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Abstract
For many algorithms, it is challenging to identify a suitable
parallel version, as the design space is typically very large.
In this paper we demonstrate how rank-polymorphic array
languages can be used as a tool to explore such design spaces
through concise high-level specifications. If input data can
be organised into a multi-dimensional array, and the algo-
rithm can be stated as a recursive traversal over sub-arrays,
array languages offer a lot of expressive power. The reason
for this is that array shapes can be used to guide recursive
traversals. Conciseness of specifications comes from array
reshapes that move the desired elements into canonical hy-
perplanes.

As a case study, we discuss several variants of implement-
ing prefix sums (also known as scans) in SaC. We demon-
strate how small code adjustments suffice to change the con-
currency pattern exposed to the compiler. It turns out that
variability that is typically achieved by generic inductive
data types such as binary trees is a special case of what is
offered by the array paradigm.

CCS Concepts: •Computingmethodologies→Concur-
rent programming languages; Concurrent algorithms.

Keywords: array languages, algorithms, prefix sum, paral-
lelism, rank polymorphism, functional programming
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1 Introduction
One of the key strengths of array programming languages
is the abundance in concurrency that stems from the data-
parallel nature of most array operations. This property em-
powers compilers to generate parallel code without requir-
ing the programmer to specify any low-level details. Liberat-
ing the programmer from this burden has many advantages:
program specifications can focus on the algorithm and are
not littered with code that deals with necessities of the hard-
ware, making them easier to write, easier to reason about,
and easier to maintain. Another advantage is that the ab-
sence of target hardware specific code inherently renders
them portable between systems that require different scaf-
folding for organising parallel executions.

The price to be paid for the absence of low-level details
in the code has to be picked up by the compilers and code
generators for such languages. They have to deal with the
challenge of identifying how to expose which concurrency
to parallel execution units. The complexity of this task typ-
ically is managed through a set of basic parallel operations
such as map-like, fold-like or scan-like skeleton operations.
Once a program has been specified as a composition of such
basic building blocks, compilers usually apply various rewri-
te schemes in order to adjust a given composition to a form
that suits well the properties of a given target hardware. Fi-
nally, bespoke implementations for the remaining individ-
ual skeleton operations are fine-tuned to the particulars of
the executing system.

For many examples, it has been shown that this code-
generation-based approach to parallel performance often ri-
vals or even outperforms hand-optimised low-level paral-
lel codes. However, no matter how good a given code gen-
erator is, in some situations, it will fail to generate high-
performance code. This potential threat combined with the
black-box nature of such highly code-transforming systems
often leaves programmerswith an uneasy feeling about com-
mitting to any one tool chain.

In this paper, we look at ways of how to help compilers
and code generators without compromising the black-box
nature of the overall setup. The central idea is to create al-
ternative concurrency pattern through recursive function
calls where we leverage argument shapes as guidance for
the concurrency pattern. As it turns out, array languages
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that support rank-polymorphic function definitions are ide-
ally suited to express this.

As a running example, we consider an explicit implemen-
tation of scan operations in SaC — a strict functional array
language. The main mechanism to control concurrency is a
combination of data-parallel map-like operations and (recur-
sive) functions. Maps evaluate all the elements concurrently,
yet generation of the final array introduces one synchroni-
sation point. Each function call introduces one synchronisa-
tion point, as per strict semantics it has to produce a value.
Note that these assumptions do not necessarily translate di-
rectly into runtime behaviour. While they are realistic when
assuming a direct code generation, compiler optimisations
such as function inlining or loop-transformations may mod-
ify these patterns. Therefore, our study is not about the ac-
tual performance but rather about the concurrency patterns
that can be exposed in specifications.

We implement different variations of scan whose com-
putations are grouped by means of reshaping the data into
multi-dimensional arrays and then computing scans through
combinations of recursive function applications on hyper-
planes of the multi-dimensional arrays. It turns out that this
approach is not only expressive enough to obtainwell-known
specifications such as Blelloch’s parallel scan [1], but that
the formulations in terms of multi-dimensional arrays pro-
vide a better understanding of these algorithms and allow
to vary them easily.

The contributions of this paper are:

• the observation that multi-dimensional array shapes
can serve as guiding principle for concurrency pattern
through recursive element traversals;

• a demonstration at the example of scan, how the abil-
ity to reshape data provides a powerful means to rad-
ically restructure such traversals;

• a systematic investigation how such algorithms can
steer the relation between overall work and the num-
ber of required synchronisation steps solely through
the chosen array shape.

We start the paperwith a brief recap of SaC and its central
language construct, the tensor comprehensions. Section 3
introduces the variant of scan that we are investigating and
looks at its naive formulation. Section 4 explains how to
control concurrency in scans. Sections 5 and 6 explore top-
down and bottom-up scans. Section 7 presents related work
and some real-world applications of scan, before Section 8
concludes.

2 Background
In this section we give the basic language constructions of
SaC [5, 10] to help the reader understand the presented code
snippets. While we use SaC as a concrete implementation
vehicle, none of our examples are SaC-specific and can be

ported to array languages that support rank-polymorphism,
e.g. APL [8], J [13] or Remora [12].

All that is needed is an abstraction for 𝑛-dimensional ar-
rays, with three basic primitives: selection, shape-enquiry
and some form of 𝑛-dimensional map functionality. As well
as the ability to write recursive functions that accept arrays
of arbitrary ranks.

