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ABSTRACT
We propose a new notation for data parallel operators on multi-

dimensional arrays named tensor comprehensions. This notation
combines the basic principle of array-comprehensions with syn-

tactical shortcuts very close to those found in the so-called Tensor

Notations used in Physics and Mathematics. As a result, complex

operators with rich semantics can be defined concisely. The key

to this conciseness lies in the ability to define shape-polymorphic

operations combined with the ability to infer array shapes from

the immediate context. The paper provides a definition of the pro-

posed notation, a formal shape inference process, as well as a set of

re-write rules that translates tensor comprehensions as a zero-cost

syntactic sugar into standard SaC expressions.
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1 INTRODUCTION
Most array languages offer a variety of built-in operators that are

commonly used in practice, e.g. linear algebra, tensor operations,
etc. Typically, these operators are pure functions that can be eas-

ily composed, opening a great potential for program analysis and

optimisations.

While these operations are very powerful when expressing ho-

mogeneous computations on entire arrays, they lead to rather cum-

bersome specifications when operating on subsets of the elements

only; arrays have to be disassembled into sub-arrays before ap-

plying the desired functionality and re-assembled thereafter. As a

simple example, consider incrementing all elements but those in

the lowest and highest index positions of a vector v1:

take ([1 ], v)

++ drop ([1 ], drop([-1], v)) + 1

++ take([-1], v)

1
We use the array operators as they are provided in the SaC standard library; similar

operators can be found in all array languages.
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Note here, that negative first arguments to the functions take
and drop relate to elements from the “right”, i.e. starting from the

highest index.

If we apply this approach to a matrix we need to create 5 sub-

arrays, only one of which actually is being incremented. Looking at

the generic case of an array of rank n, we need to involve 2
n +1 sub-

arrays. Such inconvenient specifications can be avoided through

the introduction of array comprehensions. Array comprehensions

introduce explicit references to indices, enabling the identification

of the relevant elements through index relations. Using the array

comprehensions of SaC, named with-loops, the above example can

now be specified as

with {

([1] <= [i] < shape(v)-1) : v[i] + 1;

} : modarray( v);

A further benefit of such comprehensions is the straight-forward

extensibility to higher ranks. For matrices m, we can write

with {

([1,1] <= [i,j] < shape(m)-1) : m[i,j] + 1;

} : modarray( m);

and in shape-polymorphic languages such as SaC, we can define

inner increments for arrays a of arbitrary rank in the same fashion:

with {

( 0*shape(a)+1 <= iv < shape(a)-1) : a[iv] + 1;

} : modarray( a);

The expressive power of with-loops allows them to be used as

vehicle to implement all built-in array operations in SaC, including

take, drop, and ++ from above. While this is very convenient from

the perspective of language design and implementation, it comes

at a price: even trivial operations such as element-wise arithmetics

require explicit index-range and shape specifications. Often, this

does not matter, as shape-polymorphism enables the abstraction of

generic operators such as an element-wise addition for arrays of

arbitrary rank. However, in cases where many new operators are

needed, the necessity to express shape ranges and ranks adds a lot

of verbosity.

Looking at textbooks from Mathematics and Physics, we can

see that these have the very same issues when describing tensor

calculi. In typical tensor notations, it is customary to omit index

ranges whenever they are “obvious” from the context. Likewise,

index-ranges of summations and even the summation symbols

themselves are omitted based on the occurrence of indices on both

sides of equations.

In this paper, we describe a shortcut notation for with-loops

and array comprehensions in general which imitates the tensor

notations while, at the same time, guaranteeing a non-ambiguous

semantics. While the idea of array comprehensions is by no means

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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new, being able to omit boundaries and shapes becomes rather

challenging once shape-polymorphic specifications are involved.

Existing approaches are typically rather limited in their applicability

due to limitations in the static tractability of these shapes.

The contributions of this paper are threefold:

• we define a new notation for array comprehensions that

fully support shape-polymorphic codes; it has the same ex-

pressiveness as the with-loops in SaC and can be used as a

replacement;

• we provide a formal specification of the translation of these

expressions into with-loops; and

• we extend the ability to infer missing shape specifications

through a novel rewrite system which builds on the binding

scope analysis from [7].

2 WITH-LOOPS
In this section we briefly recap the notion of the With-Loop con-

struct in SaC. The construct can be understood from the following

example:

with {

([2] <= iv < [5]) : iv[0] + 1; // generator part

} : genarray // operator

([8], // shape of the result

42) // default element

which evaluates [42, 42, 3, 4, 5, 42, 42, 42] — a 1-

dimensional array of 8 elements. Each with-loop consists of one

or many generator expressions and an operator. Each generator

expression defines a hyperrectangular set of indices and the expres-

sion that is evaluated for every index. In the above example, the

index set is {[2], [3], [4]} and the expression is iv[0] + 1, where iv
binds to each index from the given index set. Finally, the genarray
operator constructs a new array. This operator takes two parame-

ters: the shape of the array to be constructed and a default element

which is being used for all those element positions that are not

covered by any of the generators.

In case of multiple generators with overlapping index sets the

value from the first definition is taken. A slight variation of our

example:

with {

([2] <= iv < [5]) : iv[0] + 1; // generator 1

([4] <= iv < [6]) : 0; // generator 2

} : genarray ([8], 42) // operator part

evaluates to [42, 42, 3, 4, 5, 0, 42, 42].
With-Loops allow for non-scalar body expressions. Such nested

array constructions need to be homogeneous, i.e., all body expres-

sions as well as the default element need to be of identical shape.

This enables nested With-Loops such as:

with {

([1] <= jv < [2]) : with {

([2] <= iv < [5]) : iv[0] + 1;

} : genarray ([8], 42);

} : genarray ([3], [0,0,0,0,0,0,0,0]);

which computes a two-dimensional matrix of overall shape [3,8]:

©­«
0 0 0 0 0 0 0 0

42 42 3 4 5 42 42 42

0 0 0 0 0 0 0 0

ª®¬

As an alternative to the operator genarray the With-Loop also

supports an operator modarray. It takes an array as parameter

which serves as a template for the array to be constructed with

respect to both: shape and default element. Assuming that the

variable A evaluates to a vector of 8 elements [a,b,c,d,e,f,g,h],
the With-Loop

with {

([2] <= iv < [5]) : iv[0] + 1;

} : modarray (A);

evaluates to the vector [a,b,3,4,5,f,g,h].
Finally, the with-loop supports a fold operator that can be un-

derstood from the following example:

with {

([0] <= iv < [10]) : iv[0] // generator part

} : fold // operator

(+, // binary function

0) // default element

It computes the sum of first 9 natural numbers. A more detailled

description of with-loops in SaC and their semantics can be found

in [5] or on http://www.sac-home.org.

