
Towards Fully Controlled Overloading Across

Module Boundaries

Stephan Herhut1 and Sven-Bodo Scholz2

1 Dept of Computer Science, University of Kiel, Germany
e-mail: sah@informatik.uni-kiel.de? ? ?

2 Dept of Computer Science, University of Hertfordshire, United Kingdom
e-mail: S.Scholz@herts.ac.uk

Abstract. This paper proposes a set of modularisation constructs as
well as a new implementation technique for overloading functions across
module boundaries. In contrast to existing approaches, it allows to fully
preserve separation of namespaces and it supports overloading of recur-
sive functions in the context of subtyping, which in fact requires support
for mutual recursion across module boundaries.
Based on a very simple applied λ-calculus as core language, the mod-
ularisation constructs are defined and a transformation scheme into an
applied λ-calculus is presented. Furthermore, an outline of an implemen-
tation in the context of the functional programming language SaC is
given.

1 Introduction

Most modern programming languages support some form of function overload-
ing. In object-oriented languages such as Java[GJSB00] or Eiffel[Mey90] over-
loading is realised by means of inheritance and function overriding. In main-
stream functional languages such as Haskell[Jon03] or Clean[PvE01] type
classes provide the grounds for overloading. Other languages such as SaC[Sch03b]
support overloading via subtyping. Combined with some form of modularisation
support, overloading allows for extensive software reuse on one side and function
customisation on the other.

More recently, techniques for generic programming have been introduced
[Hin00,HP00,AP02,Sch03a]. These techniques lend themselves for creating com-
piler generated function instances. As a consequence, the number of function
instances that is available increases, and for most argument types more than
one instance exists.

Unfortunately, the existing module systems do not give the programmer full
control over the applicability of individual function instances within individual
modules. In particular, it is not possible to restrict the set of potential instances
used in a given function application or to dynamically switch between two or
more different overloadings that share instances. This may lead to undesired

? ? ? most of the work was done during a research visit at2.

program behaviour as imported functions that make use of overloaded functions
may behave differently depending on the choice of instances in the actual context
rather than the instances available in the module where they are defined.

In this paper, we propose a module system that gives the programmer ex-
act control over the individual instances of overloaded functions. Each module
provides local versions of overloaded functions that take into account only those
instances that are locally visible. Depending on the way chosen for exporting
such functions, these can or cannot be further extended by other modules. Since
this extension process can be applied iteratively over several modules, in general,
we obtain several versions of an overloaded function which share more than one
instance. The proposed solution allows these versions to coexist at runtime; they
may even share the code for individual instances which facilitates support for
separate compilation.

The paper is structured as follows: the next section introduces a very simple
functional language, essentially a first-order applied λ-calculus with overloading.
It serves as an example language and helps in focusing on those aspects relevant
to this paper, i.e., modules and overloading. Based on that language, section 3
introduces an example that serves as running example throughout the paper.
It allows to demonstrate the locality problems involved in overloading across
module boundaries. The next section informally introduces the proposed mod-
ule system. It defines the syntactical extensions required and applies them to
the running example. Section 5 formalises the semantics of the new constructs
by specifying a transformation scheme for the module constructs into pure λ-
calculus. Issues related to an implementation in the context of SaC are discussed
in section 6. Related work is discussed in section 7 and some conclusions are
drawn in section 8.

2 A simple applied λ-calculus with overloading

In this section, we introduce a simple functional language called Fun which
serves as minimised example language throughout the paper. As can be seen from
the syntax description in Fig. 1, Fun basically consists of an applied λ-calculus

Prg ⇒ letrec ovld

[Fun = Expr]*
in Expr

Expr ⇒ V ar | Const

| λ V ar .Expr

| (Expr Expr)

Fig. 1. The syntax of Fun.

extended by built-in support for recursive definitions on the top-most level1.
In contrast to the well known letrec construct we introduce a letrec ovld

construct. The only difference between these two constructs is the treatment of
identical identifiers on the left hand side of definitions. In order to accommodate
function overloading properly, such multiple definitions are considered separate
instances of overloaded functions. Since we do not want to make any assump-
tions about how the function dispatch actually is implemented, we introduce an
operation ovld(f1, ..., fn). It defines a dispatch function for the (poten-
tially overloaded) instances f1 to fn in an abstract way that neither precludes
an implementation via an explicit dispatch function as found in [Kre03] nor an
implementation via dictionaries as described in [WB89].