In SaC, arrays can be constructed out of individual ele-
ments by using square brackets:

𝑎 = [1, 2, 3] 𝑏 = [[1, 2], [3, 4], [5, 6]]
𝑐 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

All arrays are rectangular and all the nestings are homoge-
neous. Expressions like [[1, 2], [3]] are invalid.

Shape. Each array has a shapewhich is a vector (1-dimen-
sional array) denoting the number of elements per axis. For
the above examples, we have:

shape (𝑎) = [3] shape (𝑏) = [3, 2]
shape (𝑐) = [2, 2, 2]

SaC is a strict first-order language, so higher-order func-
tions are not supported. All expressions evaluate arrays —
empty arrays as well as scalar values also have shapes:

shape ([]) = [0] shape ( [[]]) = [1, 0]
shape (42) = []

The shape of an empty vector is [0]; the shape of the two-
dimensional array containing one row with no elements is
[1, 0]. The shape of a scalar value is the empty vector.

Indexing. Selections have C-like syntax:

array[ iv ]

Per convention, we call the variable that represents the in-
dex iv, which is a shorthand for <index-vector>. The follow-
ing two constraints apply:

1. shape (𝑖𝑣) ¤≤ shape (shape (𝑎𝑟𝑟𝑎𝑦))
the length of the index vector can at most be as long
as the array has axes, i.e. we are comparing two sin-
gleton vectors — the shape of the index vector must
be element-wise less or equal (denoted as ¤≤ ) to the
shape of the shape of the array, and

2. iv ¤< shape (𝑎𝑟𝑟𝑎𝑦)
the values of the index vector must be in range, i.e.
element-wise less ( ¤<) than the corresponding shape
elements.

In case iv has maximal length, the corresponding scalar ele-
ment in array is selected. Otherwise, the selection pertains
to the first axes of array only and returns a sub-arraywhose
shape corresponds to those components of the shape of ar-
ray for which no indices were provided. In case iv is empty,
the entire array is selected.
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Tensor Comprehensions. In the context of this paper, 𝑛-
dimensional arrays are always constructed using the tensor
comprehension [11] notation. Note that tensor comprehen-
sion is crucially important in SaC, as it gives a normal form
to parallel operations. Most of the array combinators such
as those found in APL can be expressed by means of tensor
comprehensions.

An𝑛-dimensional array can be specified by an expression
of the form:

{ idx-var -> elem-expr | idx-var < shp-expr }
where the shape of the result is determined by the value of
shp-expr, and each element is computed by evaluating the
expression elem-expr. SaC allows elem-expr to evaluate to
non-scalar arrays, provided that all these expressions are of
identical shape. The shape of the overall result is the con-
catenation of shp-expr and shape (elem-expr).

Consider the following array definitions and the values
they evaluate to:

{ iv -> 1 | iv < [3] } = [1, 1, 1]
{ iv -> [1, 2] | iv < [2] } = [[1, 2], [1, 2]]

The index variable can be referred-to in the element ex-
pression, and the upper bound specification can be omitted
when it can be automatically inferred from the index use.
For example, the expression

{ iv -> a[iv] + 1 }
computes an array that has the same shape as a but whose
elements are incremented by one. Also, similarly to APL,
arithmetic operations lift scalar arrays to scalar array ele-
ments of the other argument. For example, the above ex-
pression can be simply written as:

𝑎 + 1

Types. The type system of SaC is based on the type sys-
tem of C that is extended with the following features:

1. Specification of array shapes;
The types for scalar values are just like in C: int, float,
double, etc. When specifying an array, we can chose
how precise do we specify the shape. Here are several
examples of arrays where elements are of type int:

int[*] // Any rank

int[+] // Any non-zero rank

int[.] int[.,.] // 1-d, 2-d,...

int[23,17] // Statically known shape

2. Function overloading based on shape precision; Over-
loading helps to specify different functionality based
on array shapes similarly to pattern-matching style
specification often found in functional languages. For
example:

int foo(int) { return 1; }

int foo(int[.]) { return 2; }

int foo(int[23,17]) { return 3; }

int foo(int[+]) { return 4; }

is a specification of a rank-polymorphic function foo
that returns different values depending on the shape
of the argument. Shapes form a partial order with re-
spect to their precision. At dispatch the argument is
matched against “the most precise” shape int the over-
loading hierarchy. The compiler will attempt to dis-
patch function applications statically, but this has no
impact on the semantics of the program.

3. Automatic inference; This makes it possible to omit
type declarations inside of function bodies:

int foo(int a) {

b = 1; c = 2; return a + b + c;

}

4. Functions can returnmultiple values. For example, we
can write a function:

int, int[.] foo() {

return (1, [1,2,3]);

}

which returns two values — the integer and the 3-el-
ement vector.

For more information on syntax, semantics, and code gen-
eration for various parallel hardware refer to [5, 10].

3 Introducing Scan
The computation of prefix sums of a vector is usually being
referred to as scan. Given a vector a of values a𝑘 with 0 ≤
𝑘 < 𝑛, the result s of scan (a) is defined as

s𝑖 =
∑
𝑗<𝑖

a𝑗

for all 𝑖 with 0 ≤ 𝑖 < 𝑛. Note that the first element of the
result is always 0, and the sum of the entire vector is not
contained in 𝑠 . This definition sometimes is also referred to
as “exclusive scan”. “Inclusive scan” is almost the same — it
does not contain the leading 0, but contains the overall sum
as last element.