3 ON REDUCING THE VERBOSITY OF
WITH-LOOPS

While the standard form of the with-loop as introduced in the

previous section is very expressive, at the same time, it is very

verbose as well: each generator consists of two bounds, an index

variable, two relations and a body expression. The operators all

require one (modarray-case) or two parameters (genarray-case
and fold-case). None of these components can be omitted, even

if they seem ”obvious” from the context. Looking at a large body

of application code, we can identify four different components of

with-loops that in many contexts seem to be very obvious from the

context.

3.1 Generator Bounds
Many simple with-loops range over the entire index space of the

result shape, i.e., they are simple map-like operations. When speci-

fying shape-polymorphic codes this leads to specifications such as

the following with-loop which performs a simple increment on all

elements of an array A:

with {

(0* shape(A) <= iv < shape(A)) : A[iv] + 1;

} : genarray (shape (A), 0);

The need to specify the lower and upper bound of the index

range has two drawbacks: they render the code harder to read and

more painful to write. To ameliorate that situation to some extent,

the current SaC language definition supports syntactic sugar for

those two bounds in the form of the dot symbol. Depending on its

position, the symbol ”.” refers to the smallest or biggest legitimate

index within the result shape, respectively. Using that shortcut, we

can write:

with {

(. <= iv <= .) : A[iv] + 1;

} : genarray (shape (A), 0);

While this definitely reduces the specificational burden, readability

only partly benefits. The overloading of the symbol ”.” is far from

http://www.sac-home.org


Tensor Comprehension in SaC IFL’19, September 2019, Singapore

ideal. In particular in combination with the ability to choose be-

tween ”<=” and ”<” as relations on both sides of the index variable

iv, the use of the dot-symbol regularly leads to confusion and to

subtle programming errors. Ideally, we would like to get rid of

the need to always specify exactly two bounds. Furthermore, the

applicability of using the dot-symbol is rather limited. For Fold-

With-Loops it cannot be applied at all since there is no explicit

shape the bounds could be derived from, and non-scalar with-loops

cannot leverage the dot notation either. As an example, consider a

with-loop where where the generator ranges over all elements of

the first axis only and then operates on the entire hyperplane in the

generator body. A slight modification of our increment example

exposes this:

with {

([0] <= iv < take ([1], shape (A)) : A[iv] + 1;

} : genarray ( take ([1], shape (A)), def_value );

Here, the use of the dot symbol as shortcut for the bounds is not

possible although the index vector ranges over all rows.

3.2 Index Vector Components
Some algorithms are specified in terms of individual axes of arrays

rather than all axes as in the first increment example above. Matrix

Multiplication is a classical example for such a situation:

with {

([0,0] <= iv < shape (A))

: with {

([0] <= jv < shape (A)[0])

: A[[iv[0], jv[0]]] * B[[jv[0], iv [1]]];

} : fold (+, 0);

} : genarray (shape (A), 0)

In those cases, it would be convenient to have scalar indices

instead of the index vectors iv and jv. Again, the current definition
of SaC caters for this by means of syntactic flexibility at the index

variable specification. Matrix multiply can be written as:

with {

([0,0] <= [i,j] < shape (A))

: with {

([0] <= [k] < shape (A)[0])

: A[[i, k]] * B[[k, j]];

} : fold (+, 0);

} : genarray (shape (A), 0)

which is closer to the mathematical specification. However, this

pattern match style of introducing scalar index variables is limited

to cases where we are dealing with a fixed dimensionality. This

precludes from using it in shape-polymorphic operations. In order

to cope with that, something analogous to pattern match wild-cards

would be needed.

3.3 Default Elements
The flexibility to specify with-loops where the generators traverse

through hyper planes rather than individual elements is a very

powerful tool for writing shape-polymorphic algorithms that ap-

ply some operation relative to one or more specific axes only. The

second version of increments above is an example for this. Such

with-loops can be applied to arrays of arbitrary shape as long as they

have at least one axis. Unfortunately, such functionality usually ren-

ders the specification of the default element of genarray-operators

non-trivial. In the second increment example, we simply used the

variable def_value in the default element position. However, this

variable needs to be defined appropriately. Assuming that we want

to make as few assumptions on the shape of the array A as possible,
we need to define def_value as an array of values whose shape is

identical to that of A without its initial component. In SaC, this can

be specified as:

def_value = with {

} : genarray ( drop ([1], shape (A)), 0);

This default element has several drawbacks. First of all, it is

tedious to specify and secondly, the strict semantics of SaC forces

the default element to be computed even if, as in our hyper-plane

increments example, it turns out that the default element never is

actually being used. It would be ideal if we could avoid an explicit

default element specification as often as possible.

One might think that such a default element can always be stati-

cally inferred based on the aforementioned homogeneity constraint

of SaC: it requires all elements of an array to be of the same type

and of the same shape which limits nesting to the homogeneous

case. Whenever we can statically infer the shape of the body ex-

pression, we can infer a suitable default element as well. In the

hyperplane increments example, if the array A turns out to be of

statically known shape [c1,c2] the compiler can statically infer

that the shape of A[iv] + 1 is [c2] and a suitable default element

could be inserted by the compiler. Unfortunately, in the general

case this is not possible. Even if we just consider the case where we

statically do not know the rank of A finding out that the shape of
A[iv] + 1 actually is identical to drop ([1], shape (A)) is non-
trivial, given that selection and addition are not built-in operators

in SaC but user-defined functions which internally use some more

restricted built-in operations on scalar values. One might consider

that computing the lower bound instance of the body expression

could solve the problem, i.e., in our example we could compute the

expression

shape (A[[0]] + 1)

Unfortunately, this only works out for non-empty generators.

If we assume the shape of A to be [0,6], the expression shape
(A[[0]] + 1) would yield an out of bound access, while drop
([1], shape (A)) correctly reduces to [6].

3.4 Result Shapes
Another frequent case for seemingly redundant information arises

around the result shape provided as first parameter to the genarray-
operator. Consider again the trivial increment case. The need to

specify that the result shape is identical to that of the array A seems

notationally excessive. While in this simple case the use of the

modarray-operator can help, in general, an inference of the result

shape is undecidable.

3.5 Set Notation
The dilemma we face here is that on the one hand we cannot guar-

antee that we can infer all missing parts for arbitrary specifications,

and on the other hand we do not want to be forced to have un-

necessarily verbose specifications for all cases. The set notation

previously introduced to SaC [6] offers one possible way out. It
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introduces a much terser notation as syntactic sugar for with-loops

where the inference of missing components is straight-forward

enough to be automated. In this notation, element-wise increment

can be defined as:

{ iv -> A[iv] +1 }

and matrix multiply becomes:

{ [i,j] -> sum ({ [k] -> A[i,k] * B[k,j] }) }

In these examples, all missing components such as lower and

upper bounds, result shape, and the default element are all inferred

from the body expression. While this caters for many frequent

cases, it has three main shortcomings. First, it only works for those

cases where all these components can be inferred; if any one of

them cannot be inferred, a full with-loop has to be used as fallback

solution. Secondly, the inference of default elements is solved in

an ad-hoc fashion by computing the body expression for the lower

bound. The case of an empty shape as explained in section 3.3 is

not covered appropriately. Finally, the fact that the set notation is

only applicable in the ”simple” cases means that both, with-loops

and set notation need to co-exist. If it turns out that a case that the

programmer considers suitable for the use of set notation in fact is

not, the expression needs to be rewritten completely.

