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We give an in-depth introduction to the design of our functional array
programming language SaC, the main aspects of its compilation into host
machine code, and its parallelisation based on multi-threading. The language
design of SaC aims at combining high-level, compositional array program-
ming with fully automatic resource management for highly productive code
development and maintenance. We outline the compilation process that maps
SaC programs to computing machinery. Here, our focus is on optimisation
techniques that aim at restructuring entire applications from nested com-
positions of general fine-grained operations into specialised coarse-grained
operations. We present our implicit parallelisation technology for shared
memory architectures based on multi-threading and discuss further optimi-
sation opportunities on this level of code generation. Both optimisation and
parallelisation rigorously exploit the absence of side-effects and the explicit
data flow characteristic of a functional setting.

KEY WORDS: Compiler optimisation; data parallel programming; multi-
threading; Single Assignment C.

1. INTRODUCTION

Programming concurrent systems is known to be a challenging task.
Several organisational problems need to be solved without spending too
much computational overhead for organisational measures at runtime.
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Among these are: finding a suitable workload distribution, making the
required data readily available for individual processors, and getting the
required synchronisations right. As the effectiveness of possible organ-
isational measures are highly sensitive to the problem at hand, most
applications in the area of high-performance computation rely on imple-
mentations with tailor-made organisations of concurrent executions, i.e.,
concurrency is explicitly introduced by programmers using, for instance,
message passing libraries like Mpi or Pvm.

The drawbacks of this approach are manifold. First of all, making
the right design decisions for such a system requires a wealth of expertise
in concurrency issues, which is not necessarily combined with the exper-
tise in a given application area. In other words, writing a correct parallel
program is substantially harder than writing a correct sequential program.
Furthermore, different hardware systems may require different measures to
be taken in order to achieve favourable runtimes. A hard-wired solution
therefore usually limits the portability of applications to other than the
initially intended hardware platform.

However, deriving and exploiting concurrency from program speci-
fications without any explicit concurrency annotations by the program-
mer, in general, is considered an overly ambitious goal. There have been
several attempts into that direction most of which proved less than opti-
mal with respect to runtime behaviour. Nevertheless, for certain appli-
cations, namely those that primarily perform operations on large arrays,
the situation is different. For this kind of applications, languages such
as Hpf,(1) Zpl(2) or Sisal,(3) as well as the more recent developments in
OpenMP(4) have demonstrated that reasonable performance gains can be
achieved through smart compilation techniques or by providing compiler
annotations only.

Nevertheless, these languages require programmers to organise their
programs carefully in order to facilitate compilation into efficiently exe-
cutable parallel code. In order to reduce the number of synchronisations
the programmer usually needs to enlarge the scope of individual data par-
allel operations as far as possible. Furthermore, the programmer has to
carefully plan the use of individual data structures as superfluous memory
usage in array-intensive applications may adversely affect runtime perfor-
mance to quite some extent.

All these requirements are at odds with good software engineering
practice. Well designed programs build on a compositional style of pro-
gramming, where a rich set of generalised operations is shared among sev-
eral applications. The intended behaviour of a given application then is
achieved by a combination of appropriate basic functionalities. This way,
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programs can make better use of existing code, applications can be more
easily maintained or adapted to changing requirements.

The downside of following established principles of software engi-
neering like abstraction and modularisation in the field of performance-
aware array programming is non-competitive runtime behaviour. There is
a trade-off between the wish to efficiently develop and maintain software
and the wish to run this software efficiently on parallel computers. A lot
of scientific work has been devoted to overcome this dilemma by smart
compilation techniques.(5−10) While they often turn out to be effective on
a small scale, code-restructuring on a larger scale quickly suffers from
the explicit control flow inherent to imperative programs. Any variation
from the prescribed control flow requires a formal proof that the program
semantics is still preserved. To do so, exact knowledge about the data flow
is mandatory. However, the data flow is typically obfuscated by imperative
language features. Hence, compilers must make conservative assumptions,
and their effectiveness in restructuring the code is severely limited.

As an alternative programming concept, functional languages are
characterised by the absence of any control flow. Program execution is
solely driven by data flow, which is easily identifiable in a program’s source
code. Functional programs specify the extensionally observable behaviour
only. The organisation of the individual computations is fully under the
regime of the compiler. As a consequence, assignments to variables do not
necessarily require resource allocations at runtime; computations can be
shifted around in the program without any restrictions other than data
dependencies. These liberties provide the grounds for radical code transfor-
mations that transform a specified nesting of general purpose operations
into tailor-made operations with better runtime characteristics.

Unfortunately, almost all existing functional programming languages
focus on algebraic data types like lists and trees rather than on arrays
as primary data structures. Languages like Haskell(11) or Clean(12) do
support arrays,(13−16) but despite some effort to improve efficiency they
are far from meeting the performance expectations of classical application
domains of parallel processing.(17−19)

Reasons for the unsatisfactory runtime performance of general-pur-
pose functional languages in processing multi-dimensional arrays are
manifold. Certainly, all high-level language features like polymorphism,
higher-order functions, partial applications, or lazy evaluation contrib-
ute some share of the overhead, but array-specific pitfalls exist as well.
Conceptually, functions consume argument values and create result val-
ues from scratch. For small data items, such as list cells, this can be
implemented fairly efficiently. However, operations which “change” just a
few elements of a large monolithic array run into the aggregate update
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problem.(20) They need linear time to create a copy of the whole array,
whereas imperative languages accomplish the same task in constant time
by destructively writing into the argument array.