In the remainder of the paper, we exclusively consider
exclusive scan. The other variant can be derived straight-
forwardly. We use int type and the plus operation. How-
ever, any monoidal binary operation can be used instead.
In languages that support higher-order functions and type
polymorphism, one could generalise the scans. In SaC, the
mathematical definition from above can be expressed as:

1int[.] scan_highlevel(int[.] a) {

2return { [i] -> sum ({[j] -> a[j] | [j] < [i]})

3| [i] < shape(a) };

4}

We see two tensor comprehensions and a reduction in the
form of the application of sum. All three of these are mapped
to built-in skeletons; they expose all possible concurrency
to the compiler. If and how this concurrency is mapped into
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parallel code depends on the code generator that is being
used and, therefore, is outwith the control of the program-
mer. In the current compiler sac2c it depends on the chosen
target hardware what kind of code actually is being gener-
ated.

While it would be nice if a compiler would detect the
above pattern and transform it into highly efficient parallel
code, it is rather unlikely. A compiler would need to identify
that the computation of each element can share the compu-
tation of the previous element, and it would need to identify
that the associativity of + allows for sharing partial sums ar-
bitrarily.

To help the compiler, we re-formulate scan. We explicitly
sacrifice concurrency for ensuring the sharing of sums.

4 Throttling Concurrency
Enforcing a sequential execution of scan, can be achieved
in SaC by replacing the concurrent constructs used in the
previous section by a sequential loop construct, e.g. by a for-
loop:

1int[.], int scan (int[.] a)

2{

3s = 0;

4for (i = 0; i < shape(a)[0]; i++) {

5t = a[i];

6a[i] = s;

7s += t;

8}

9return (a, s);

10}

Here, the additions are being shared as much as possible,
computing the result strictly from left to right. That way,
we perform 𝑛 additions overall. We use the scalar variable s
to carry around the state of our computation, starting with
0 and ending up with the sum of all elements of the array
a. By returning this value as well, we can use scan as basic
building block for later versions.

This version of scan is purely sequential. We now want
to start re-introducing some concurrency to it as to enable
parallel executions again. In the sequel, we assume a naive
implementation of the code generator which maps all con-
currency into parallelism and which does not apply any so-
phisticated code optimisations.The easiest way to introduce
concurrency is to divide the vector into chunks, perform
scans over all these chunks concurrently and then use the
carries1 of all chunks to adjust all but the first chunk.

The key idea here is that we reshape our input vector into
a higher-dimensional array and use the shape as a means
to guiding the parallel execution. As in all array languages
which implement higher-dimensional arrays in continuous
memory, in SaC such reshapes comes at no runtime cost; it
merely introduces different ways of computing offsets into

1By carry we mean the sum of all the elements within the given chunk

memory.This idea can be straight-forwardly applied to spec-
ify the chunking of the vector: we reshape our vector of
shape [𝑛] into a matrix of shape [𝑝, 𝑠] (for simplicity, we
assume here that 𝑝 divides 𝑛), yielding 𝑝 chunks of size 𝑠 .
Conveniently, SaC allows us to select any of the 𝑝 chunks
by indexing the matrix with a single index only. Now, we
can express a concurrent version of scan as:

1int[.,.], int scan (int[.,.] a)

2{

3a, m = { [i] -> scan (a[i]) };

4

5s = m[0];

6for (i = 1; i < shape(a)[0]; i++) {

7a[i] += s;

8s += m[i];

9}

10

11return (a, s);

12}

Line 3 exposes the concurrencywhen computing the sequen-
tial scans on the 𝑝 chunks. Notice here, that this relies on the
overloading mechanism which ensures that the previously
defined version of scan will be executed whenever scan is
applied to 1-dimensional arrays. Since scanning the rows de-
livers two return values, the scan of the row and the overall
sum of the row, this tensor comprehension now returns a
matrix of shape [𝑝, 𝑠] and a vector of shape [𝑝] that holds
the sums of the individual chunks.

The for-loop in the lines 6–9 now applies the necessary
adjustments. The addition in line 7 performs an adjustment
of an entire row with the running sum s of the row-sums
contained in m. Note that this addition is a data-parallel op-
eration as it is defined through a tensor comprehension in
the standard library.

Having a closer look at this loop, we can observe that it
combines two things: a scan on the carries (line 8) and the
adjustment of the rows of a (line 7). By taking these apart,
we can not only reuse our function scan but we can also join
all data-parallel additions into a single one:

1int[.,.], int scan (int[.,.] a)

2{

3a, m = {[i] -> scan (a[i])};

4m, s = scan (m);

5a = a ^+ m;

6return (a, s);

7}

We capture the addition of the elements of m to all rows of
a by a generic infix operation ^+which expects the shape of
m to be a prefix of the shape of a:

1int[*] ^+(int[*] a, int[*] m)

2{

3o = shape(m);
4return {iv -> a[iv] + m[iv] | iv < o};

5}

4
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Note, that the addition within the tensor comprehension in
line 4 is data-parallel. Trivial with-loop-folding [9] renders
this a single data-parallel operation on all elements of a.

This leads to the following concurrency of our 2-dimen-
sional version of scan: the tensor comprehension in line 3
of scan performs 𝑝𝑠 additions offering 𝑝-fold concurrency.
The scan on the carries in line 4 performs 𝑝 additions se-
quentially, while the application of ∧+ in line 5 executes 𝑝𝑠
additions fully concurrent. Overall, we have 2𝑝𝑠 + 𝑝 addi-
tions, 𝑠 + 𝑝 + 1 steps when assuming full parallelism, and
2 synchronisation events from the two tensor comprehen-
sions we eventually execute.