The goal of this work is to come up with a single unifying notation
which is similar in terseness to the set notation but that is expressive
enough to replace with-loops entirely.

4 NEW NOTATION
Our new notation is built on the idea of a set comprehensions, but

instead of generating a set, we generate a multi-dimensional array:

// Variable Expression Generator

{ iv -> e | g ;

... }

Array comprehensions contain one or more generators, each of

which is very similar to their counterparts in genarray with-loops.

The term iv constitutes a bound variable, e is an expression as

in the with-loop, and д defines index positions at which e will be
evaluated. The final result is obtained by unifying all the parts of

the array comprehension.

The following features set our new array comprehensions apart

from previous approaches such as the with-loops or set expressions.

Multiple generators. Array comprehensions contain a list of vari-

able-expression-generator triplets. Each triplet represents a part of

the index-space that is being computed. For example:

{ iv -> 1 | [0] <= iv < [5] ;

iv -> 2 | [5] <= iv < [10] }

evaluates a vector of 10 elements, where first five of them are ones

and the rest are twos.

Simplified generators. Array comprehensions make it possible to

omit specification of the lower bound, upper bound or the entire

generator. For example, the following forms of expressions are

supported:

{ iv -> e | iv < ub } // upper bound only

{ iv -> e | lb <= iv } // lower bound only

{ iv -> e } // no generator

where e is the body of the array comprehension and lb and ub are

expressions for the lower and upper bounds. In all three cases, we

attempt to infer the full generator. In the first case this is straight-

forward: the lower bound is simply ub*0. Resolving the second and
third case rely on an analysis of e : we search for occurrences of the

index vector variable iv as first argument in selection operations

in e . For example,

{ iv -> a[iv] }

is a legal expression, with the index range spanning from 0*shape (a)
to shape (a). As array selections may contain arbitrarily complex

expressions, it is not always possible to compute the index bound

of e . In these cases the inference algorithm produces an error and

asks the user to provide additional bound constraints for iv.

Index Pattern Matching. Index components can be bound to vari-

ables:

{ [i,j] -> i+j | [i,j] < [3,3] }

Additionally, we support two wild-card pattern: a single dot and

three dots. A single dot makes it possible to skip the component

of an index vector without binding it to a variable. For example

[i,.,j] defines a tree-dimensional index space, where the first

and the third component of the index vector are bound to i and j
correspondingly. The triple dot can be used once in a pattern, and it

skips all the index components except those that are specified by the

pattern on the left and on the right. For example: [i,...] defines an
index space of any rank where the first index component is bound

to i . The [i,...,j] expression also defines an index space of any

rank, and it binds the first and the last index components to i and j .
Both dot patterns can be used simultaneously: [.,i,...,j,.].

The last partition. The new notation does neither require a spec-

ification of a default element nor a result shape per se. Instead, the

shape of the default element is inferred. However, as mentioned

before, this cannot be done in all cases. We resolve this problem

by introducing the convention that the overall shape of any ar-

ray comprehension needs to be deducible from the last variable-

expression-generator triplet. With this convention, we achieve two

goals simultaneously: we can provide missing shape information

for the entire expression; and we can provide an explicit default

element in cases where the inference is not possible. For example,

the notation

{ [i,j] -> i+j | [3,3] <= [i,j] ;

iv -> 0 | iv < [10 ,10] }

can be viewed as a with-loop with a shape expression [10,10] and
a default element 0. If there was no second partition, an inference

of the upper bound would be impossible.

Modarray operators. The modarray-variant can easily be mod-

eled in the new notation as well, building on the special role of the

last partition. Looking at the previous example, we can specify it

to act in the same way as a with-loop with an operator modarray
(A):

{ [i,j] -> i+j | [3,3] <= [i,j] ;

iv -> A[iv] }
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Fold with loops. The new notation does not provide a direct

equivalent for the fold-variant either. Instead, generically defined

reduction combinators need to be used. For example, matrix multi-

plication can be expressed by

{ [i,j] -> sum({ [k] -> A[i,k]*B[k,j] }) }

where sum is library function that adds all elements of a given array.

Dots in index patterns. Similarly to the dot syntax in the selection

operations, we allow to enrich index patterns with two additional

symbols: . and . . . . A single dot, similarly to the dot in regular

expressions, refers to the position in the index vector for which

we do not define a bound variable. Triple dots mean zero or more

indices in the index pattern, a ‘*’ pattern in regular expressions.

Consider these two examples

{ [i,.] -> [1,2,3] + i | [i] < [5]}

{ [.,i] -> [1,2,3] + i | [i] < [5]}

The body of the comprehensions generates three-element vectors,

and the position on the dot in the index vector defines whether i
iterates over rows or columns. In the first case we compute a matrix

of shape [5, 3], and in the second the shape of the result is [3, 5].

One can think about dot patterns as a way to encode a subsequent

transposition of the result. With the triple-dot pattern, we get extra

expressivity, as we can capture multiple axes without fixing the

number of axes a priori. As an example, consider:

{ [i ,...] -> A + i | [i] < [5]}

{ [...,i] -> A + i | [i] < [5]}

If A turns out to be a vector, we obtain exactly the same behaviour

as above. However, there is no restriction on the dimensionality of

A at all. For example, if the shape of A turns out to be [2, 2], we get

results of the shape [5, 2, 2] and [2, 2, 5], respectively.

Finally, triple dots can be used in the middle of the index pattern

as, for example, in:

{ [i,...,j] -> [[1 ,2] ,[3 ,4]] + i | [i,j] < [5,5]}

which evaluates to an array of shape [5, 2, 2, 5]. To avoid ambiguity,

we restrict the use of triple dots to a maximum of one per pattern.

Dots and triple dots can be combined in a single pattern without

any further restrictions.

5 TRANSLATING TENSOR
COMPREHENSIONS

We describe the translation process of the new tensor notation

into with-loops, allowing ourselves to omit some technical details

for the sake of better readability. The translation happens in three

consecutive rewrite steps.

First, we infer all missing upper/lower bounds for index variables
of a given tensor comprehension. We denote this traversal with

J _ K
BI
, and an abstract example application looks like this:

{ J [i,.,.,j,k,.] -> e ; γ K
BI

} = { [i,.,.,j,k,.] -> e | l <= [i,j,k] < u ; γ ′ }

That is, it computes lower and upper bounds l and u and inserts

them as constraints on the index variables i,j,k.
Secondly, the rewrite scheme J _ K

ED
eliminates all dots in index

patterns. We do so by introducing fresh variables for individual dots,

inferring their ranges and merging them into the constraints at

their corresponding positions. Finally, we add a selection operation

into the body expression. For our running example, we get:

{ J [i,.,.,j,k,.] -> e | l <= [i,j,k] < u ; γ ′ K
ED

}

= { [i,t1,t2,j,k,t3] -> e[[t1, t2, t3]] | l ′ <= [i,t1,t2,j,k,t3] < u ′ ; γ ′′ }

In the final rewrite step, J _ K
W

generates with-loops from tensor

comprehensions with explicit lower/upper bounds and without any

index wild-cards left:

J { [i,t1,t2,j,k,t3] -> e ′ | l ′ <= [i,t1,t2,j,k,t3] < u ′ ; γ ′′ } K
W
=

with {

(l ′ <= [i , t1, t2, j , k , t3] < u′): e ′

. . .