Investigations show that the only way to achieve reasonably compet-
itive performance characteristics with array processing in functional lan-
guages is to artificially re-introduce a partial control flow, e.g. by the use
of uniqueness types(21) or state monads.(22) However, this approach inci-
dentally sacrifices both the benefits we are seeking on the programming
level and the ease of program restructuring. Likewise, functional languages
that introduce arrays as impure features, e.g. Ml,(23) suffer from the same
deficiencies.

A notable exception in the development of functional languages is
Sisal,(3) which first focussed on purely functional arrays. While Sisal has
a reputation for highly efficient code, the level of abstraction is rather low.
All array operations need to be defined for statically fixed levels of vec-
tor nestings. This restriction renders definitions of generic array operations
similar to those in array languages such as Apl(24) impossible. As a conse-
quence, a compositional programming style based on generic array opera-
tions cannot be achieved.

With SaC (Single Assingment C)(25) we aim at supporting and
encouraging such a high-level compositional programming style on arrays
without sacrificing the potential for efficient execution. The language
design of SaC aims at combining three essential objectives:

– support for a high-level, compositional programming style with
arrays,

– potential for optimisations that transform compositions of fine-
grained data parallel operations into coarse-grained ones,

– feasibility of compiler-directed generation of parallel host machine
code.

By already taking optimisation and parallelisation opportunities into
account in the language design we aim at achieving a runtime performance
which is competitive with programs written in machine-oriented style.

The syntax of SaC is adopted as far as possible from that of C, hence
the name. This measure is meant to facilitate adaptation of SaC for pro-
grammers with a background in imperative programming languages. Via its
module system and the foreign language interface almost all familiar func-
tions from the standard C library can be used in SaC programs without
any difference. This includes functions that interact with the execution envi-
ronment, e.g. the file system or a terminal. Despite the imperative-looking
syntax of SaC, the underlying semantics is purely functional, i.e., program
execution is based on the principle of context-free substitution of expressions
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rather than the step-wise modification of a global state. One may think that
adopting a well-known syntax, but giving it a different semantics leads to
confusion, but the opposite is true. In practice, the functional semantics of
SaC code and the imperative semantics of literally identical C code coin-
cide. This property allows programmers to stick to their preferred model
of reasoning, either functional or imperative. At the same time, the com-
piler may take full advantage of the functional, side-effect-free semantics
for advanced optimisations that are not feasible in an imperative context.

On top of the C-like language kernel of SaC, an array model similar
to that of array languages such as Apl,(24) Nial,(26) or J(27) is adopted in
SaC. Arrays are first class citizens of the language, i.e., they are considered
state-less entities that are passed to and returned from functions by value
rather then by reference. This liberates the programmer from the burden
of explicit memory mangement for arrays and allows them to treat arrays
in the same way as scalars in conventional languages.

In contrast to the classical array languages as well as in contrast to
the high-level extensions of imperative languages such as the more recent
Fortran dialects, in SaC, the generic array operations are not built-in
operators. Instead, they are defined in the language itself. This unique fea-
ture allows complex generic array operations to be successively defined
from more basic ones.

Whereas such a compositional style of array programming is attractive
in terms of programming efficiency, code reuse, and maintenance costs to
mention just a few, straightforward compilation into host machine code is
unlikely to yield acceptable performance levels. Separation of concerns on
the specification level prevents efficient execution on the machine level. In
practice, the compositional style of programming leads to the creation of
numerous temporary arrays and to the repeated traversal of existing arrays
at runtime. Both is prohibitively expensive on modern hardware designs
where cpu speed by far exceeds memory speed and the effective utilisation
of memory hierarchies is crucial for overall performance. Likewise, parallel
performance suffers compositional programming as well. While we can typ-
ically parallelise individual array operations straightforwardly following a
data parallel approach, the usually extremely low computational complexity
per argument array element incurs a poor ratio between productive compu-
tation and coordination overhead.

In order to bridge the gap between high-level programming and
attractive runtime behaviour our compiler systematically restructures code
from a representation that is amenable to humans into a representation
that is amenable to efficient execution on (parallel) machines. Step-by-step
deeply nested compositions of simple, fine-grained, and general-purpose
array operations are transformed into complex, coarse-grained, and
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application-specific operations. The key to this compilation process is
a versatile SaC-specific array comprehension and reduction construct,
named with-loop. It is versatile enough to define primitive, highly generic
array operations similar to the built-in array operations in languages such
as Fortran90 on the one hand side, and to specify rather complex, prob-
lem-specific array manipulation on the other side. In fact, With-loops
form the major intermediate layer of representation during the compila-
tion process and constitute the foundation of our code-restructuring opti-
misations. As such, their design aims at striking the balance between the
expressive power to represent complex operations on the one hand side
and the ability to be compiled into efficient machine code on the other
hand side. During the code-restructuring process large numbers of orig-
inally simple and computationally light-weight with-loops are systemati-
cally aggregated into few complex and computationally heavy-weight ones.
Successful aggregation of with-loops essentially relies on the functional,
semantics of SaC, which guarantees the absence of side-effects and exact
compile time knowledge about data flow.