With this construct at hands, we can actually formalise the semantics of
letrec ovld constructs by defining a transformation into letrec constructs.
Fig. 2 presents a transformation scheme OVLD to this effect. It consists of two

OVLD

letrec ovld

Fun1 = Expr1

...

Funk = Exprk

in Expr

=

letrec

OVLD [[{Funi = Expri|Funi ∈ α1}]]
...

OVLD [[{Funi = Expri|Funi ∈ αm}]]
in Expr

where {α1, . . . , αm} is the set of equivalence classes of {Fun1, . . . , Funk} with respect
to equality of identifiers.

OVLD
[[

{Fun1 = Expr1, . . . , Funn = Exprn}
]]

=

Fun<1> = Expr1

...

Fun<n> = Exprn

Fun = ovld(Fun<1>, ..., Fun<n>)

Fig. 2. The overloading scheme OVLD.

steps. In a first step, all instances of an overloaded function are identified. This is
shown in the upper part of fig. 2 where equivalence classes α1 to αm for identically
named definitions are identified. Subsequently, each of these equivalence classes
is transformed into a single overloaded function as shown in the lower part of
fig. 2. Here, all instances of a function are renamed by introducing new unique
identifiers for them, and a dispatch function is built using the ovld operator.

1 Restricting built-in recursion to the top-level is not essential here. However, as we do
want to introduce top-level modules only, this restriction simplifies all transformation
schemes.

It combines the renamed functions into an overloaded function of the original
name. After this transformation, the letrec ovld construct can be replaced by
well-known letrec construct.

It is important to notice here, that all function calls within the original
program are now referring to the function containing the dispatch which actually
ensures that all potential instances will be considered for each application of it.

3 The running example

Based on the language Fun introduced in the previous section, this section
presents an overloading example which contains most of the overloading-related
problems in a nutshell. Fig. 3 presents a first part of it. On its left hand side, it

letrec ovld

foo = ...foo ...

foo = ...bar ...

bar = ...foo ...

in ...

−−−−−→
OVLD

letrec

foo<1> = ...foo ...

foo<2> = ...bar ...

foo = ovld(foo<1>, foo<2>)

bar<1> = ...foo ...

bar = ovld(bar<1>)

in ...

Fig. 3. Code within module A

contains the essentials of a Fun program that provides two mutually recursive
functions foo and bar. The function foo consists of two overloaded instances,
whereas for bar, there exists only one instance. While the first instance directly
calls itself, the second one does so indirectly by calling bar. The OVLD scheme
presented in the previous section resolves the overloading as shown on the right
hand side of fig. 3: The two instances of foo are renamed into foo<1> and foo<2>

and a special overloading function foo is created. As the recursive calls on the
right hand side remain untouched, they now refer to the dispatch functions. The
function bar is processed in a similar manner.

Now, let us assume the code presented so far is located in some module A.
Let us furthermore assume, that the function foo is to be extended by a further
instance of it in some other module B. Fig. 4 presents the essential parts of such
a module and their transformation according to the OVLD scheme. The import

letrec ovld

foo = import(A, foo)

foo = ...A:bar ...

bar = import(A, bar)

in ...

−−−−−→
OVLD

letrec

foo<3> = ...A:bar ...

foo = ovld(foo<1>, foo<2>, foo<3>)

bar = ovld(bar<1>)

in ...

Fig. 4. Code within module B.

statements denote that the definitions of foo and bar from module A are to be
imported into B.