} : genarray ( . . .)

5.1 Notation
Weuse semantic brackets to denote the rewrite rules, as our rewrites

are compositional. For readability we introduce a few typographical

conventions when presenting the rewrites. We use bold face for
the concrete syntax when constructing or pattern-matching on a

SaC expression. We use bluemath font to denote sub-expressions

that we either obtain as arguments or compute during rewrites.

Finally, we use green standard font to introduce meta-values or

helper meta-functions that operate on SaC expressions.

When we pattern-match on partitions of tensor comprehensions,

p ; γ we assume that p is bound to the first partition in the list and

γ is the rest of the list, which could be also empty which we denote

with ∅.

5.2 Bound Inference
Bound inference is performed locally for every partition of the

tensor comprehension. One extra bit of information that is required

for the analysis is whether the partition we are working with is the

last one, i.e. whether it determines the shape of the overall result.We

structure our rewrite in amap-like style, and we consider separately
four kinds of partitions:

• no bounds i -> e
• lower bound i -> e | l <= ĩ
• upper bouns i -> e | ĩ < u
• full i -> e | l <= ĩ < u

No bounds. We start with the case when the partition does not

provide bounds. For that case we obtain:

J ∅ K
BI
= ∅

J i -> e ; γ K
BI
= i -> e | l <= ĩ < u ; J γ K

BI

where

ĩ = strip-dots i

s = find-shapes ĩ e
l = u*0 ∧ u = s is-complete s

l = . ∧ u = . ¬is-complete s ∧ γ , ∅

⊥ otherwise

The first rule makes sure that our recursive rewrite terminates

when the last partition is done. The second rule inserts the upper
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and the lower bounds for the index variables. These are computed

from the indices in the index pattern i and the body expression e
as follows:

First, we derive from the index pattern i which may contain

multiple . and a single . . . a version without dots referred to by ĩ .
We do so formally by means of a helper function strip-dots which

eliminates . and . . . from the index-pattern, preserving the order

of the remaining variables. In case the argument is not an index

pattern, it acts as identity function:

strip-dots [i,.,k,. . . ,m] = [i,k,m]
strip-dots iv = iv

Then, the find-shapes meta-function traverses its second argu-

ment and collects all the information about the ranges for the vari-

ables from the first argument. The precision of this analysis impacts

on the number of tensor comprehensions that can be handled. The

number of methods one can use is very large: data flow, interval

analysis, abstract interpretation. In it simplest form, we inspect

whether variables are found in selections and per each variable we

compute the minimum of upper bounds. For example:

find-shapes [i,j] (a[j,i]+b[i])
= [min(shape(a)[1], shape(b)[0]), shape(a)[0]]

In case the information is not present, or the analysis is too weak,

find-shapes may return a partial result. For example:

find-shapes [i,j] a[i] = [shape(a)[0], _]

We use is-complete to check that each variable has a shape annota-

tion. Finally, if the shape information is partial, we use . as bounds
in case the partition is not last or we fail with an error message

otherwise. The latter is indicated by the ⊥ symbol.

Lower Bound. For the case when only a lower bound is specified,

we use a similar rule, except that ĩ already has been specified by

the user. The appropriate relation between i and ĩ is guaranteed by

syntactical well-formedness criteria. We obtain:

q
i -> e | l <= ĩ ; γ

y
BI
= i -> e | l <= ĩ < u ; J γ K

BI

where

s = find-shapes ĩ e

u =


take(shape(l), s) is-complete s ∧ ¬pat i ∧ l , .
s is-complete s ∧ (pat i ∨ l = .)
. ¬is-complete s ∧ γ , ∅

⊥ otherwise

The main difference in the computation of the upper bound u be-

tween this rule and the rule for the no-bounds case above stems

from the need to ensure that both, the lower and the upper bound

need to be of the same length. While this is inevitable in case we

have an index pattern, for an index variable this may not hold;

here, an arbitrary prefix of s can be chosen. In the case of no exist-

ing bounds we always choose the maximum length. In this case,

we need to ensure compliance with the lower bound. We use a

predicate pat which is true for index pattern but false for an index

variable in order to distinguish those two cases. If we are dealing

with an index variable (¬pat), we choose a prefix from s of the same

length as the given lower bound l .

Upper Bound. When the upper bound is given but the lower

bound is missing, we compute the lower bound by multiplying

the upper bound with zero. The only exception is when the last

partition has u = . — in this case rewrite fails with an error message.

We obtain as rule:

q
i -> e | ĩ < u ; γ

y
BI
= i -> e | l <= ĩ < u ; J γ K

BI

where

l =

{
⊥ γ = ∅ ∧ u = .
u*0 otherwise

Full Generator. When both bounds are given, we only have to

check that the last partition does not contain . as the upper bound.
q
i -> e | l <= ĩ < u ; γ

y
BI
= α ; J γ K

BI

where

α =

{
⊥ γ = ∅ ∧ u = .
i -> e | l <= ĩ < u otherwise

5.3 Eliminating Dots
After the bounds inference has been applied, we have ensured that

all partitions have lower and upper bounds, either in terms of con-

crete expressions or in terms of the dot symbol. Before translating

these into with-loops, we want to elide dots in index patterns as

these are not admissible in with-loops, i.e., we want to transform

partitions of the form

• [i,.,k] -> e | l <= [i,k] < u
• [i,.,...,k] -> e | l <= [i,k] < u

into partitions without dots left of the arrow symbol. Now we

consider the two cases (with or without . . . ) in separation.

Single dots. We start with the case when the partition we are

dealing with pattern-matches on the index variables that do not

contain . . . pattern, i.e. i = [j1, . . . , jn ] ∧ ji ∈ {. , xi }. In this case

we introduce new variables for each dot pattern, and we select the

resulting expression at these index variables. We get:

q
i -> e | l <= ĩ < u; γ

y
ED
= j̃ -> e[[t]] | l ′ <= j̃ < u ′ ; J γ K

ED

where

m = count-dots i

t = t1, . . . , tm
j̃ = merge i ĩ t

l ′ = merge i l genarray([m], 0)

u ′ = merge i u take([m], shape(ē))

ē = subst ĩ e genarray([count-var ĩ], 0)

First we compute the number of dots in the pattern and bind it

to m. Note that m is a meta-variable, but when we later use it in

the object language we implicitly assume that we build an integer

term that contains m as a value. After that we introduce m fresh

variables, and we compute j̃ by substituting dots in i with the fresh



Tensor Comprehension in SaC IFL’19, September 2019, Singapore

variables. The merge function works as follows:

merge (. :: xs) ĩ (s :: ss) = s,merge xs ĩ ss

merge (v :: xs) (k :: ĩ) ss = k,merge xs ĩ ss

merge xs . ss = .