With-loops are inherently data parallel. Consequently, they also form
the natural basis for multi-threading. Preceding optimisations typically
result in with-loops whose computational complexity per element is much
more attractive for parallelisation than source-level array operations. Fur-
thermore, aggregation of with-loops incidentally eliminates many of the
synchronisation and communication requirements typical for naive paral-
lelisation on the basis of source-level array operations. However, aggrega-
tion of with-loops is always constrained by structural properties of the
operations involved, not only by data dependence considerations. Separa-
tion of concerns between the computational task associated with a with-
loop and the corresponding coordination behaviour opens up a range
of additional optimisation opportunities that further aim at reducing the
need for costly synchronisation and communication events at runtime.
Once again the functional semantics pays off. In the absence of a control
flow the sequence in which operations are executed at runtime is solely
limited by data flow constraints. This allows us to systematically rearrange
the code and derive a particularly well-suited sequence of operations from
the data flow graph, i.e. a sequence that reduces synchronisation require-
ments.

So far, we have published on the language design and program-
ming methodology of SaC(25) as well as on various individual measures
taken to compile highly generic SaC programs into efficient code both for
sequential(28−30) and for parallel(31−33) execution. The main contribution
of this paper is to give a comprehensive account of the interplay between
language design, programming methodology, compiler optimisation and



SAC — A Functional Array Language 389

generation of multi-threaded code. It is this careful interplay that allows us
to combine highly generic, declarative programming with competitive run-
time behaviour, as demonstrated in a number of case studies.(34−36)

The remainder of this paper is organised into three larger sections. We
present the language design of SaC and the associated programming meth-
odology in more detail in Section 2. Section 3 outlines the compilation
process with particular emphasis on the code restructuring array optimisa-
tions. Parallelisation into multi-threaded code as well as optimisations on
this level are the subject of Section 4. Section 5 draws some conclusions.

2. SAC—SINGLE ASSIGNMENT C

2.1. Core Language Design

Single Assignment C (SaC) is a functional language whose design
targets array-intensive applications as they typically appear in areas like
computational sciences or image processing. The fundamental idea in the
design of the language is to keep the language as close as possible to C,
but to nevertheless base the language on the principle of context-free sub-
stitutions. While the former is intended to attract application programmers
with an imperative background, the latter ensures the Church-Rosser prop-
erty, which is crucial for extensive compile-time optimisations as well as
for non-sequential execution. The second key objective in the design of
SaC is to provide support for high-level declarative array programming in
a way similar to interpreted array languages like Apl or J.

Figure 1 illustrates the overall design of SaC. As can be seen in the
middle of the figure, a large part of standard C, e.g. basic types and oper-
ators as well as the way of defining and applying functions, is adopted
by SaC without alteration. Only a few language constructs of C such as
pointers and global variables need to be excluded in order to be able to
guarantee a side-effect-free setting. Instead, some new language constructs
are added pertaining to array programming.

The most fundamental addition to the language kernel in SaC is gen-
uine support for n-dimensional arrays. As scalar values are considered
0-dimensional arrays, SaC does not support any data structures apart from
arrays.

Besides the integration of multi-dimensional arrays the most impor-
tant addition to the language kernel are with-loops. They are data parallel
skeleton operations suitable for defining various generic array operations
including element-wise generalisations of the standard scalar operations
as well as more complex operations similar to those available in lan-
guages such as Apl. In principle, with-loops bear some similarity with
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Fig. 1. The overall design of SaC.

array comprehensions as found in functional languages such as Haskell
or Clean, and they can also be considered a variant of forall-loops in
Fortran. However, the distinguishing feature of with-loops is their capa-
bility to be specified shape-invariantly. A shape-invariant operation can be
applied to argument arrays of statically unknown extents as well as stat-
ically unknown dimensionality (rank). As far as we are aware, this is a
unique feature of SaC. In languages such as modern Fortran-dialects or
dedicated array languages such as Apl shape-invariance is restricted to the
fixed set of built-in operators.

2.1.1. To be and not to be Functional

The incorporation of most of the fundamental language constructs of
C such as loops, conditionals, and assignments into the functional setting of
SaC allows the programmer to stick to his preferred model of computation.
To illustrate this effect, let us consider the following SaC function foo

int foo(int v, int w)
{

r = v + w;
r = r + 1;
return(r);

}

which takes two arguments v and w and computes the sum, which is
stored in the local variable r. Then, r is incremented by 1 and returned
as result.
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Fig. 2. An imperative look on foo.

An imperative interpretation of foo is shown in Fig. 2. In the imper-
ative world, v, w, and r constitute names for box variables. During the
execution of the body of foo the content of these box variables is succes-
sively changed. Assuming an application to arguments 10 and 10 these
variable manipulations are indicated on the right hand side of Fig. 2.
Eventually, the final value of variable r, i.e. 21, is returned as the over-
all result of the function call to foo.