From these considerations, it becomes evident that we
achieve a minimal number of steps for this approach when
choosing 𝑝 and 𝑠 as

√
𝑛. As the number of sequential steps

constitutes the lower limit for any possible parallel execu-
tion, we need to modify our specification of scan further,
if we want to get beyond 𝑛/(2

√
𝑛 + 1) as conceptual upper

limit for a possible speedup.

5 Top-Down Recursive Scan
In the 2-dimensional scan from the previous section, con-
currency is mainly throttled through the calls to sequential
scans on vectors. A large inner axis enforces long sequential
scans on the chunks and a large outer axis enforces a long
sequential scan on the carries. The only way to reduce both
of these at the same time is to introduce further dimensions.
For this purpose, we can turn our 2-dimensional specifica-
tion into a rank-polymorphic one. Here the underlying ar-
ray algebra of SaC turns out to be very helpful: all that is
needed to make scan applicable to arbitrarily ranked arrays
is to change the argument type declaration:

1int[+], int scan (int[+] a)

2{

3a, m = { [i] -> scan (a[i]) };

4m, s = scan (m);

5a = a ^+ m;

6return (a, s);

7}

As an example, consider application of scan to an array of
shape [𝑝, 𝑞, 𝑟 ]. The concurrent call in line 3 will scan all sub-
arrays of shape [𝑞, 𝑟 ], returning scanned versions of these
into a new array a of shape [𝑝, 𝑞, 𝑟 ]. Furthermore, it returns
a vector m of shape [𝑝] containing the carries of the scans of
the sub-arrays of shape [𝑞, 𝑟 ]. The scan of carries works in
the sameway as in the previously considered version.There-
after, we add the carries to the corresponding elements of
the sub-arrays of a. Note that our generic definition of ∧+
from the previous section is still up for the task. Instead of
adding the carries to individual rows, it now adds them to
sub-arrays of shape [𝑞, 𝑟 ].

Let us consider the behaviour of this specification in terms
of additions, steps, and synchronisations. First, we assume

an argument of shape [𝑝, 𝑞, 𝑟 ]. From the previous section,
we know that the tensor comprehension in line 3 performs
𝑝-fold 2𝑞𝑟 +𝑞 additions, using 𝑞 + 𝑟 + 1 steps and 2 synchro-
nisations each. One more synchronisation derives from the
tensor comprehension itself. The scan in line 4 yields 𝑝 addi-
tions, 𝑝 steps and no synchronisations. Finally, we have 𝑝𝑞𝑟
additions in 1 step and 1 synchronisation in line 5. Overall,
we obtain 3𝑝𝑞𝑟 + 𝑝𝑞 + 𝑝 additions, 𝑝 + 𝑞 + 𝑟 + 2 steps and
2𝑝 + 2 synchronisations.

By induction over the dimensionality, we obtain for an
argument of shape [𝑝1, . . . , 𝑝𝑚]:

𝑚 ×
𝑚∏
𝑖=1

𝑝𝑖 +
𝑚−1∑
𝑖=1

(
𝑖∏
𝑗=1

𝑝 𝑗

)
additions

𝑚∑
𝑖=1

𝑝𝑖 +𝑚 − 1 steps, and

𝑚∑
𝑖=1

(
2 ×

𝑖−1∏
𝑗=1

𝑝 𝑗

)
synchronisations.

Again, we see that the overall parallel performance that
we expect depends on the chosen shape. If we choose𝑚 = 1,
we obtain a sequential executions with 𝑛 steps and 𝑛 addi-
tions. If we want to decrease the overall number of steps, we
have to introduce further dimensions andwe have to choose
as small as possible shape components 𝑝𝑖 , ideally 2.

In order to get an idea of the best possible asymptotic
behaviour with respect to the number of steps, we look at
the extreme case, where we assume that we can reshape our
original vector of length 𝑛 into an 𝑚-dimensional array of
shape [2, . . . , 2]. For such a scenario, we obtain the follow-
ing characteristics: we perform𝑂 (𝑛 log𝑛) additions, require
𝑂 (log𝑛) steps and we need 𝑂 (𝑛) synchronisations.

6 Bottom-Up Parallel Scan
The scan from the previous section now has the best pos-
sible complexity in terms of steps, allowing for a maximal
speedup of 𝑛/log𝑛. However, this has come at the expense
of factor log𝑛 more work and𝑂 (𝑛) many synchronisations.

While the increase in overall work might be acceptable if
it is possible to hide the additional work through parallel ex-
ecutions, the very high number of synchronisations is likely
to introduce a huge overhead.

When looking at the runtime considerations of the previ-
ous sections we can see that the vast amount of synchronisa-
tions stems from the recursivemapping of the scan onto sub-
arrayswith a dimensionality decreased by 1.While compiler
optimisations like with-loop-scalarisation [6] in principle
could elide such nested synchronisations, this is rather chal-
lenging in the context of recursive definitions.

Instead of relying on compiler smartness, we can mod-
ify our definition of scan in a way that avoids these nested
synchronisations in the first place. Here, we can leverage

5
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the benefit of the array-based setting. Instead of unfolding
the concurrency dimension by dimension, we can operate
directly on the last axis. All we need to change in our spec-
ification is our explicit tensor comprehension:

1int[+], int scan (int[+] a)

2{

3a, m = { iv -> scan (a[iv])

4| iv < drop([-1], shape(a)) };

5m, s = scan (m);

6a = a ^+ m;

7return (a, s);

8}

In lines 3-4 we now concurrently map the recursive call to
scan over all innermost vectors. Since scan on vectors is
done sequentially, there are no more synchronisations hap-
pening inside those scans. The consequence of this choice is
a potentially larger shape on the returned array m of carries.
Let us consider the 3-dimensional case again with shape
[𝑝, 𝑞, 𝑟 ]. Whereas the top-down version from the previous
section returned a vector of shape [𝑝] here, now, we obtain
an array of shape [𝑝, 𝑞] as carries. Consequently, the scan in
line 5 is a recursive call to this instance of scan. It results in
the scanned carries, now stored in an array of shape [𝑝, 𝑞].
As in the previous cases, our generic function ∧+ is perfectly
capable to deal with higher-dimensional second arguments,
delivering the correct overall result.