Finally, as we introduces m fresh variables, the body of the with-

loop returns a non-scalar result. In order to compute the shape of

this result we take the last m components of the shape(ē), where ē
is derived from the expression e by substituting all occurrences of

index variables by zeros. We defer a discussion of the validity of this

choice to the next section as we use this technique for determining

the shape of the expressions e in several rules.

Triple Dots. The other case we are dealing with are index patterns
which contain ‘. . . ’, i.e. i = [j1, . . . , jn ] ∧ ji ∈ {. , xi , . . . }. As per our
syntactical restrictions . . . can only occur once, we can split the

index pattern into three parts: the left hand side i , the . . . and the

right hand side j. Both, i and j may be empty. With it, we obtain

the following rule:

q
[i ++ . . .++ j] -> e | l <= ĩ < u; γ

y
ED

= j̃ -> e[[t]] | l ′ <= j̃ < u ′ ; J γ K
ED

where

m = count-dots i

n = count-dots j

t = tl ++ t∗ ++ tr = t1, . . . , tm, t∗, tm+2, . . . , tm+1+n

I = [i ++ . . .++ j]

j̃ = merge-d I ĩ tl t∗ tr
and

l ′ = merge-d I l

genarray([m], 0)
genarray([dim(ē)-m-n], 0)
genarray([n], 0)

u ′ = merge-d I u

take([m], shape(ē))
drop([m], drop([-n], shape(ē)))
take([-n], shape(ē))

ē = subst ĩ e genarray([count-var ĩ], 0)

We use exactly the same idea as before, with a minor tweak that

we have to introduce fresh variables for the . in i and j and a new

variable for . . . as well. As before, dots and triple dots get replaced

with fresh variables and then we select the body of the generator

with these variables. The merge-d function accounts for these three

cases as follows:

merge-d (i ++ . . . ++ j) (xl ++ xd ++ xr ) ll dd rr

= (merge i xl ll) ++ dd ++ (merge j xr rr )

5.4 Tensor to With-loop
After the bounds are inferred and dots are eliminated, tensor nota-

tion is just syntactical sugar for with-loops without explicit specifi-

cations of result shapes and default elements. We derive these from

the last partition leading to an overall rule:

q
{ ĩ1 -> e1 | l1 <= ĩ1 < u1 ; . . . ; ĩn -> en | ln <= ĩn < un }

y
W
=

with {

(l1 <= ĩ1 < u1): e1

. . .

(ln <= ĩn < un ): en
} : genarray (un , genarray(shape (ēn ), zero(ēn )))

As before in Section 5.3, ēn serves as vehicle to determine the shape

of the default element. It is an expression where ĩn is substituted

by zeroes. That is:

ēn = subst en ĩn genarray(shape(ln ), zero(ln ))

6 DEFAULT ELEMENT INFERENCE
As explained in section 3, the inference of default elements boils

down to figuring out the shape of the body expression of at least one

generator. In particular when writing generic, shape-polymorphic

functions this often is statically undecidable. Let us revisit one of

the examples from subsection 3.3:

with {

([0] <= iv < take ([1], shape (A))) : A[iv] + 1;

} : genarray (take ([1], shape (A)), def_value );

In a shape-polymorphic context, we have no knowledge about the

shape of A other than that A has to be at least one dimensional.

The shape of default_value depends on the shape of A. As pro-
grammers, we may immediately spot that the shape of the default

element should be drop([1],shape(A)), however, the current sys-
tem requires this to be stated explicitly.

The formal transformation scheme presented in the previous

section takes a very naive approach towards inferring a default ele-

ment. It generates an expression that computes one of the elements

of the array, takes its shape, and computes an array of zeros with

that shape as default element. In the example above, this shape

computation entails computing the expression shape (A[[0]] +
1) which we derived from replacing the index variable with the

lower bound.While this may look like a good solution at first glance

it has two major drawbacks:

Firstly, the computation of the chosen generator expression is

redundant. While the computation of the value itself may be reused

for the overall result, the bigger problem lies in the memory allo-

cation that happens whenever the generator expression evaluates

to a non-scalar array. At runtime, the default element needs to

be computed prior to allocating the memory of the overall array

comprehension. This entails, in practice, we almost never can reuse

that memory. Instead we typically free it as soon as the shape of

that expression has been used or, if we reuse the computed values

as well, as soon as all the values have been copied into the overall

result array of the with-loop. If the default element is large, the

ensuing memory traffic often outweighs a re-computation of the

values themselves adding to the overhead incurred.

Secondly, since the generator can be empty, there may be no

such instance to compute. To make matters worse, this is a typical

scenario when applying shape-polymorphic functions to borderline

cases where the axis that the with-loop computes on turns out to

be empty. In our given example, consider the case where the shape

of the array A turns out to be [0,2048]. Not only is the generator
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empty, but the (strict) computation of shape (A[[0]] + 1) leads

to an out-of bounds access.

One of the key contributions of this paper is an improvement to

the default element problem; we propose a rewrite system for our

default-element expressions that

• asserts conformity of all generator body instances;

• reduces the shape inference overhead;

• guarantees that no new out-of-bounds errors are being in-

troduced by the desugaring of tensor comprehensions.

Jointly, this does not only improve the efficiency of the derived code,

it also provides a shape homogeneity guarantee for all acceptable

tensor comprehensions with inferred default elements.

As mentioned before, all instances of generator expressions need

to evaluate to arrays of identical shape. For all practically relevant

cases, this implies that the shape of these expressions solely de-

pends on the shapes of all arrays that are referenced in the generator

bodies, not their values. The rationale behind this observation is

that if the shape depends on the values, chances are very high that

the resulting shapes differ between some instances leading to an

inhomogeneity error. Hence, the key observation is: if we manage

to identify the function bodies that adhere to this “shape homogene-

ity” and if we manage to construct a function that computes the

result shape from the shapes of the relatively free variables in the

with-loop bodies, then we can compute the default shapes without

computing any generator instances.

The first key idea is to leverage the pre-existing static analysis

named “binding scope analysis” [7]. It identifies for arbitrary SaC ex-

pressions how much information about the relatively free variables

is needed in order to compute the value, shape, or dimensionality

of the expression, respectively. We can readily use this inference to

identify whether a generator body is shape homogeneous or not. If

we apply that analysis to the expression (A[[0]] + 1), we obtain
the information that for the shape of this expression it suffices to

know the shape of A.
The second key idea here is to leverage the binding scope analy-

sis in order to derive a rewrite mechanism which transforms the

generator body so that it solely computes the shape of all instances

from the shapes of all free variables. For our example, we hope that

shape (A[[0]] + 1) is rewritten to some code that computes

the same as drop([1],shape(A)). This would not only reduce

the computational overhead but it would also resolve the empty

shape problem entirely. This rewrite becomes possible as the bind-

ing scope analysis ensures that shape information of the relatively

free variables indeed is sufficient to compute the shape of the body

expression.