However, the definition of the function foo equally well can be inter-
preted as syntactic sugar for a let-based function definition, as shown on
the left hand side of Fig. 3. With this interpretation, v, w, and r become
variables in a λ-calculus(37) sense. As we can see, the two successive assign-
ments to r have turned into two nested let-expressions each binding r to a
different value. In fact, these let-expressions refer to two distinct variables
r which accidentally have the same name. The scoping rules ensure that the
variable r in the defining expression of the second let-expression refers
to the variable r bound to the value of v+w in the first let-expression.
In contrast, the variable r in the goal expression refers to binding of the
second let-expression, which effectively shadows the first binding of r.

A further transformation into an applied λ-calculus, as shown on
the right-hand-side of Fig. 3, identifies the potential for independent

Fig. 3. A functional look on foo.
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evaluation of subexpressions. The arrows on top of the λ-expressions indi-
cate the static scoping of the individual variables. The lines under the
expressions indicate the β-redices that are present. As indicated by the
different reduction sequences, the λ-calculus representation thus eases the
identification of legal program transformations, part of which may be per-
formed at compile-time. The static availability of this information together
with the formal guarantee that the result of the computation remains
invariant for any chosen (terminating) reduction order forms the basis for
many program optimisations in SaC. These are essential when it comes to
compiling programs for highly efficient concurrent program execution.

We achieve this duality in program interpretation by the choice of a
subset of C that we can easily map to an applied λ-calculus whose seman-
tics reflects that of the corresponding C program. A formal definition of
the semantics of SaC is beyond the scope of this paper; the interested
reader is referred to Ref. 25. In the sequel, it suffices to expect all language
constructs adopted from C to adhere to their operational behaviour in C.

2.1.2. Stateless Arrays

In a purely functional world all data are state-less values. This very
property is essential for achieving the freedom in choosing any reduction
order, as explained in the previous section. If any data would have a state
then all state manipulating operations would impose a fixed order within
the evaluation of these.

While almost all programming languages have a notion of state-less
scalars, for arrays this is usually not the case. The reason for that design
choice is rather simple: as soon as an array is considered state-less it can-
not be modified after it has been defined. As a consequence a modification
of a single element of an array, at least in principle, does require the entire
array to be copied. A naive implementation of this property is prohibitive
in terms of both, runtime and space efficiency. However, these inefficien-
cies can be overcome by using reference counting techniques and by apply-
ing several optimisation techniques as developed in the context of Sisal(38)

and later refined in the context of SaC.(39)

Having state-less arrays does not only facilitate radical program optimi-
sations as explained before, but it also benefits the programmer. It liberates
the programmer from the burden to think about memory issues entirely. No
memory needs to be allocated, arrays passed as arguments to functions can
never be affected by such calls, and the programmer does not need to copy
arrays in order to preserve a certain state. Instead, the programmer defines
various arrays and relies on the compiler and the runtime system to ensure
that memory is being allocated and reused as often as possible.
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2.1.3. Shape-Invariant Programming

Another distinguishing feature in the design of SaC is its support for
shape-invariant programming. The ability to define operations that can be
applied to arrays of arbitrary rank may seem overkill at first glance. Most
real world examples require fixed rank arrays only and the rank usually
does not exceed 4.

Looking at array programming languages such as Apl one can
observe that the productivity of programmers derives from the availability
of a rich set of shape-invariant built-in operators. Their generic applicabil-
ity allows programs to be specified rather concisely. Complex loop nestings
for mapping operations over certain dimensions are usually not required.
The only weakness of such a built-in approach is its inflexibility. If the set
of operations provided by a chosen language does not match well a given
application task, program specifications often become a bit cumbersome.
As a consequence of this, many Apl dialects have evolved all of which pro-
vide slightly different sets of built-in operations.

Providing shape-invariant programming on a meta level such as the
with-loops in SaC enables the programmer to design a set of shape-invari-
ant operators to the particular requirements of a given set of applications.
These operations can be stored within a library, which can be shared for
entire sets of applications.

Another advantage of shape-invariant programming stems from the
fact that (n + m)-dimensional arrays can be considered a homogeneous
n-dimensional nesting of m-dimensional arrays. Provided that all opera-
tions are consistently defined, programs written for n-dimensional arrays
can be applied without modification to (n + m)-dimensional arrays. All
”inner arrays“ are simply applied element-wise. The consistency of such
a set of operations manifests itself in several fundamental universal equa-
tions which, once, they are chosen, dictate the behaviour of most opera-
tions in the non-scalar case. A discussion of the design choices and their
consequences are beyond the scope of this paper and can be found else-
where (e.g. in Ref. 40). In order to give the reader a flavour of such a set
of universal equations, in the next section, we provide the most important
equations that underly the standard library of SaC.

