
Towards an Efficient Functional Implementation
of the NAS Benchmark FT

Clemens Grelck1 and Sven-Bodo Scholz2

1 University of Lübeck, Germany
Institute of Software Technology and Programming Languages

grelck@isp.uni-luebeck.de
2 University of Kiel, Germany

Institute of Computer Science and Applied Mathematics
sbs@informatik.uni-kiel.de

Abstract. This paper compares a high-level implementation of the NAS
benchmark FT in the functional array language SaC with traditional so-
lutions based on Fortran-77 and C. The impact of abstraction on ex-
pressiveness, readability, and maintainability of code as well as on clarity
of underlying mathematical concepts is discussed. The associated impact
on runtime performance is quantified both in a uniprocessor environ-
ment as well as in a multiprocessor environment based on automatic
parallelization and on OpenMP.

1 Introduction

Low-level sequential base languages, e.g. Fortran-77 or C, and message pass-
ing libraries, mostly Mpi, form the prevailing tools for generating parallel ap-
plications, in particular for numerical problems. This choice offers almost literal
control over data layout and program execution, including communication and
synchronization. Expertised programmers are enabled to adapt their code to
hardware characteristics of target machines, e.g. properties of memory hierar-
chies, and to enhance the runtime performance to whatever a machine is able to
deliver.

During the process of performance tuning, numerical code inevitably mutates
from a (maybe) human-readable representation of an abstract algorithm to one
that almost certainly is suitable for machines only. Ideas and concepts of un-
derlying mathematical algorithms are completely disguised. Even minor changes
to underlying algorithms may require a major re-design of the implementation.
Moreover, particular demand is made on the qualification of programmers as
they have to be experts in computer architecture and programming technique in
addition to their specific application domains. As a consequence, development
and maintenance of parallel code is prohibitively expensive.

As an alternative approach, functional languages encourage a declarative
style of programming that abstracts from many details of program execution.
For example, memory management for aggregate data structures like arrays is
completely up to compilers and runtime systems. Even arrays are stateless and

V. Malyshkin (Ed.): PaCT 2003, LNCS 2763, pp. 230–235, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Towards an Efficient Functional Implementation 231

may be passed to and from functions following a call-by-value semantics. Focus-
ing on algorithmic rather than on organizational aspects, functional languages
significantly reduce the gap between a mathematical idea and an executable
specification; their side-effect free semantics facilitates parallelization [1].

Unfortunately, in numerical computing functional languages have shown per-
formance characteristics inferior to well-tuned (serial) imperative codes to an
extent which renders parallelization unreasonable [2]. This observation has in-
spired the design of the functional array language SaC [3]. SaC (for Single
Assignment C) aims at combining high-level program specifications character-
istic for functional languages with efficient support for array processing in the
style of Apl including automatic parallelization (for shared memory systems at
the time being) [4,5]. Efficiency concerns are addressed by incorporating both
well-known and language-specific optimization techniques into the SaC com-
piler, where their applicability significantly benefits from the side-effect free,
functional semantics of the language1.

This paper investigates the trade-off between programming productivity and
runtime performance by means of a single though representative benchmark:
the application kernel FT from the NAS benchmark suite [6]. Investigations on
this benchmark involving the functional languages Id [7] and Haskell [8] have
contributed to a pessimistic assessment of the suitability of functional languages
for numerical computing in general [2]. We show a very concise, almost math-
ematical SaC specification of NAS-FT, which gets as close as within a factor
of 2.8 to the hand-tuned, low-level Fortran-77 reference implementation and
outperforms that version by implicitly using four processors of a shared memory
multiprocessor system.

2 Implementing the NAS Benchmark FT

The NAS benchmark FT implements a solver for a class of partial differen-
tial equations by means of repeated 3-dimensional forward and inverse com-
plex fast-Fourier transforms. They are implemented by consecutive collections
of 1-dimensional FFTs on vectors along the three dimensions, i.e., an array of
shape [X,Y,Z] is consecutively interpreted as a ZY matrix of vectors of length X,
as a ZX matrix of vectors of length Y, and as a XY matrix of vectors of length Z.