6.1 Formalising the Idea
The binding scope analysis described in [7] is defined in terms of

a first order applied lambda calculus which can be seen as a strip-

down version of SaC. The key idea of the binding scope analysis is

to distinguish between four different levels of information about

an array:

• full knowledge of the value; we will denote this with F in

the sequel;

• shape knowledge of the array only; we will denote this with

S in the sequel;

• dimensionality knowledge of the array only; we will denote

this with D in the sequel; or

• no knowledge knowledge about the array at all, which we

will denote with N .

The analysis annotates all functions with propagation vectors. They

determine which of the four levels (F ,S,D,N ) are needed in the

argument value in order to compute a specifiable level of result.

We use the notation DX( f un ) to denote the level of argument

knowledge needed for the given function f un when looking for

the level X ∈ {F ,S,D,N} of the body expression. For example,

we have

DF( λx.shape(x) ) = S

DS( λx.shape(x) ) = D

DF( λx.42 ) = N

DS( λx.take(x,[1,2,3,4,5] ) = F

In order to know the value of applying the shape function, it suffices

to know the argument’s shape. For finding its shape knowledge the

dimensionality of the argument is sufficient. Constant functions

such as the third example do not require any information of the

argument, and the take function requires full knowledge of its first

argument to just figure out the overall shape. For details on how

these propagation vectors can be inferred in general, the interested

reader may refer to [7]. In the context of this paper, we assume this

information to be available.

In the sequel, we provide a formalisation of a rewrite system that

rewrites terms of a simple applied λ-calculus λSaC for whose func-

tions the aforementioned binding scope information is available.

While full fledged SaC is richer in terms of syntactic sugar and does

not support currying of functions at all, the applied λ-calculus we
use here is more amenable for a terse presentation. A projection

of the presented transformation to full SaC is straight forward; we

present an example to this effect in the next subsection.

The syntax of λSaC is shown in Fig. 1. We have reduced it to the

Expr ⇒ Const

| Id

| λ Id . Expr

| Pr f

| (Expr Expr )

| with {
(Expr <= Id <=Expr) :Expr;

} : genarray(Expr,Expr)

Pr f ⇒ shape
| dim
| sel
| ...

Figure 1: The syntax of λSaC .

absolute minimum: besides constants, variables, abstractions, and

applications, we only add the notion of primitive operations as well

as the central language construct of SaC, the with-loop. In contrast

to SaC, where operations like shape, dim, and sel are user-defined
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and much more generic, here, we assume these to be primitives

of the language. For example, we assume that sel performs scalar

selections only. Another simplification from SaC is the restriction

to single argument functions as well as the omission of an explicit

recursion construct as well as an omission of conditionals. While

both of these play a vital role in the inference of the binding scope

analysis as explained in [7], for the transformation described here,

they do not play a role. Last not least, we assume the absence of

higher-order functions since neither SaC nor the binding scope

inference support functions that are passed around as arguments.

We describe the transformation of expressions in terms of three

translation schemes named F , S, and D. Each of these is used to

translate a given expression to an expression that computes the

specified level of that expression only. For a given 2 by 3 matrix

[[1,2,3],[4,5,6]], we expect F to act as identity, S to result in

[2,3] and D to deliver the value 2.
We define these translation schemes using rules of the form

X J e K ε = e ′

where X∈ {F ,S,D} denotes the scheme, e denotes the expression
to be rewritten, and ε denotes an environment that for each free

variable in e contains a pair (v,X′) indicating to which level the

corresponding variable at runtime will have been evaluated. Finally,

e ′ denotes the result of the translation process. Fig. 2 shows the

rewrite rules for all three schemes. As we can see from the rules,

F drives the full evaluation into all components of that expression,

unless we are dealing with an application of a function that does

not require the full values of the arguments. In those cases, the

arguments are translatedwith the corresponding lower level and the

body of the function is traversed with an entry in the environment

carrying the information to which level the argument has been

evaluated. In cases where an argument is not being needed at all

(level N ), we even eradicate the entire function application. This

principle is applied to the primitive functions such as shape, dim,

or sel as well. The main difference here is that the body is rewritten

immediately and no extension of the environment is needed.

When looking at the rules forS, the first difference to the scheme

F we observe is that variables are now in some cases translated in

an application of shape. This happens if and only if the variable has
been marked as fully evaluated (F ) in the environment; otherwise,

they are left as is. This stems from the fact that the binding scope

analysis provides the maximum level of an argument needed in a

function’s body. Therefore, it is possible that an argument has been

fully evaluated even though, in a given sub-context, only a lower

level is needed. At the same time, the analysis guarantees that the

annotated level never is lower than the any level needed within a

function body. Consequently, we can never encounter a level lower

than S in scheme S. The mechanism for function applications in

scheme S is similar to that of F , it potentially switches the scheme

for the arguments and extends the environment when traversing

the body. The most interesting rule here is that of the with-loop.

Here we see, how the entire body of the with-loop is abandoned as

the shape of the result can solely be determined by a concatenation

of the shape expression and the shape of the default expression.

The rules for scheme D follow in the same vein. The main dif-

ference here is that applications of the primitive functions as well

as the with-loop get even simpler.

F J v K ε = v
F J const K ε = const
F J (λx .e a) K ε

=

{
F J e K ε iff DF( λx .e ) = N

(F J λx .e K ε X J a K ε ) iff DF( λx .e ) = X ∈ {F ,S,D}

F J λx .e K ε = λx . F J e K ε ′ where ε ′ = ε ⊕ (x,DF( λx .e ) )
F J (shape e) K ε = S J e K ε
F J (dim e) K ε = D J e K ε
F J ((sel eiv ) e) K ε = ((selF J eiv K ε ) F J e K ε )

F

u

v
with {
(el <=v <= eu) : eb;

} : genarray(es, ed)

}

~ ε

=

with {
(F J el K ε <=v <=F J eu K ε ) :F J eb K ε ;

} : genarray(F J es K ε ,F J ed K ε )

S J v K ε =
{

shape (v) ε(v) = F

v ε(v) = S

S J const K ε = shape(const)
S J (λx .e a) K ε

=

{
S J e K ε iff DS( λx .e ) = N

(S J λx .e K ε X J a K ε ) iff DS( λx .e ) = X ∈ {F ,S,D}

S J λx .e K ε = λx . S J e K ε ′ where ε ′ = ε ⊕ (x,DS( λx .e ) )
S J (shape e) K ε = [D J e K ε ]
S J (dim e) K ε = []

S J ((sel eiv ) e) K ε = []

S

u

v
with {

(el <=v <= eu) : eb;
} : genarray(es, ed)

}

~ ε = (F J es K ε ++S J ed K ε )

D J v K ε =


dim (v) ε(v) = F

shape (v)[0] ε(v) = S

v ε(v) = D

D J const K ε = dim(const)
D J (λx .e a) K ε

=

{
D J e K ε iff DD ( λx .e ) = N

(D J λx .e K ε X J a K ε ) iff DD ( λx .e ) = X ∈ {F ,S,D}

D J λx .e K ε = λx . D J e K ε ′ where ε ′ = ε ⊕ (x,DD ( λx .e ) )
D J (shape e) K ε = 1

D J (dim e) K ε = 0

D J ((sel eiv ) e) K ε = 0

D

u

v
with {
(el <=v <= eu) : eb;

} : genarray(es, ed)

}

~ ε

= ( sel([0],S J es K ε ) +D J ed K ε )

Figure 2: Rewrite rules for the expressions of λSaC which
reduces the computation to the demand determined by the
binding scope analysis from [7].

