts.

In the area of functional programming, several variants of so-called deforesta-

tion have been proposed and examined [25,9,11,19]. Since these techniques are

tailor-made for the elimination of temporary lists, they implicitly assume that

the length of the list(s) involved is statically unknown and that each function

will be applied on all elements of the list(s).

Since these assumptions for array computations in general do not hold, other

approaches in the context of functional programming have been proposed which

are based on the idea of representing arrays as functions from indices to values

[6,13]. As a consequence, array operations can be folded by simply �-reducing

them. Although this approach conceptually is very promising it still lacks a proof

that an e�cient implementation is possible [12].

Closer related to the work in this paper are the evaluations of fusion tech-

niques in the context of high performance array languages, such as Sisal [18],

Fortran90 [1], Hpf [10], or Zpl [17]. Whereas earlier approaches in that �eld

are based on traditional loop optimizations [27,8,2,26] which are applied to

scalarized versions of the high-level operations, more recent publications [20,16]

point out the importance of fusion operations that are applied to high-level op-

erations. However, speci�cational bene�ts comparable to those presented in this

paper are not possible in these languages, since they do not allow for the speci�-

cation of dimension-invariant array operations, e.g. rotate or rotate vec from

Section 4.



7 Conclusion

This paper was to investigate, by means of a case study, the e�ects ofwith-loop-

folding on a program kernel which originates from a real world application. The

example chosen is the multigrid relaxation kernel from the NAS benchmarks.

Applying with-loop-folding to a dimension-invariant Sac speci�cation derived

from the Fortran program given in the benchmark does not only yield the

same run-times, it even outperforms them by about 10%. These improvements

can be tracked down to some redundancies in the mapping from coarse to �ne

grids caused by the dimension-independent speci�cation.

Besides these overall run-time bene�ts a gain in speci�cational freedom with-

out any loss of run-time e�ciency can be observed for a central part of the

multigrid benchmark, the relaxation kernel. This allows for a variation of the

algorithm based on rotations of entire arrays with a couple of advantages: the

algorithm is more concise; it resembles the mathematical speci�cation more di-

rectly; it is based entirely on standard array operations and thus encourages

code re-use; and it requires less memory at run-time.
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