2.2. Arrays at a Glance

All arrays in SaC are represented by two vectors: the data vector con-
tains all elements in linear order while the shape vector defines the struc-
tural properties of the array. Figure 4 shows a few example arrays. As can
be seen from the examples, the length of the shape vector corresponds to
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Fig. 4. Array representations.

the rank (number of axes) of the array while the individual elements of
the shape vector define the array’s extent along each axis. The data vector
enumerates all elements with lexicographically increasing indices. From
this relation between data and shape vector we obtain:

Lemma 1. Let [d0, . . . , dq−1] denote the data vector of an array
and let

[s0, . . . , sn−1] denote its shape vector. Then we have q =
n−1∏

i=0
si .

The bottom of Fig. 4 shows that scalar values can be considered
0-dimensional arrays with empty shape vector. Note here, that Lemma 1
still holds for scalars.

2.2.1. Specifying Arrays

We specify vectors using the common square bracket notation intro-
duced in Fig. 4. Multi-dimensional arrays can be defined either by nesting
vectors, or we use the following notation that explicates the representation
of arrays by shape and data vector:

reshape ([s0, ..., sn−1], [d0, ..., dq−1])
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where q = ∏n−1
i=0 si . In fact, we can consider reshape the only array

constructing function apart from with-loops in SaC. This observation
leads to the following generalisations:

s ≡ reshape([], [s]), and
[v0, ..., vn−1] ≡ reshape([n], [v0, ..., vn−1]).

Provided that Lemma 1 holds for the resulting array, the following
property holds for reshape:

reshape(shp vec, reshape(shp vec 2, data vec))
== reshape(shp vec, data vec)

(1)

2.2.2. Inspecting Arrays

Alongside the array constructing operator reshape, functions for
extracting shape and data information are required. We introduce two
operations for retrieving shape information:

shape returns an array’s shape vector, and
dim returns an array’s rank (dimensionality)

For example, we have:

shape( 42) == []
dim( 42) == 0
shape( [1, 2, 3]) == [3]
dim( [1, 2, 3]) == 1
shape( reshape( [2, 3], [1, 2, 3, 4, 5, 6])) == [2, 3]
dim( reshape( [2, 3], [1, 2, 3, 4, 5, 6])) == 2

Formally, shape is defined by

shape(reshape(shp vec, data vec)) == shp vec (2)

and dim is defined by

dim(reshape(shp vec, data vec)) == shape(shp vec)[0] (3)

where the square brackets denote element selection. From these defini-
tions, we can derive

∀a : dim(a) == shape(shape(a))[0] (4)
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as

dim(reshape(shp vec, data vec))
(3)== shape(shp vec)[0]
(2)== shape(shape(reshape(shp vec, data vec)))[0] ��

So far, we have used square brackets to denote selection within vec-
tors. However, we want to introduce a more versatile definition for array
selections. It is supposed to work for n-dimensional arrays in general. As
one index per axis is required, such a definition requires an n-element
vector as index argument rather than n separate scalar index arguments.
Hence, we define an operation

sel(idx vect, array)

which selects that element of array that is located at the index position
index vect. For example:

sel( [1], [1, 2, 3]) == 2
sel( [1, 0], reshape( [2, 3], [1, 2, 3, 4, 5, 6])) == 4

As we can see from the examples, we always have shape( idx vect)[0]
== dim(array). This leads to the formal definition

shape( sel( idx vec, reshape( shp vec, data vec))) == 0
provided that shape( idx vec) == shape( shp vec)

(5)

From it, we obtain for scalars s:

sel([], s) == s

In order to extend this property to non-scalar arrays (5) is generalised into

shape( sel( idx vec, reshape( shp vec, data vec)))
== shape(shp vec) − shape(idx vec)

provided that shape(idx vec) <= shape(shp vec)
(6)

This extension enables the selection of entire subarrays whenever the index
vector is shorter than the rank of the array to be selected from. For exam-
ple, we have
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sel( [1, 0], reshape( [2, 3], [1, 2, 3, 4, 5, 6]))
== 4

sel( [1], reshape( [2, 3], [1, 2, 3, 4, 5, 6]))
== [4, 5, 6]

sel( [], reshape( [2, 3], [1, 2, 3, 4, 5, 6]))
== reshape( [2, 3], [1, 2, 3, 4, 5, 6]).

2.3. WITH-Loops

Besides basic support for n-dimensional arrays, as described in the
previous section, all aggregate operations on arrays in SaC are defined in
terms of a language construct called with-loop. Despite the term loop in
the name, with-loops are more similar to array comprehensions in other
functional languages than to control structures in imperative language. In
particular, with-loops always appear in expression position and yield a
value.

The most simple form of with-loops constitutes a mapping of an
expression for computing an individual array element to all element posi-
tions of an array; it takes the general form

with
generator : expr

genarray( shape)

Such a with-loop defines an array (key word genarray), whose shape
is determined by the expression shape, which must evaluate to an integer
vector. The elements of the resulting array are defined by a colon-sepa-
rated pair of a generator and an associated expression expr. The generator
defines a set of indices; for each element of this set the value of the associ-
ated expression defines the corresponding element value of the result array.
As an example, consider the following with-loop

with
default : 42

genarray( [3,5])

which computes the matrix




42 42 42 42 42
42 42 42 42 42
42 42 42 42 42



 . As specified by the

shape expression, the with-loop defines a matrix with 3 rows and 5 col-
umns. The generator default defines the set of all legal indices with
respect to the shape of the result array. Hence, each element of the result
array has the value 42.