The outline of this algorithm can be carried over into a SaC specification
straightforwardly, as shown in Fig. 1. The function FFT on 3-dimensional complex
arrays (complex[.,.,.]) consecutively transposes the argument array a three
times. After each transposition, the function Slice extracts all subvectors along
the innermost axis and individually applies 1-dimensional FFTs to them. The
additional parameter rofu provides a pre-computed vector of complex roots of
unity, which is used for 1-dimensional FFTs. The 3-line definition of Slice is
omitted here for space reasons and because it requires more knowledge of SaC.

The overloaded function FFT on vectors of complex numbers (complex[.])
almost literally implements the Danielson-Lanczos algorithm [9]. It is based on
1 More information on SaC is available at http://www.sac-home.org/ .

232 C. Grelck and S.-B. Scholz

complex[.,.,.] FFT(complex[.,.,.] a, complex[.] rofu)
{
a_t = transpose([2,1,0], a);
b = Slice(FFT, a_t, rofu);

b_t = transpose([0,2,1], b);
c = Slice(FFT, b_t, rofu);

c_t = transpose([1,2,0], c);
d = Slice(FFT, c_t, rofu);

return(d);
}

complex[.] FFT(complex[.] v, complex[.] rofu)
{
even = condense(2, v);
odd = condense(2, rotate([-1], v));
rofu_even = condense(2, rofu);

fft_even = FFT(even, rofu_even);
fft_odd = FFT(odd, rofu_even);

left = fft_even + fft_odd * rofu;
right = fft_even - fft_odd * rofu;

return(left ++ right);
}

complex[2] FFT(complex[2] v, complex[1] rofu)
{
return([v[0] + v[1], v[0] - v[1]]);

}

Fig. 1. SaC implementation of NAS-FT.

the recursive decomposition of the argument vector v into elements at even and
at odd index positions. The vector even can be created by means of the library
function condense(n,v), which selects every n-th element of v. The vector odd
is generated in the same way after first rotating v by one index position to the
left. FFT is then recursively applied to even and to odd elements, and the results
are combined by a sequence of element-wise arithmetic operations on vectors of
complex numbers and a final vector concatenation (++). A direct implementation
of FFT on 2-element vectors (complex[2]) terminates the recursion. Note that
unlike Fortran neither the data type complex nor any of the operations used
to define FFT are built-in in SaC; they are all are imported from the standard
library, where they are defined in SaC itself.

In order to help assessing the differences in programming style and abstrac-
tion, Fig. 2 shows excerpts from about 150 lines of corresponding Fortran-77
code. Three slightly different functions, i.e. cffts1, cffts2, and cffts3, in-
tertwine the three transposition operations with a block-wise realization of a
1-dimensional FFT. The iteration is blocked along the middle dimension to im-
prove cache performance. Extents of arrays are specified indirectly to allow reuse
of the same set of buffers for all orientations of the problem. Function fftz2 is
part of the 1-dimensional FFT. It must be noted that this excerpt represents
high quality code, which is well organized and well structured. It was written by

Towards an Efficient Functional Implementation 233

subroutine cffts1 (is,d,x,xout,y)

include ’global.h’
integer is, d(3), logd(3)
double complex x(d(1),d(2),d(3))
double complex xout(d(1),d(2),d(3))
double complex y(fftblockpad, d(1), 2)
integer i, j, k, jj

do i = 1, 3
logd(i) = ilog2(d(i))

end do

do k = 1, d(3)
do jj = 0, d(2)-fftblock, fftblock
do j = 1, fftblock
do i = 1, d(1)
y(j,i,1) = x(i,j+jj,k)

enddo
enddo

call cfftz (is, logd(1),
d(1), y, y(1,1,2))

do j = 1, fftblock
do i = 1, d(1)
xout(i,j+jj,k) = y(j,i,1)

enddo
enddo

enddo
enddo

return
end

subroutine fftz2 (is,l,m,n,ny,ny1,u,x,y)