The crucial design decision to be made here is to define which applied oc-
currences of foo should take the new instance into account. Given the recursive
nature of foo, it would be desirable if at least the call in foo<1> would be aware
of the new version. Since the call of bar in foo<2> eventually may lead to a
recursive call of foo as well, the application of foo within bar should also be
adapted. However, if bar is called directly, as indicated by the notion A:bar, the
programmer may rely on the assumption that this function is not effected by
further imports and their potential extension.

To accommodate this functionality, we basically need to allow for different,
module specific ”views“ on overloaded functions. They are reflected by the dis-
patch functions contained in the individual modules. The call A:bar then leads
to a change of view from B to A. Fig. 5 gives an overview of the potential call and
dispatch graph within the two views. Dashed edges denote function applications,

bar<1> foo<1> foo<2> foo<3>

B:bar B:foo

View B

view switch

bar<1> foo<1> foo<2>

A:bar A:foo

View A

Main

Fig. 5. Graph of possible function applications by foo from module B

while solid edges denote dispatch possibilities. On the right hand side, view A is
presented. Within view A, only instances foo<1> and foo<2> are visible. Note
here, that view A is completely self contained. Once an application of a function
enters view A, all further function applications and dispatches stay within that
view. In particular, there is no path from any function or instance within of view
A to instance foo<3>.

View B is given on the left hand side. It contains the additional instance
foo<3>. Therefore an application of B:foo can be dispatched to three different
instances. In contrast to view A, view B is not self contained. The application of
function A:foo within the third instance of foo leads to a switch of the current
view towards view A. Note here, that although in B a new instance was added to
the overloaded function foo, the local view of module A is still available. While
the instances defined within A are visible within B, the instances added in B do
not influence those being visible in A.

4 The module system

This section formally describes the syntax of the Fun module system and applys
it to the example given in the previous section.

Prg ⇒ letrec ovld

[Import]*

[Fun = Expr]*
in Expr

Import ⇒ V ar = use(ModName, Fun)

| { V arList } = import(ModName, { FunList })

Module ⇒ letrec ovld

[Import]*

[Fun = Expr]*
in export({ FunList }) provide({ FunList })

Fig. 6. Extended syntax of Fun

The module syntax in Fun requires only a small extension to the basic syntax
of Fun as shown in fig. 6. The main difference between a program (Prg in fig. 6)
and a module (Module in fig. 6) is the lack of a goal expression, which is replaced
by an interface declaration. By default, the scope of all functions defined in a
module is local, i.e. limited to the module. To provide access from outside the
defining module, a function has to be listed in the interface declaration within
the set of provided or exported functions. Listing a function as provided admits
access to it from outside the module but prevents from any further overloadings
or the addition of its instances to another module. To admit the latter two
options as well, the function has to be listed within the set of exported functions.
We will refer to the former as providing a function and to the latter as exporting
it.

Dual to the sets of provided and exported functions we introduce two op-
erators, use(Mod, Fun) and import(Mod, { FunList }). The former
enables access to a function Fun from a module Mod, provided Fun is enlisted
in the module’s interface. Note here, that it does not matter whether Fun is
specified in the provided set or in the exported set. An import operation of the
form { V arList } = import(Mod, { FunList }) has the same effect as if
all instances of the functions in FunList are defined locally as functions listed in
V arList. All applications of functions in FunList within these instances are re-
placed by their local counterpart. It is important to note here, that the sequence
of imports { f1 } = import(Mod, { f1 }) { f2 } = import(Mod, { f2

}) is different from the single import { f1, f2 } = import(Mod, { f1, f2

}). The separate import of f1 and f2 allows to overload both, but possible ap-

plications of f2 in f1 and vice versa are not affected by new instances of that
overloading. Importing both using a single import expresses the dependency be-
tween them so that applications of f2 in f1 and vice versa will be replaced by
the corresponding local function.