For all but the most trivial aggregate array operations we need access
to the current index position within generator-associated expressions. This
can be accomplished as in the following example:
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with
(iv) : iv[0]

genarray( [5])

Here, the generator consists of an identifier enclosed in parentheses. Like
in the case of the generator default, this notation refers to the set of all
legal indices. However, it allows the associated expression to be specified
in terms of the position where the element is located. Hence, the above
example defines the vector [0,1,2,3,4]. Note here, that we still need to
select the first component from iv as the generator variable always refers
to an index vector of the same length as that of the shape vector.

In many cases not only the concrete values of array elements depend
on the index position, but even the expressions that define them are differ-
ent in different parts of the array. Whereas this could in principle be
accomplished by conditional expressions that evaluate to different subex-
pressions depending on some predicate on the index position, the result-
ing code is clumsy and the performance of compiled code typically poor.
To avoid these drawbacks, we introduce the concept of multi-generator
with-loops. The basic idea is to replace the pair of a generator and an
expression by several pairs of these and to associate each of the pairs
with a range of indices in a way that guarantees all ranges to consti-
tute a partition of the entire index range. Syntactically, the range speci-
fication is annotated at the index variable by replacing ( idx vec ) with
( idx vec < ub ) or with ( lb <= idx vec < ub ). Here, lb and ub denote
expressions which must evaluate to integer vectors of the same length as
the shape expression. They define the element-wise minimum and maxi-
mum of the index range covered, respectively. If the explicit specification
of a lower bound is omitted, the lower bound defaults to a vector of zeros
of appropriate length. This choice is motivated by the fact that the origin
of index spaces in SaC always starts at 0 and, hence, this lower bound is
found frequently in generators.

With these extensions at hand, we can for example write the concat-
enation of two vectors a and b as follows:

with
([0] <= iv < shape(a)) : a[iv]
(shape(a) <= iv < shape(b)) : b[iv-shape(a)]

genarray( shape(a) + shape(b))

Often, it is convenient to combine range generators with default genera-
tors, e.g. the with-loop

with
([2,1] <= iv < [8,11]): a[iv]
default: 0

genarray([10,13)
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Fig. 5. Illustration of generator-defined index sets.

defines a 10 × 13-element matrix whose inner elements are taken from an
existing array a while its boundary elements are uniformly set to zero,
as illustrated in Fig. 5a. The default generator now specifies the set of
indices not contained in any of the other generator-defined index sets.

The concept of multi-generator with-loops introduces generators that
define dense rectangular ranges of indices. We further refine this concept
to regular grids by adding a step vector to generators.

with
([2,1] <= iv < [8,11] step [2,3]): a[iv]
default: 0

genarray([10,13])

The additional step specification, an expression that must evaluate to an
integer vector of the same length as the lower and the upper bound vec-
tor, results in a periodic, grid-like index set, as illustrated in Fig. 5b.

Our last generator extension adds an additional width vector to a grid
generator:

with
([2,1] <= iv < [8,11] step [3,4] width [2,3]): a[iv]
default: 0

genarray( [10,13])

As illustrated in Fig. 5c, the width specification allows us to specify index
sets that repeat rectangular blocks of indices in a periodic manner. While
the width vector determines the shape of these blocks, the step vector
defines the periodicity.

The genarray-with-loops as outlined so far are accompanied by
two additional variants of with-loops: modarray-with-loops and fold-
with-loops. The modarray-with-loop addresses the frequent case in
which a new array is derived from an existing array such that the new
array has the same shape as the existing one and the values of some of its
elements are directly taken from the corresponding elements of the existing
array. For example, the with-loop



400 Grelck and Scholz

with
([2,1] <= iv < [8,11]): 0

modarray( a)

is in a sense inverse to the one illustrated in Fig. 5a. It sets the inner ele-
ments of the resulting array to zero while it implicitly copies the values of
the boundary elements from the existing array a, which is referenced fol-
lowing the key word modarray. The modarray-with-loop combines two
aspects: Both the shape and the default generator are explicitly derived
from an existing array. The syntactic position in which this array is ref-
erenced is that of an arbitrary expression.

In contrast, to the rather small extension of modarray-with-loops,
fold-with-loops are characterised by a quite different operational semantics.
Rather than array comprehensions, fold-with-loops are abstract representa-
tions of reduction-like computations. Following the key word fold we specify
the name of a binary folding operation and its neutral element, which may be
defined by an arbitrary expression. For example, the with-loop

with
([0] <= iv < shape(vec)): vec[iv]

fold( +, 0)

defines the sum of all elements of a vector vec. More precisely, it com-
putes the following sum:

0 + vec[0] + vec[1] + vec[2] + · · · + vec[shape(vec) − 1]

Since the generator defines a set of indices rather than a sequence of indi-
ces and we intend to exploit this property for code transformation, legal
fold operations must be associative and commutative to guarantee deter-
ministic results. Whereas fold-with-loops like the other with-loop vari-
ants may have multiple generator/expression pairs, only range generators
are allowed. This is due to the principle lack of a suitable reference shape
that would define the bounds of the overall index space.