The interesting question now is: does this change in the
traversal through our multi-dimensional array actually im-
prove its overall characteristics with respect to the number
of additions, step, and synchronisations? Surely, the num-
ber of synchronisations due to lines 3-4 has improved but
the scan on the carries in line 5 is now more complex.

As this version is identical to the previous version when
applied to 2-dimensional arrays, let us consider the case for
arguments of shape [𝑝, 𝑞, 𝑟 ] again. The concurrent calls to
scan in line 3 require 𝑝𝑞𝑟 additions in total, 𝑟 steps, and 1
synchronisation, as they build on 𝑝𝑞 sequential scans. The
scan of the carries in line 5 is a 2-dimensional scan on an
array of shape [𝑝, 𝑞] requiring 2𝑝𝑞 + 𝑝 additions, 𝑝 + 𝑞 + 1

steps and 2 synchronisations (see Section 4). Finally, the ad-
dition in line 6 performs 𝑝𝑞𝑟 additions in 1 step using 1 syn-
chronisation. Overall, this leads to 2𝑝𝑞𝑟 + 2𝑝𝑞 + 𝑝 additions,
𝑝 + 𝑞 + 𝑟 + 2 steps, and 4 synchronisations.

Inductively, we obtain for an argument of shape [𝑝1, . . . 𝑝𝑚]:

2 ×
𝑚∑
𝑖=2

𝑖∏
𝑗=1

𝑝 𝑗 + 𝑝1 additions

𝑚∑
𝑖=1

𝑝𝑖 +𝑚 − 1 steps, and

2𝑚 − 2 synchronisations.

We can see a clear improvement over the top-down ver-
sion from the previous section. When we look at reshap-
ing a vector of length 𝑛 into𝑚-dimensional array of shape
[2, . . . , 2], we now obtain the following characteristics: we
still require 𝑂 (log𝑛) steps but do fewer additions, coming
down to𝑂 (𝑛), and, most importantly, we bring the required
synchronisations down to𝑂 (log𝑛). At least asymptotically,
this is the best we can hope for.

6.1 Alternative Bottom-Up
There are two important differences between the top-down
and bottom-up specifications: the amount of work and the
number of synchronisations. The bottom-up version from
the previous section builds on scans of higher-dimensional
arrays of carrieswhich cannot be straight-forwardlymapped
into the overall result array.This raises the questionwhether
compilers are able to optimise away allocations of interme-
diate arrays which could be very difficult in the context of
code generation for GPUs. As another point in the design
space, let us investigate an alternative formulation of the
bottom-up approach which, when compared to top-down,
improves the number of synchronisations, keeps the amount
of work, and explicitly uses only two arrays of the original
size.

For simplicity we start with arrays of shape [2, . . . , 2].
Such arrays are isomorphic to perfect binary trees. If we
carry on with this analogy, top-down scans traverse the tree
from the root down to the leaves, and it makes a recursive
call on every node. This is why the number of synchroni-
sations is comparable with the number of nodes. However,
dependencies of the algorithm make it possible to reverse
the direction of the traversal: from the leaves down to the
root. In this case, all the nodes at the given depth can be
processed concurrently.

In array nomenclature, bottom-up traversals are charac-
terised by iterating array shapes right-to-left. Sometimes,
expressing operations on the right-most axis can be simpli-
fied by applying an array transpose. Consider adding all the
pairs of the following array of shape [3, 2, 2]:

©­«
〈1, 2〉 〈3, 4〉
〈5, 6〉 〈7, 8〉
〈9, 10〉 〈11, 12〉

ª®¬
The operation happens on the right-most axis, so we can
write an expression:

1{iv -> a[iv][0]+a[iv][1] | iv < [3,2]}

However, if we transpose the array by bringing the last axis
into the front, we will get the following arrays at indices [0]
and [1] respectively:

©­«
1 3

5 7

9 11

ª®¬
and ©­«

2 4

6 8

10 12

ª®¬
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This means that we can get the same sum by simply com-
puting 𝑎𝑇 [0] + 𝑎𝑇 [1], where 𝑎𝑇 is the transposed array.

Coming back to our example, if we transpose the array
of elements and the array of carries at every iteration, we
should be able to access the necessary sub-arrays by index-
ing on the first axis:

1int[*], int scan(int[*] a)

2{

3m = a; a *= 0;

4for (i = 0; i < dim(a); i++) {

5a, m = pair(rot(a), rot(m));

6a[1] = a[1] +^ m[0];

7m = m[0] + m[1];

8}

9return (a, m);

10}

Notice that the first dimension of a and m always match.
However, as m shrinks at every iteration, the updates of the
remaining axes of m have to be propagated into the right-
hand-side of the shape. This operation (denoted here as +^)
is commonly referred as ranked addition. A transpose that
brings the last axis to the front here is denoted as rot. One
could expect to find such functions in an array library, but
their implementations in SaC are straight-forward:

1int[*] rot(int[*] a)