Given the extended syntax, we can now specify our running example from
section 2. Fig. 7 contains the listing of all three modules. Module A exports

A = letrec ovld

foo = ...foo ...

foo = ...bar ...

bar = ...foo ...

in export { foo, bar } provide {}

B = letrec ovld

{ foo, bar } = import(A, { foo, bar })
A:bar = use(A, bar)

foo = ...A:bar ...

in export {} provide { foo, bar }

Main = letrec ovld

foo = use(B, foo)

bar = use(B, bar)

in ...foo ...bar ...

Fig. 7. The module example using extended Fun.

it’s instances of foo and bar, thereby granting access for further overloadings.
Module B imports these again and defines a third instance of function foo.
Furthermore, function bar is used as A:bar, Therefore the application of A:bar
in the third instance of foo accesses only the first two instances of foo on the
recursive application of foo in A:bar. Finally, foo and bar are provided by B.
This limits the access from program Main to using the provided functions and
inhibits any further overloadings.

Given the above described behaviour, this program specification leads to
exactly the graph of possible traces as given in fig. 5.

5 An operational semantics

This section formalises the semantics of the module constructs as introduced
informally in the previous section. To do so, we specify a transformation scheme
from the extended Fun language into the applied λ-calculus without module
constructs.

The basic idea is to parameterise modules by the overloaded functions that
are exported. This allows for further instances to be brought in at a later stage
from the outside. Technically, this requires all applications of exported functions

within the right hand sides of function definitions to be renamed by identifiers
that are bound to freshly introduced λ-abstractions on the top most level. All
that remains to be done apart from the renaming is to gather the provided and
the exported functions in a way that is accessible from the outside in order
to provide the interface of the module. This is achieved by placing them into
customised records.

The complete EXP scheme is given in figure 8. For all functions Funi en-

EXP

letrec

V ar1 = Import1
...

V arm = Importm

Fun1 = Expr1

...

Funn = Exprn

in export({ Fun1 ...Funk })
provide({ Fun′

1 ...Fun′

l })

= λ Fun1 λ Funk . letrec

V ar1 = Import1
...

V arm = Importm

Fun1 = [Funi ⇐Funi]Expr1

...

Funn = [Funi ⇐Funi]Exprn

in { ’Funi’ = Funi ... ’Fun′

i’ = Fun′

i }

Fig. 8. The export resolution scheme EXP.

listed in the set of exported functions, a new identifier Funi is introduced and
bound to a λ-abstraction. To allow for substituting the actual instances of an
overloading within applications on the right hand side of function definitions,
these have to be renamed to the corresponding freshly introduced identifier.
[Funi ⇐Funi]Term denotes this substitution. Again, Funi represents all ex-
ported functions. As imports are handled in a different way, the substitution is
only performed for functions that have been defined within the current module.
Furthermore, the interface of the module is constructed. It consists of a record
that contains all exported and provided functions. Note here, that the instances
of an overloading are not directly exported as elements of the record. Instead,
only the dispatch functions generated by applying the OVLD scheme are en-
listed. As all existing instances are always contained within these functions,
they are nevertheless accessible from outside the module.

On import, arguments have to be supplied for the parametrised modules
created by the EXP scheme. Depending on the kind of import, the imported
functions need to be customised to different views.

In case of a use operation, the imported functions need to be customised to
the local view of the module where they are imported from. As the interface
record of every module contains all these, this can be done by means of a self-
application.

For import operations, the views have to be customised to that of the current
module requiring an application to the local dispatch functions.

Fig. 9 gives a formal description of the transformation of imports by means
of a scheme called IMP . It is divided in two parts; the upper part defines a

IMP
[[

V ar = use(Mod , Fun)
]]

=

{

V ar = (λ Exp1 . · · · λExpm .Body V ar.‘Exp1‘ · · · V ar.‘Expm‘)

V ar = V ar.Fun

where λ Exp1 . · · · λExpm .Body constitutes the definition of module Mod.