When applying these ideas to fully fledged SaC, the main differ-

ence is that we have to convert between sequences of assignments

and nested applications of abstractions (let bindings) on the fly and

that we have to consider memoisation of the F , S, and D versions

of the top-level,potentially recursive functions in SaC.
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6.2 An Example Transformation
We illustrate the effect of the proposed transformation on SaC code

by means of the example from Section 3.3:

with {

([0] <= iv < take ([1], shape (A))) : A[iv] + 1;

} : genarray (take ([1], shape (A)), def_value );

Applying our idea, wewant to rewrite the body expression A[iv]
+ 1 after substituting the index variable iv by the lower bound

[0] into the shape-demand form. As our formalism expects the

environment to contain the evaluation status of all free variables, in

the example only A, we need to initialise this environment. Given

that all free variables of the with-Loop body are fully evaluated

prior to the with-Loop computation itself, we insert them marked

as fully evaluated. Now, we can compute

S J A[[0]] + 1 K (A, F )

We are dealing with an application of the function “+” here which

takes two arguments. From the application rule for S, we first have

to derive the shape demands for these two arguments.

When looking at the corresponding definition of “+” from the

standard library of SaC, we find

int [+] +( int [+] A, int B)

{

shp = _shape_A_(A);

res = with {

(. <= iv <= .) : _add_SxS_(_sel_VxA_(iv,A),B);

} : genarray(shp , 0);

return( res);

}

Note here, that the built-in operations in SaC are prefixed with the

symbol “_”. They also carry postfixes which indicate restrictions

of the admissible argument shapes; “S” refers to scalars, “V” refers

to vectors, and “A” denotes arbitrary arrays. The SaC primitive

_sel_VxA_ indeed is identical to the operation sel in λSaC . With

this information, we can now come back to the transformation of

the addition A[[0]] + 1 into its shape form. The binding scope

analysis of the function + yields that the demands for the shape of

the result are S for the first argument (A) and N for the second (B).
Consequently, our rules elide the second argument and transform

both, the function “+” and the expression A[[0]] into the shape

form; we obtain:

(S J + K ε S J A[[0]] K (A, F ) )

First, let us consider the transformation of “+” into the shape

version. When entering the body, we need to add the non-N pa-

rameters into the environment with their corresponding demand.

With ε=(A,S), we obtain

S J + K ∅

= S

u

www
v

(λ shp . with {
(. <= iv <= .)
: _add_SxS_(_sel_VxA_(iv,A),B);

} : genarray(shp, 0);
_shape_A_(A) )

}

���
~
ε

Since the binding scope analysis identifies that shp is needed as full
value in order to compute the shape of the with-loop in the body

of the abstraction, we further obtain with ε ′ = ε ⊕ (shp, F ):

= ( S

u

w
v

λ shp . with {
(. <= iv <= .)
: _add_SxS_(_sel_VxA_(iv,A),B);

} : genarray(shp, 0);

}

�
~ ε

F J _shape_A_(A) K ε )

= ( λ shp . S

u

w
v

with {
(. <= iv <= .)
: _add_SxS_(_sel_VxA_(iv,A),B);

} : genarray(shp, 0);

}

�
~ ε ′

F J _shape_A_(A) K ε )

= ( λ shp . (F J shp K ε ′ ++ S J 0 K ε ′ ) F J _shape_A_(A) K ε )

= ( λ shp . (shp ++ []) F J _shape_A_(A) K ε )

= ( λ shp . (shp ++ []) A )

This leads to a shape variant of “+” of the form:

int [.] +_s( int [.] A)

{

shp = A;

return shp ++ [];

}

Similarly, we compute a shape variant for the selection operation

which is generically defined as:

double [*] sel( int [.] idx , double [*] array)

{

new_shape = _drop_SxV_( _sel_VxA_( [0], _shape_A_(idx)),

_shape_A_(array ));

res = with {

( . <= iv <= . ) {

new_idx = _cat_VxV_( idx , iv);

} : _sel_VxA_(new_idx , array);

} : genarray( new_shape , 0.0);

return( res);

}

For this function, we obtain:

int [.] sel_s( int [.] idx , int [.] A)

{

new_shape = _drop_SxV_( _sel_VxA_( [0], idx), A);

return new_shape ++ [] ;

}

Overall, we get for our default expression:

+_s ( sel_s ( [1], _shape_A_(A)))

which evaluates to the same value as drop([1],shape(A)) does.

7 RELATEDWORK
There exists a number of syntactic sugars for frequently used data

structures. One of the earliest programming languages that added

comprehensions as a part of its syntax was SETL [12]. As sets were

fist-class objects in SETL, a set comprehension primitive was used

to for new sets:

{ e(x1, . . . , xn ) , x1 ∈ e1, . . . , xn ∈ en | C(x1, . . . , xn ) }

the main expression e with n free variables each of which iterates

over the corresponding sets, and the entire expression is guarded

by the constraint C .
List comprehensions as we know them in Haskell and many

other languages for the first time were introduced in KRC by the

name ZF expressions [13]. The structure of the comprehension is
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very similar to the one from SETL, except it produces the list and

free variables iterate over lists as well. For example:

[(a,b,c) | a <- [1..30] , b <- [1..30] , c <- [1..30]

, a*a+b*b==c*c]

generates a list of Pythagorean triplets where each component is

less than 30. List comprehensions become very powerful when used

in recursive definitions. For example, consider a classical example

of the list of prime numbers:

si (x:xs) = x : si [n | n<-xs, n `mod ` x /= 0]

primes = si [2..]

Such style list comprehensions can be found in many other

programming languages: Python, R, Julia, F#, etc.
Despite having a lot of expressive power, list comprehension

gets quite cumbersome if we try to use it for multi-dimensional

arrays. For example, if we represent arrays as nested lists, the matrix

transpose based on list comprehensions would look like:

iota n = [0..n-1]

trans a = [[ x !! i | x <- a] | i <- iota $ length $ a !! 0]

We can make this function more readable in many different ways,

but unfortunately list comprehensions would not help. The main

difficulty is the necessity to maintain the nested structure, i.e. being
aware at which nesting level we are.