2.4. The Type System of SAC

As mentioned in Section 2.1, the elementary types of C are also avail-
able in SaC. However, they constitute only a small subset of the types of
SaC. For each elementary type in C there exists an entire hierarchy of
array types in SaC. As an example, Fig 6 shows the hierarchy for inte-
ger arrays. It consists of three layers of array types which differ wrt. the
level of shape restrictions that is imposed on their constituents. On the top
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...int[3,7]...int[0,0]int[0] ... int[42] ...

int[*]

int[.,.] ...int[.]int = int[]

Fig. 6. A hierarchy of shapely types.

layer, we find int[*] which comprises all possible integer arrays. The sec-
ond layer of types distinguishes between arrays of different rank (number
of axes). This layer comprises the standard type int, which still denotes
scalar integers only. All other types on this level are denoted by the ele-
mentary type followed by a vector of dot-symbols. The number of dot-
symbols determines the rank of the arrays contained. On the bottom layer,
the types are shape-specific. They are denoted by the elementary type fol-
lowed by the shape. For example, int[3,2] denotes all integer matrices
with three rows and two columns.

Although a generic array programming style suggests a predominant
use of the top layer types, the availability of the type hierarchy pro-
vides the programmer with additional expressiveness. Domain restrictions
wrt. rank or shape of the arguments can be made explicit, and support for
function overloading eases rank/shape-specific implementations. Figure 7
shows an example for such an overloading.

Let us consider an implementation of a general solver for a set of
linear equations Ax = b, as indicated in the top of Fig. 7. For arrays of
a certain shape it may be desirable to apply a different algorithm which

Fig. 7. Overloading and function dispatch.



402 Grelck and Scholz

has different runtime properties. The bottom of Fig. 7 shows how this
functionality can be added in SaC by specifying a further instance of the
function solve which is defined on a more restricted domain.

Besides the hierarchy of array types and function overloading it
should be mentioned here that SaC does not require the programmer to
declare array types for variables. Type specifications are only mandatory
for argument and return types of functions.

2.5. Programming Methodology

SaC propagates a programming methodology based on the principles
of abstraction and composition. Rather than building entire application
programs by means of with-loops, we use with-loops merely to realise
small functions, abstractions with a well defined and easily comprehenda-
ble meaning. They represent the basic building blocks for the composition
of full application programs.

Figure 8 illustrates the principle of abstraction by rank-invariant
definitions of three standard aggregate array operations. The overloaded
definitions of the function abs and the infix operator >= extend the

Fig. 8. Defining rank-invariant aggregate array operations in SaC.
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corresponding scalar functions to arrays of any rank and shape. The func-
tion any is a standard reduction operation, which yields true if any of
the argument array elements is true, otherwise it yields false.

In analogy to the examples in Fig. 8 we have implemented most
aggregate array operations known from other languages in SaC itself. The
array module of the SaC standard library includes element-wise extensions
of the usual arithmetic and relational operators, typical reduction opera-
tions like sum and product, various subarray selection facilities, as well as
shift and rotate operations.

Basic array operations defined by with-loops lay the foundation for
constructing more complex operations by means of composition. As illus-
trated in Fig. 9, we may define a generic convergence criterion for iterative
algorithms of any kind purely by composition of basic array operations.
Following this compositional style of programming, more and more com-
plex operations and, eventually, entire application programs are built.

The real power of shape-invariant programming can be observed at
this very simple example. Although one may read the definition of the
function continue as if it was applied to scalar arguments, and in fact
it can be applied to scalars, the shape-invariance of the individual opera-
tions makes the whole function applicable to arrays of arbitrary rank. This
does not only liberate the programmer from nestings of loops that obfus-
cate the core functionality of the function, but it also makes the function
more generally applicable and more easily maintainable.

Another advantage to be observed materialises when it comes to
debugging and testing programs. Real world applications tend to manip-
ulate large multi-dimensional arrays. In a non-shape-invariant setting, an
inspection of partial results for testing or debugging is rather difficult.
It usually requires some extra code to be inserted that extracts a small
enough subset of data suitable for human inspection. Even if some sub-
functionality operates on outermost dimensions only, it usually cannot be
applied to arrays of a smaller rank as the loop nesting fixes the expected
rank of arguments.

In a shape-invariant setting as in SaC, most of these problems van-
ish. Individual subfunctionalities can be developed, debugged, and tested
on arrays of smaller rank. After debugging these functions can simply
be applied to arrays of higher rank as required by potential applications.

Fig. 9. Defining array operations by composition.
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Considering our example again, it suffices to get the scalar case right.
Subsequently, the function continue can be applied to arrays of arbi-
trary rank as indicated by the argument types specified.

As case studies such as Ref. 36 show, this particular feature proves
very useful when it comes to specifying real world applications in SaC.