integer is,k,l,m,n,ny,ny1,n1,li,lj
integer lk,ku,i,j,i11,i12,i21,i22
double complex u,x,y,u1,x11,x21
dimension u(n), x(ny1,n), y(ny1,n)

n1 = n / 2
lk = 2 ** (l - 1)
li = 2 ** (m - l)
lj = 2 * lk
ku = li + 1

do i = 0, li - 1
i11 = i * lk + 1
i12 = i11 + n1
i21 = i * lj + 1
i22 = i21 + lk
if (is .ge. 1) then
u1 = u(ku+i)

else
u1 = dconjg (u(ku+i))

endif
do k = 0, lk - 1
do j = 1, ny
x11 = x(j,i11+k)
x21 = x(j,i12+k)
y(j,i21+k) = x11 + x21
y(j,i22+k) = u1 * (x11 - x21)

enddo
enddo

enddo

return
end

Fig. 2. Excerpts from the Fortran-77 implementation of NAS-FT.

expert programmers in the field and has undergone several revisions. Everyday
legacy Fortran-77 code is likely to be less “intuitive”.

3 Experimental Evaluation

This section compares the runtime performance achieved by code compiled from
the high-level functional SaC specification of NAS-FT, as outlined in the pre-
vious section, with that of two low-level solutions: the serial Fortran-77 refer-
ence implementation2 and a C implementation derived from the reference code
and extended by OpenMP directives by Real World Computing Partnership
(RWCP)3. All experiments were made on a 12-processor SUN Ultra Enterprise
4000 shared memory multiprocessor using SUN Workshop compilers. Investiga-
tions covered size classes W and A; as the findings were almost identical, we
focus on size class A in the following.

As shown in Fig. 3, SaC is outperformed by the Fortran-77 reference
implementation by not more than a factor of 2.8 and by the corresponding C
code by a factor of 2.4. To a large extent, this can be attributed to dynamic
memory management overhead caused by the recursive decomposition of argu-
ment vectors when computing 1-dimensional FFTs. In contrast to SaC, both
the Fortran-77 and the C implementation use a static memory layout.

2 The source code is available at http://www.nas.nasa.gov/Software/NPB/ .
3 The source code is available at http://phase.etl.go.jp/Omni/ .

234 C. Grelck and S.-B. Scholz

23
2.

7s

19
7.

4s
Fo

rt
ra

n−
77

56
4.

6s
SA

C

C
 /

O
pe

nM
P

1 processor

3.00

2.50

2.00

1.50

1.00

0.50
0

1

2

3

4

5

6

1 2 4 6 8 10

S
pe

ed
up

.

Number of processors involved.

SAC
C/OpenMP
Fortran-77

18
2.

8s

46
.5

s

SA
C

C
 /

O
pe

nM
P

93
.5

s

Fo
rt

ra
n−

77

10 processors

1.00

0.75

0.50

0.25

Fig. 3. Runtime performance of NAS-FT: sequential, scalability, ten processors.

Fig. 3 also reports on the scalability of parallelization, i.e. parallel execution
times divided by each candidate’s best serial runtime. Whereas hardly any per-
formance gain can be observed for automatic parallelization of the Fortran-77
code by the SUN Workshop compiler, SaC achieves speedups of up to six. Hence,
SaC equalizes Fortran-77 with four processors and outperforms it by a factor
of about two when using ten processors. SaC even scales slightly better than
OpenMP. This is remarkable as the parallelization of SaC code is completely
implicit, whereas a total of 25 compiler directives guide parallelization in the
case of OpenMP. However, it must also be mentioned that the C/OpenMP
solution achieves the shortest absolute 10-processor runtimes due to its superior
sequential performance.

4 Related Work and Conclusions

There are various approaches to raise the level of abstraction in array processing
from that provided by conventional scalar languages. Fortran-90 and Zpl [10]
treat arrays as conceptual entities rather than as loose collections of elements.
Although they do not at all reach a level of abstraction similar to that of SaC, a
considerable price in terms of runtime performance has to be paid [11]. Sisal [12]
used to be the most prominent functional array language. However, apart from
a side-effect free semantics and implicit memory management the original design
provides no support for high-level array processing in the sense of SaC. More
recent versions [13] promise improvements, but have not been implemented.