2{

3i, o = takedrop(shape(a), -1);

4return { iv -> {jv -> a[jv][iv] | jv < o}

5| iv < i};

6}

7

8int[*] +^(int[*] a, int[*] b)

9{

10i, o = takedrop(shape(a), -dim(b));
11return {iv -> a[iv] + b | iv < o};

12}

Observe what happens with shapes of 𝑎 and 𝑚 through
the iterations, assuming that the initial shape of 𝑎 is [𝑝, 𝑞, 𝑟 ]:

Iter 𝑎 𝑚
∑

𝑖𝑚[𝑖]
1 [𝑝, 𝑞, 𝑟 ] [𝑟, 𝑝, 𝑞] [𝑝, 𝑞]
2 [𝑞, 𝑟, 𝑝] [𝑞, 𝑝] [𝑝]
3 [𝑝, 𝑞, 𝑟 ] [𝑝] []

For arrays of general shapes, updates of a have to happen
on all the sub-arrays on the first axis.The same holds for the
computation of carries. This can be expressed as follows:

1int[+], int
2buscan(int[+] a)

3{

4m = a; a *= 0;

5for (i = 0; i < dim(a); i++) {

6a, m = pair(rot(a), rot(m));

7a, m = scan_fold(a, m);

8}

9return (a, m);

10}

Where scan_fold is defined as:
1int[+], int[*] scan_fold(int[+] a, int[+] m)

2{

3t = m[0];

4for (j = 1; j < shape(a)[0]; j++) {

5a[j] = a[j] +^ t;

6t += m[j];

7}

8return (a, t);

9}

Complexity-wise, there is the same work and depth as
in the top-down scan, but there are significantly fewer syn-
chronisations. For an array of shape [𝑝1, . . . , 𝑝𝑚], the itera-
tions of the for-loop make 2𝑝𝑚 , 2𝑝𝑚−1, 2𝑝𝑚−2+, …steps. In
total this results in 2

∑
𝑖 𝑝𝑖 , which yields on asymptotic com-

plexity of 𝑂 (log𝑛).

6.2 Fine-Tuning
With generalised scans operating on multi-dimensional ar-
rays, we can fine-tune the operation that we apply to one-
dimensional arrays. We reshape one-dimensional vector in
a suitable shape, then we run one of the above scans, and
we reshape the result back:

1int[.] reshaped_scan(int[.] a, int[.] s) {

2a = reshape(s, a);

3a, _ = scan(a);

4return (reshape(prod(s), a));

5}

The shape that we provide to the above function controls
the level of concurrencywe suggest in our specification. Typ-
ically, the number of parallel units on the actual hardware
is limited. While, with unlimited resources it always make
sense to build a perfect binary tree (shape [2, . . . , 2]), on
real architecture the optimal choices may be different. Gen-
eralised scans allow one to experiment with exactly these
choices. An array of 64 elements could be reshaped into
shapes [4, 16], [4, 4, 4], [16, 2, 2], etc.

The ability of SaC to support shape-based overloaded func-
tions makes it possible to provide additional control on how
scan is being computed when recursion reaches sub-array
of a certain shape.

1int[128,128], int scan(int[128,128] a) { /* ... */ }

2int[*], int scan(int[*] a) { /* ... */ }

This means that concurrency of scan may not only be con-
trolled by the choice of array shape, but also by providing
additional overloadings for specific shapes. This could be
useful when arrays fitting certain cache sizes benefit from
special treatment.

While the above behaviour can be acheived by introduc-
ing explicit conditionals, the overloadingmechanism ensures

7
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that any (recursive) use of scan will include such an in-
stance. Explicit conditionals may be useful though when
dispatching on non-shapes, e.g. symmetric matrices, sorted
array, etc.

7 Related Work
In this section we review some existing approaches to han-
dling scan in programming languages. We give two exam-
ples of using scans to specify real-world parallel algorithms.

Application (removing tags). Scan is being used in sur-
prisingly many applications including common algorithms
like sorting, text processing, etc. One folklore example from
APL is removal of quoted objects from the text. Consider
removing html tags from a well-formed document that is
stored in the variable 𝑏:

b ← '<b>Hello <i>world</i></b>'

In parallel we can find a mask indicating where the tag sym-
bols < and > begin and end. Values 0 and 1 represent false
and true respectively.

m ← b∊'<>'
1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1

We can use (inclusive) scan to compute the regions between
the tags. First we run scan with “not equals” operation, ob-
taining the mask:

≠\m
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0

this mask excludes the last symbol of each tag, which we
can fix by disjunction with the original mask:

m∨≠\m
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

Now, if we want to remove the tags, we have to take nega-
tion of the above mask and leave all the letters in the string
that correspond to values 1:

b/⍨~m∨≠\m
Hello world

As it can be seen, the use of scan made it possible to com-
pute the mask in parallel.

Application (permuting indices). Another example of
using scan is when computing index permutations of some
array. For example, consider an array stored in the variable
𝑎:

a ← 1 6 0 7 9 8 1 7 6 3

and the mask that results from computing some predicate:
m ← a > 3

0 1 0 1 1 1 0 1 1 0

Store negation of the mask in 𝑀 :
M ← ~m

1 0 1 0 0 0 1 0 0 1

We can use scan with plus, to enumerate the elements that
satisfy the predicate:

m1 ← m∧+\m
0 1 0 2 3 4 0 5 6 0

if we compute the maximum of m1, the remaining indices in
the permutation can be computed with:

m2 ← M ∧ (⌈/m1) + +\M
7 0 8 0 0 0 9 0 0 10

we scan the mask negation, then we add the maximum, and
we remove the artifacts of scan. Finally, we compute the per-
mutation with disjunction of m1 and m2:

ix ← m1 ∨ m2
7 1 8 2 3 4 9 5 6 10

This assumes 1-based indexing, however if were to compute
non-inclusive scan we were to get the answer for 0-based
case.