IMP
[[

{ V ar1, . . ., V ark } = import(Mod , { Fun1, . . ., Funk })
]]

=

V ar = (λ Exp1 . · · · λ Expm .Body filter(Exp1) · · · filter(Expm))

V ar1 = V ar.‘Fun1‘
...

V ark = V ar.‘Funk‘

where λ Exp1 . · · · λ Expm .Body constitutes the definition of module Mod and
Fun1...k ⊆ Exp1...m holds. filter is defined as

filter(Exp) =

Exp, ifExp ∈ EFuns;
Exp, ifExp ∈ Funs \ EFuns;
V ar.Exp, otherwise.

where EFuns denotes the set of functions exported by the current module and Funs =
{Fun1, . . . , Funk} the set of imported functions.

Fig. 9. The import resolution scheme IMP.

transformation for use operations while the lower part is dedicated to import

operations. An import definition V ar = use(Mod, Fun) is transformed into
a pair of definitions. The first one creates a local view named V ar of the module
Mod. The view is created by applying the content of module Mod, i.e, an ex-

pression of the form λ Exp1 . · · · λ Expm .Body to the corresponding entries of
the interface record of the local view V ar. To allow for this recursive application,
record selection, denoted by V ar.‘Exp‘, has to be lazy. In a second step, the im-
ported function is selected from the resulting interface record and introduced as
V ar. Note here, that the view of module Mod is independent from the imported
function Fun and the module which it is imported from. This in fact allows to
reuse the view of a module, once defined, within several use statements across
multiple modules. However, we do not do so to allow for simpler transformation
rules.

The second part presents the scheme for transforming definitions of the form
{ V ar1, . . ., V ark } = import(Mod, { Fun1, ..., Funk }). Again,
Mod is replaced by the literal definition of the module Mod and an appro-
priate view for the imported module is constructed. The filter function decides
which view of a function has to be chosen as argument to the imported module.
If the functions is imported and exported by the current module, Exp is chosen
as parameter. Eventually, Exp is bound to a λ-abstraction on the top most level
by the EXP scheme. If the function is imported but not exported again, the
local view Exp of the current module is chosen. Finally, if the function is not
imported at all, the local view V ar.‘Exp‘ of the imported module is used.

In a second step, the specific functions are selected from the created view us-
ing the already described record selection. Note here, that all functions imported
by one import statement share the created view. Thereby it is made sure that
all applications of imported functions within the imported functions are replaced
by the local versions. In contrast to views created by use operations, this view
if specific to the import operation it was created for and connot be reused.

Given these schemes, the extended Fun language can be transformed into
the simple applied λ-calculus by applying IMP ◦OVLD◦EXP to each module
and program in the order of their definition.

6 Implementation

This section elaborates on how the module system introduced for Fun in the
proceeding section can be applied to an existing programming language. The pro-
gramming language chosen for this purpose is SaC (Singe Assignment C) [Sch03b].
SaC is a functional language resembling C syntax extended by n-dimensional
arrays as first-class language citizens and built-in support for overloading on
functions based on subtyping.

The abstract ovld dispatch function in Fun is resembled in SaC by special
dispatch functions, referred to as wrapper functions. The wrapper functions de-
cide which instance to use based on the (possibly non-static) type information
known at runtime. Whenever possible, these wrapper functions are replaced by
a static dispatch, or at least partially evaluated. A partially evaluated wrapper
function is referred to as a specialisation. Details on SaC’s semi-static dispatch
scheme can be found in [Kre03].

In Fun abstractions of exported functions on the top most level of modules
are used to encode the current view. To implement this style of exporting func-
tions, special function tables are used which hold the current wrapper function
for each exported function. The entries have to be set to the wrapper function of
the current view. Each application of an overloaded function is then indirected
through this function table. This mimics the renaming operation used by the
OVLD scheme for Fun. These two steps allow for dynamically customising the
view of an overloading without the need of touching the once generated code of
a module.