General-purpose functional languages offer a significantly more abstract pro-
gramming environment. However, investigations involving Haskell [8] and Id
[7] based on the NAS benchmark FT revealed substantial deficiencies both in
time and space consumption [2]. Our experiments showed that Haskell im-
plementations described in [2] are outperformed by the Fortran-77 reference
implementation by more than two orders of magnitude for size class W. Exper-
iments on size class A failed due to memory exhaustion.

The development of SaC aims at combining high-level functional array pro-
gramming with competitive runtime performance. The paper evaluates this ap-
proach based on the NAS benchmark FT. It is shown how 3-dimensional FFTs
can be assembled by about two dozen lines of SaC code as opposed to 150

Towards an Efficient Functional Implementation 235

lines of fine-tuned Fortran-77 code in the reference implementation. More-
over, the SaC solution clearly exhibits underlying mathematical ideas, whereas
they are completely disguised by performance-related coding tricks in the case
of Fortran. Nevertheless, the runtime of the SaC implementation is within
a factor of 2.8 of the Fortran code. Furthermore, the SaC version without
any modification outperforms its Fortran counterpart on a shared memory
multiprocessor as soon as four or more processors are used. In contrast, addi-
tional effort and knowledge are required for the imperative solution to effectively
utilize the SMP system. Annotation with 25 OpenMP directives succeeded in
principle, but did not scale as good as the compiler-parallelized SaC code.

References

1. Hammond, K., Michaelson, G. (eds.): Research Directions in Parallel Functional
Programming. Springer-Verlag (1999)

2. Hammes, J., Sur, S., Böhm, W.: On the Effectiveness of Functional Language
Features: NAS Benchmark FT. Journal of Functional Programming 7 (1997) 103–
123

3. Scholz, S.B.: Single Assignment C — Efficient Support for High-Level Array Op-
erations in a Functional Setting. Journal of Functional Programming, accepted for
publication

4. Grelck, C.: Shared Memory Multiprocessor Support for SAC. In: Hammond,
K., Davie, D., Clack, C. (eds.): Implementation of Functional Languages. Lecture
Notes in Computer Science, Vol. 1595. Springer-Verlag (1999) 38–54

5. Grelck, C.: A Multithreaded Compiler Backend for High-Level Array Program-
ming. In: Proc. 21st International Multi-Conference on Applied Informatics
(AI’03), Part II: International Conference on Parallel and Distributed Comput-
ing and Networks (PDCN’03), Innsbruck, Austria, ACTA Press (2003) 478–484

6. Bailey, D., Harris, T., Saphir, W., van der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS Parallel Benchmarks 2.0. NAS 95-020, NASA Ames Res. Center (1995)

7. Nikhil, R.: The Parallel Programming Language ID and its Compilation for Parallel
Machines. In: Proc. Workshop on Massive Parallelism: Hardware, Programming
and Applications, Amalfi, Italy, Academic Press (1989)

8. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press
(2003)

9. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C.
Cambridge University Press (1993)

10. Chamberlain, B., Choi, S.E., Lewis, C., Snyder, L., Weathersby, W., Lin, C.: The
Case for High-Level Parallel Programming in ZPL. IEEE Computational Science
and Engineering 5 (1998)

11. Frumkin, M., Jin, H., Yan, J.: Implementation of NAS Parallel Benchmarks in High
Performance Fortran. In: Proc. 13th International Parallel Processing Symposium/
10th Symposium on Parallel and Distributed Processing (IPPS/SPDP’99), San
Juan, Puerto Rico. (1999)

12. Cann, D.: Retire Fortran? A Debate Rekindled. Communications of the ACM 35
(1992) 81–89

13. Feo, J., Miller, P., S.K.Skedzielewski, Denton, S., Solomon, C.: Sisal 90. In: Proc.
Conference on High Performance Functional Computing (HPFC’95), Denver, Col-
orado, USA. (1995) 35–47

	Introduction
	Implementing the NAS Benchmark FT
	Experimental Evaluation
	Related Work and Conclusions