The handle on explicit indexing in the proposed array compre-

hension makes it possible to solve the above problem as well as

obtain rank polymorphism. In the earlier work on axis control no-

tation [6] in SaC a very similar idea has been explored already —

a simplified array comprehension with implicit bounds. However,

there are two important differences. Firstly, the notation could not

entirely replace genarray/modarray with-loops, as it didn’t allow

to specify explicit bounds. Secondly, and more importantly, the

notation was only applicable for the contexts where all the array

shapes were known statically. Such a knowledge entirely avoids the

problem of the default element shape, as this information is encoded

in array types. The current work can be seen as a generalisation of

the axis control notation.

A number of attempts have been made to bring the Einstein

tensor notation [16] into a programming language. The main point

of this notation is that we introduce upper and lower indices, and

when the same index variable appears on different levels in the

same term, we implicitly assume summation of this term over all

the legal values of that index. For example, matrix multiplication

would be written as:

n∑
k=1

AikBk j = AB = AikB
k
j

Note that the notation leaves the upper and lower bounds of all

indices completely implicit.

An example of such a system is Tensor Comprehensions [14] by

Facebook. This is a framework that has been created to accelerate

machine learning operations and it uses the Einstein convention.

However, syntactically lower- and higher-level indices are indistin-

guishable, so the terms look like assignments where the left hand

side is an indexed tensor, and the right hand side is an expression.

Depending on the kind of assignment being used, the subterms

will or will not be summed-up. For example, the matrix multiply is

denoted as:

def mm(float(N,M) A, float(M,K) B) -> (C) {

C(i,j) = 0

C(i,j) += A(i,k) * B(k,j)

}

In [8] the authors also build on the idea that all the tensor op-

erations can be codified as assignments of indexed expressions

to an indexed variable. The notation gets quite involved: it intro-

duces multiple classes of indices, operations on them, rules how to

identify when the summation happens. The indices can be nested,

Kronecker deltas are natively supported, and sub-arrays can be

selected. However, to our knowledge the notation only exists as a

theoretical framework, and was never picked up by a programming

language.

Matlab includes a tensor notation framework as well. In [1]

the authors argue that “Notation for tensor multiplication is very

complex” and they introduce a number of special cases for matrix-

tensor operations only, e.g. matrix-tensor multiplication, tensor-

vector multiplication, etc. Other operations can be implemented

by converting tensors into multi-dimensional arrays, defining the

operation on arrays and, subsequently, converting the results back

into tensors.

All the three above-mentioned frameworks lack the ability to

support rank-polymorphic operations, as the classical tensor no-

tation never abstracts over the index vectors. In a way, in relation

to with-loops, it forces one to always use pattern matching index-

vectors in the with-loops.

The AlphaZ [15] system is a set of tools for program analysis,

transformation and parallelisation in the Polyhedral Model [4]. The

notation used for program inputs comes very close to what we

use for tensor comprehensions, except that the index-spaces can

be of arbitrary polyhedral shape. For example, in AlphaZ, we can

define a rectangular array A as float A {i,j | 1 <= i < N && 1 <=
j < i}. The computation may be defined in multiple partitions as

well, and the expressions are allowed to have self references. For

example: A[i,j] = case {|j==1}: 0; {|i>1&&j>1}:A[i-1,j-1]+1 esac
consists of two partitions and the second one makes a recursive

reference to the structure we are defining. At the moment, SaC

does neither support non-rectangular index spaces nor recursive

tensor comprehensions. However, AlphaZ does not allow to omit

any index ranges, and it relies on the polyhedral model to check

the validity of the expression.

A number of systems use the notion of iterators to implement list

or array style comprehensions [11]. Iterators followed by a typical

higher-order combinators like map, reduce or filter can be quite

expressive. For example in Rust [10], a list of even squares can be

expressed as:

(0..10). filter (|x| x % 2 == 0)

.map(|x| x * x). collect::<Vec <_>>()

However, in case of multi-dimensional arrays, an iterator defines

the traversal order of the array’s index space; parallel executions of

such code can be very challenging as demonstrated in [2, 3, 9]. In

contrast, with-loops and consequently the new tensor notation are

fully data-parallel — each element in the result can be computed

independently of others.
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8 CONCLUSIONS
This paper introduces an elegant notation for array comprehensions.

On the one hand, the notation can be seen as a set comprehension

for multi-dimensional arrays. On the other hand, it allows the omis-

sion of generators for indices in many cases very similar to the

Einstein convention when writing tensor operations. At the same

time, the notation makes it possible to express rank-polymorphic

comprehensions — something that typical tensor notations do not

support.

The proposed notation has been implemented in the context of

the array programming language SaC. It is added to the language

as a syntactic sugar, which means that all the existing optimisations

become immediately applicable to the programs written in that

notation. Also, this suggests that the proposed notation can be

implemented in other contexts, as we only rely on the existence of

with-loops and a certain level of program analysability.

The key challenges of this work have to dowith inferring implicit

bounds of the generator expressions; and inferring the shape of the

default element when transforming tensor comprehensions. The

former is a data-flow analysis problem where for each index we

track whether that index participates in selections. If it does, we

compute the minimal upper bound for that index without incurring

out-of-bound errors.

The default element shape inference turns out to be a quite com-

plex task. A tensor comprehension is structured as a sequence of

pairs where the first component is an index space and the second

one is an expression that is computed in that space. Per SaC se-

mantics, the shape of all the expressions must be the same, so in

principle, computing the shape of any of these expression delivers

the right answer. However, if the chosen expression is guarded by

an empty index space, there is no valid index that we can use during

the evaluation. Moreover, when the overall result is an empty array,

we are free to “invent” an arbitrary shape. For example, let a be

an empty array of shape [0,5], in this case the shape of { [i] ->
reverse(a[i]) } can be an empty array of any shape, as this inner

reverse would be never computed. At the same time, it is natural

to assume that the shape of the inner expression should be [5].
We propose a technique that makes this idea precise. By relaxing

the semantics of our shape computations, we obtain the desired

behaviour. As an added benefit, our technique ensures that the

shape of that expression solely depends on the shape of the index

vector and not its values. Consequently, it provides a homogeneity

guarantee which could be leveraged to avoid homogeneity checks

at runtime.

Alternatives to the proposed solution always seem to come with

restrictions. For example, we could require a programmer to define

a precise shape for the entire expression, either via the type system

or additional syntax, but our initial goal was to avoid this in the

first place. We could restrict all the with-loop bodies to evaluate to

scalars, but that would harm expressiveness. Whether there is an

alternative approach to solve this problem maintaining expressive-

ness is a topic of further investigation.

The proposed approach of shape-aware computations based on

the demand analysis of programs opens up interesting applications

outside the default element problem. It could possibly be used as

the base for a new semantic definition of the entire language. If so,

it would statically elide computations that do not contribute to the

result, similar as normal order or lazy evaluation does. However, it

would do so without requiring any support for non-strict computa-

tions at runtime. The scope of the application of this technique as

well as its generalisation are future work.
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