Within the λ-calculus representation of Fun given above, this customisation
is performed by selecting the function that has to be applied from a specially
customised view of a module. Thus, whenever passing one of these special func-
tion applications, the current view on overloadings has to be updated. In SaC,
instead of selecting the wrapper function from a previously generated view, the
function tables are updated. The choice of entries resembles the selection rule
for the arguments within the IMP scheme presented in fig. 9. Whenever a func-
tion is called that was introduced by a use operation, the function table is fully
customised to the view of the module the function was imported from, i.e. the
local wrapper functions.

Functions imported by an import statement lead to a partial update of the
function table, only updating those entries, which have not been imported. All
others are set to the view of the importing function. This includes leaving entries
for exported functions untouched, as these already have been specialised by the
call leading into the current module. This resembles the filter function in the
lower part of fig. 9.

This implementation technique allows for true separate compilation, as at
compile time of a module only the signature of imported and used modules has
to be known. There are no dependencies on code of other modules.

Unfortunately, by switching views through function tables, runtime overhead
for the indirection and table updates is introduced. Furthermore, partial evalu-
ation of wrapper functions as achieved by the semi-static dispatch is rendered
impossible. In the setting of a compiler that relies on optimising runtime perfor-
mance like SaC, this may be acceptable for rapid prototyping applications but
it is not suitable for production runs of large applications.

To alleviate runtime overhead, specialisation of wrapper functions for specific
views can be used. Whenever the local view of an overloaded function is statically
known, a specialised wrapper function can be built and used instead of the
generic version. This offers runtime improvement by removing indirections using
the function table. Unfortunately, the view of a function call is only known in the
case of used functions or on the top most level of imports, i.e. the main program.
This limits the scope of such optimisation to few function applications.

To fully eliminate runtime overhead introduced by the presented overloading
scheme, all views have to be made explicit. This approach closely mimics the
IMP scheme presented for Fun. For all imported statements, a specialised ver-
sion of the imported module has to be generated. As the view of a module can

be shared for all use statements, the amount of created views merely depends
on the number of import statements. By generating the views explicitly, func-
tion tables and indirection of function applications are rendered unnecessary.
Furthermore, the semi-static dispatch becomes applicable again as the wrapper
functions are made explicit.

Of course, this rules out the ability of separate compilation, as the im-
ported module has to be recompiled on every import and a strong dependency
on the code of the imported module is introduced. This heavily increases the
time needed for recompilation of applications whenever the code of a module
is changed. In the setting of long running applications the improved runtime
performance outbalances this downside.

7 Related work

The work presented here directly relates to the module systems of Haskell and
Clean both of which support function overloading across module boundaries.

Haskell combines overloading based on type classes[HHPW96] with a mod-
ule system supporting namespace separation and information hiding[DJH02]2.
In principle, Haskell supports only extendable imports similar to the import

and export operations described in this paper. Different views on overloaded
functions or non-extendable versions as they can be generated by the use and
provide operations are not supported. However, in Haskell, the import is not
restricted to those symbols that are explicitly specified. Instead, the transitive
closure of the call graph is imported including all potentially used instances of
overloaded functions.

The Clean programming language has no support for namespaces, but gen-
erates module locality by means of scopes. Every module has a dedicated in-
terface description, allowing to hide functions outside of the module’s imple-
mentation. Imports in Clean behave in the same way as the import operation
described here, i.e., instead of including the transitive closure of the call graph
each function (instance) has to be imported explicitly. Despite this similarity
with the approach presented here, Clean does not support any form of non-
extendable overloading or shared instances between different overloadings.