For manymore examples on how to use scans, refer to [1].

Builtin. Many array and list languages find scan to be an
important primitive that deserves a separate built-in opera-
tion. For example, in APL [8] scan is expressed with back-
slash:

+\1 2 3 4 5
1 3 6 10 15

Theplus (+) is a binary operation thatwe use, and [1, 2, 3, 4, 5]
is the array we scan over. By default, APL computes inclu-
sive scan. Exclusive scans can be computed by prepending
0 and dropping the last element:

0,¯1↓+\1 2 3 4 5
0 1 3 6 10

Similarly to APL, Futhark [7] introduces scan as a primi-
tive in the same way:

scan (+) 0 [1, 2, 3, 4] == [1, 3, 6, 10]

In MPI [4], non-inclusive scan is a primitive that can be
used when reducing results computed by individual threads.

Introducing scan as a built-in gives a lot of freedom to
the compiler engineers. The implementation of the primi-
tive can be tuned to the particular needs such as hardware,
array sizes, and many others. Unfortunately, by doing so,
programmers have very little control on how exactly the
operation is going to be executed.

Algebraic Data Types. Many functional languages do
not offer built-in support for multi-dimensional arrays. Data
types are often defined inductively, and operations are ex-
pressed by means of recursive traversals. While this appro-
ach keeps the underlying mechanisms compact there is a
following catch. Recursive traversals have to follow the in-
ductive structure of data. For example, consider two differ-
ent ways to specify lists in Haskell:

1data Llist a = Lnil | Lcons a (Llist a)

2data Rlist a = Rnil | Rcons (Rlist a) a

Consider now two encodings of the list [3, 4, 5]:

8
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1l = Lcons 3 $ Lcons 4 $ Lcons 5 Lnil

2r = Rcons (Rcons (Rcons Rnil 3) 4) 5

These lists are isomorphic, and it is easy to write a func-
tion that converts between the two representations. How-
ever, these two encodings of a list offer different traversal
orders when eliminator follow the structure of the type. For
Llist it is natural to traverse elements left-to-right and for
Rlist right-to-left. Consider adding natural numbers 1, 2, . . .
to the list elements in the order of traversal:

1lfold Lnil n = Lnil

2lfold (Lcons x l) n = Lcons (x+n) $ lfold l $ n+1

3

4rfold Rnil n = Rnil

5rfold (Rcons l x) n = Rcons (rfold l $ n+1) $ x+n

Function applications lfold l 1 and rfold r 1 evaluate
to:

1Lcons 4 $ Lcons 6 $ Lcons 8 Lnil

2Rcons (Rcons (Rcons Rnil 6) 6) 6

Note that traversals in the other directions are surely ex-
pressible in both cases. However, it may take more work
than simply unfolding the constructors.

When modeling multi-dimensional arrays, the shape (a
list of natural numbers) has to become the index of the array
type. This means that the choice of representation of shapes
would affect what sub-arrays are “naturally” accessible. In
case of Llist we get access to the first axis of the shape; in
case of Rlist — to the last one.

Recall that in case of scan, the top-down scan traverses
the shape left-to-right, and in the bottom-up case right-to-
left. In [3] the authors use two different data structures to
represent arrays of left-nested and right-nested shapes so
that top-down and bottom-up scans could be expressed nat-
urally:

1data Nat = Z | S Nat

2data P a = P a a

3

4data Td :: Nat -> * -> * where
5Ld :: a -> Td Z a

6Bd :: P (Td d a) -> Td (S d) a

7

8data Bu :: Nat -> * -> * where
9Lu :: a -> Bu Z a

10Bu :: Bu d (P a) -> Bu (S d) a

The Td type corresponds to top-down arrays/trees and Bu
to bottom-up ones. As authors are only interested in perfect
binary trees (arrays of shape [2, 2, . . . ]) they do not keep
the elements of the shape, they only store the rank of the
array (first argument to Td and Bu types). The key difference
lies in constructing arrays of dimensions that are greater
than zero. For a 𝑑 + 1-dimensional array, Td gives access to
two 𝑑-dimensional sub-arrays; whereas Bu gives access to
all the pairs. These structures guide the traversal over the
array shape in the desired order.

Generally, using data structures to guide recursion is a
very nice and powerful approach. In case of scans, one po-
tentially has to invent a new data structure for every array
shape. Multi-dimensional arrays could liberate one from do-
ing this, offering a generic mechanism of shape-based tra-
versals. The reason for this is that shapes offer random ac-
cess to its components, and any shape permutation gives
a rise to the array transpose. Unfortunately, encoding true
multi-dimensional arrays that support rank-polymorphism,
non-static shapes and guarantee lack of out-of-bound index-
ing is a really difficult problem that lies at the boundary of
what Haskell type system can offer. Languages with full de-
pendent types are clearly capable of capturing such proper-
ties. Unfortunately, dependent types put a lot of burden on
programmers requiring them to write explicit proofs.