A related problem to overloading across module boundaries is spanning recur-
sive functions across several modules. So called mixin modules[DS96] have been
proposed as a means to provide this functionality in Standard ML[MTH90].
Instead of a dispatch between several instances of a function, pattern matching
on the arguments is used to select a target function. To allow for extending the
set of possible target functions, a special inner pattern is added. Extensions to
the pattern matching across several mixins are then merged along the special
inner pattern. In contrast to our approach, a specific view on the recursive func-

2 We are not aware of a specification of Haskell’s module system wrt. overloading
across module boundaries. The account given here is based on two actual implemen-
tations of Haskell, GHC and HUGS.

tion has to be specified by joining mixins to a Standard ML module. Once the
mixins have been transformed into a module, no further extension is possible.

8 Conclusions

Overloading across module boundaries usually conflicts with the principle of
locality. If used intensively, spurious overloadings and unexpected program be-
haviour may be the consequence.

In this paper, a module system is proposed that gives the programmer ex-
plicit control over the exact set of instances of overloaded functions that are
visible within individual modules. This is achieved by means of two different ex-
port/import mechanisms: one that enables external usage only, and another one
that allows later extension via further overloading. Combined, these mechanisms
can be utilised for creating several different ”views“ on overloaded functions each
of which can be fine-tuned to the needs of individual applications.

Although this requires more elaborate dispatch techniques, it is shown that
separate compilation still is feasible in the proposed approach. As this genericity
comes for some extra cost at runtime, the paper outlines alternative implementa-
tions based on code specialisation ond partial evaluation. They give up separate
compilation to some extent, but allow for improved runtime performance. In the
context of SaC, this may entirely eliminate overhead due to increased dispatch
complexity.

References

[AP02] A. Alimarine and R. Plasmeijer. A Generic Programming Extension for
Clean. In T. Arts and M. Mohnen, editors, Proceedings of the 13th Inter-
national Workshop on Implementation of Functional Languages (IFL’01),
Stockholm, Sweden, selected papers, volume 2312 of Lecture Notes in Com-
puter Science, pages 168–186. Springer-Verlag, Berlin, Germany, 2002.

[DJH02] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A formal specifica-
tion of the haskell 98 module system. In Proceedings of the ACM SIGPLAN
workshop on Haskell, pages 17–28. ACM Press, 2002.

[DS96] Dominic Duggan and Constantinos Sourelis. Mixin modules. In Proceed-
ings of the first ACM SIGPLAN international conference on Functional
programming, pages 262–273. ACM Press, 1996.

[GJSB00] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. The Java Lan-
guage Specification. Java series. Addison-Wesley, Reading, Massachusetts,
second edition, 2000.

[HHPW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L.
Wadler. Type classes in haskell. ACM Trans. Program. Lang. Syst.,
18(2):109–138, 1996.

[Hin00] R. Hinze. Generic Programs and Proofs. Habilitation thesis, Universität
Bonn, 2000.

[HP00] R. Hinze and S. Peyton Jones. Derivable type classes. In G. Hutton, editor,
Proceedings of the 4th Haskell Workshop, 2000.

[Jon03] S.L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge Univer-
sity Press, Cambridge, UK, 2003.

[Kre03] D.J. Kreye. A Compiler Backend for Generic Programming with Arrays.
PhD thesis, Institut für Informatik und Praktische Mathematik, Universität
Kiel, 2003.

[Mey90] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1990.
[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT

Press, 1990. ISBN 0-262-63132-6.
[PvE01] R. Plasmeijer and M. van Eekelen. Concurrent Clean 1.3.1 Language Re-

port. High Level Software Tools B.V. and University of Nijmegen, 2001.
[Sch03a] Sven-Bodo Scholz. Generic Array Programming. Habilitation thesis, Uni-

versität Kiel, 2003.
[Sch03b] Sven-Bodo Scholz. Single Assignment C — efficient support for high-level

array operations in a functional setting. Journal of Functional Program-
ming, 13(6):1005–1059, 2003.

[WB89] P. Wadler and S. Blott. How to Make ad-hoc Polymorphism Less ad hoc.
In POPL ’89, pages 60–76. ACM Press, 1989.