NESL approach. In [2] authors demonstrate an elegant
list-based formulation of the scan algorithm:

1function scan (a) =

2if #a == 1 then
3[0]

4else
5let e = even_elts(a);

6o = odd_elts(a);

7s = scan({e + o: e in e; o in o})

8in interleave(s,{s + e: s in s; e in e});

This can be immediately translated to array-based or list-
based languages. All the operations computing even and
odd elements, adding two arrays and interleaving two ar-
rays are concurrent. The only synchronisation is happening
at the recursive call of scan; so the algorithm implements
the bottom-up version of scan.

Blelloch (single array). In the formulations of scan pre-
sented in sections 3–6 we always use a separate array𝑚 to
store carries. In general, this represents a situation when re-
cursive calls have to carry some state. Such states can be
of complex types, and require non-trivial update operations.
Our scans show that when recursion happens over array
shapes, state updates can happen concurrently by keeping
all the states in the array of a suitable shape.

In case of scan, the element type of the result and the type
of the state coincide. Therefore, we can try to store the state
and the result in the same array. This technique is demon-
strated in [1] and can be expressed in SaC as follows.

Firstly, we iterate over the array shape right-to-left, and
for each𝑎[𝑖𝑣] we compute the sum of carries of its subarrays
at the first axis: 𝑙𝑎𝑠𝑡 (𝑎[𝑖𝑣] [0]) + 𝑙𝑎𝑠𝑡 (𝑎[𝑖𝑣] [1]) + · · · . We
know that we will find carries at the last (highest) index by
inductive assumption. The base of the induction is a scalar,
where the last element is trivially the last element. We store
this result in the last element 𝑎[𝑖𝑣] [𝑖−1] (the element at the
largest index within its shape). We call this pass upprop and
we lift the sum of last elements in the function sum_max:

9
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1int[*] upprop(int[*] a) {

2for (k = 1; k <= dim(a); k++) {

3i, o = takedrop(shape(a), -k);

4a = { iv -> a[iv][i-1] = sum_max(a[iv]) | iv < o };

5}

6return a;

7}

Next, we propagate updates by iterating sub-arrays in the
decreasing order (traversing the shape left to right). Each
iteration computes the scan over last elements of each sub-
array. We lift this computation in the function last_fold.
The initial last element of the entire array 𝑎 is set to zero.

1int[*] downprop(int[*] a) {

2a[shape(a)-1] = 0;

3for (i = 0; i < dim(a); i++)

4a = { iv -> last_fold(a[iv]) | iv < take([i], shape(a)) };

5return a;

6}

The last_fold function is a sequential scan over the first
axis of the array 𝑎, where only last elements of each sub-
array are updated:

1int[*] last_fold(int[*] a) {

2o, i = takedrop(shape(a), 1);

3s = last(a);

4for (k = 0; k < o[0]; k++) {

5t = last(a[k]);

6a[k][i-1] = s;

7s += t;

8}

9return a;

10}

Finally, the scan can be expressed by composing downprop
and upprop:

1int[*] scan(int[*] a) {

2return downpop(upprop(a));

3}

While we have managed to blend the state and the result
into the same data structure, the specification became more
complex. We have traded space for the necessity to traverse
the array twice. While this did not increase the complex-
ity in terms of big O notation, we doubled the amount of
synchronisation points. We lost in expressiveness when up-
dating carries in the chosen sub-arrays. Such an operation
requires to update a single element of each sub-array that
is located at its maximal index. Unfortunately, there is no
reshape that would bring such elements to the front axis of
the array.

8 Conclusions
In this paper we have demonstrated how rank-polymorphic
array programming can be used to specify parallel algorithms
at the example of scan. The algorithm updates certain parts
of the data structure in a recursive manner and propagates

some state through recursive calls. When input data to such
algorithms can be organised in multi-dimensional arrays,
the structure of the shape can be used to guide recursion
over sub-arrays in a non-trivial way.

The shape of the array is a list of natural numbers, and
it prescribes canonical arrangement of hyperplanes of the
given array. Shape changes that preserve the number of ar-
ray elements (product of the shape) lead to reversible rear-
rangements (often called transposes) of the canonical hyper-
planes within the array. In practice, this means that we can
transpose the array so that desired elements move to the
“front” (or back) of the array, then perform the operation,
and then transpose the array back.

At runtime, such transposes are typically very cheap.This
is because, at runtime, all the arrays are flat, and transposes
only change the computation of the offset into the flat rep-
resentation.

With rank polymorphism and generalised transposes, it
becomes possible to express (recursive) traversal through
arbitrary permutation of the array shape. Reshapes are only
limited by the divisibility of the array length. While reshape
does not give access to all the possible array hyperplanes,
it gives a powerful tool to experiment with the algorithm
specifications without the necessity to introduce additional
data structures. Moreover, any such specification does not
add extra complexity to data representation at runtime.

While the proposed techniques give a lot of power to ex-
plore the design space, there is no precise way to choose
the variant that is best-suited for the given hardware. We
strongly believe that the proposed algorithm formulation
which uses array shapes to guide the traversal is a suitable
basis for automatic compiler heuristics when mapping com-
putations to parallel hardware. Unfortunately, we do not yet
have satisfying answers on how exactly this process should
be organised for the given class of hardware. The search
space is incredibly large: distributed memory, GPU caches,
memory transfers, threadingmodels, memory consistencies,
etc.. It is not even clear whether there exists a satisfying
heuristics that does not require programmer annotations.
To this day, the best implementations are found either by
brute-force benchmarking or via applying in-depth knowl-
edge of the underlying hardware.Therefore, a lot of exciting
research is still ahead.

For now, we can surely say that array languages do not
necessarily help machines to do a better job, but they defi-
nitely help humans do their job better.
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