3. COMPILATION

3.1. Overview

Compiling high-level SaC programs following the design principles of
abstraction and composition into efficiently executable machine code is a
challenging undertaking. Figure 10 shows the major phases of the compi-
lation process. After scanning and parsing the SaC-program to be com-
piled, its internal representation is simplified by a transformation called
functionalisation. In addition to a general desugaring into a core lan-
guage and the systematic flattening of complex expressions, we bring our
internal representation of the code in line with its functional semantics.
For example, we explicitly replace loops by tail-end recursive functions
and eliminate multiple assignments to variables by systematic renaming of
identifiers. As a result of this phase, we achieve a variant of static single
assignment form Ref. 41, which is much more amenable to further code
transformations than the initial language-level representation.

Scanner / Parser

Function Inlining
Array Elimination
Dead Code Removal
Common Subexpression Elimination
Constant Propagation
Constant Folding
Copy Propagation
Algebraic Simplification
Loop Unrolling
Loop Unswitching
Loop Invariant Removal

Array Padding

With–Loop Unrolling

Index Vector Elimination

Memory Management
With–Loop Invariant Removal

With–Loop Folding

With–Loop Fusion

Functionalisation

Type Inference

Code Generation

With–Loop Scalarisation

Type Specialisation

High–Level Optimisations

De–Functionalisation

s

Fig. 10. Compilation of SaC programs.
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The next compilation phase implements a type inference algorithm
based on the hierarchy of array types described in Section 2. For each
expression in the code we aim at inferring as concrete as possible infor-
mation concerning its array shape. If feasible, functions with more general
argument types than the concrete values they are applied to are specia-
lised.

The central and by far most complex part of the compiler is the high-
level code optimiser. It consists of an extensive range of machine-inde-
pendent optimisations both of general nature and SaC-specific. General
optimisations such as constant folding, common subexpression elimina-
tion, dead code removal, or variable and copy propagation are well known
in literature. However, their applicability in practice substantially bene-
fits from the absence of side-effects in our setting. In fact, they can be
applied much more rigorously than in state-of-the-art compilers for imper-
ative languages with an often opaque data flow. Since successful applica-
tion of one optimisation often triggers several others, all optimisations are
arranged in a cycle. Optimisation terminates as soon as a either a fixed
point or a pre-specified number of cycles is reached.

At the heart of the optimiser are the SaC-specific array optimisations,
namely with-loop-folding, with-loop-fusion, and with-loop-scalarisa-
tion. The compositional style of high-level array programming typically
leads to a large number of with-loops in intermediate SaC code. Each
individual with-loop represents a fairly simple and — per element of
arrays involved — computationally light-weight operation. Without addi-
tional optimisation typical intermediate SaC code would inflict the crea-
tion of numerous temporary arrays and the repeated traversal of existing
arrays at runtime. Furthermore, taking individual with-loops as basis for
parallelisation would lead to frequent synchronisations and a generally
poor ratio between coordination overhead and productive computation.
As a consequence, neither sequential nor parallel performance would be
satisfying. With-loop-folding, with-loop-fusion, and with-loop-scalar-
isation aim at systematically condensing compositions of simple and com-
putationally light-weight with-loops into more complex but also more
heavy-weight with-loops. Step by step, they transform intermediate SaC
code from a representation that is amenable to programmers into a repre-
sentation that is amenable to efficient execution on computing machinery;
The following sections introduce these transformations in more detail.

With the memory management compiler phase we leave the state-free,
functional world of SaC. Here, we explicitly introduce the notion of mem-
ory and augment the code with primitives to allocate and de-allocate
memory resources to store arrays at runtime. De-allocation of memory
is based on systematic counting of active references to arrays at runtime.
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The corresponding instructions are also inserted into the intermediate code
during this phase.

Eventually, the code is de-functionalised, i.e., recursive functions are
again replaced by more efficient loops and multiple assignments are re-
introduced to reduce the variable pressure. In the very last stage, we gen-
erate C code. Compilation to C rather than to machine code liberates us
from hardware-specific, low-level optimisations such as delay-slot utilisa-
tion or register allocation. It also allows us to support a wider range of
target architectures and operating systems with limited manpower.

3.2. WITH-Loop Folding

With-loop-folding addresses vertical compositions of with-loops,
i.e., the result of one with-loop is referenced as an argument in another
with-loop. Consider, for example, a definition

res = (a + b) + c;

where a, b, and c are arrays of identical shape. Inlining the definition of
+ leads to two subsequent with-loops of the form

tmp = with
(iv) : a[iv] + b[iv]

genarray( shape( a)));

res = with
(iv) : tmp[iv] + c[iv]

genarray( shape( tmp));

With-loop-folding combines the two with-loops into a single one that
performs both additions on the scalar level of array elements:

res = with
(iv) : (a[iv] + b[iv]) + c[iv]

genarray( shape( a));

The advantage of the folded code over the original code is basically two-
fold. Firstly, we eliminate the temporary array tmp. This saves on runtime
overhead incurred by memory management, namely one cycle of mem-
ory allocation and de-allocation. At the same time, we also eliminate one
cycle of writing values into the temporary array and reading them from
the array shortly thereafter. In particular if the size of the arrays involved
exceeds the cache size requiring slow main memory interaction, the sav-
ings are usually significant. Secondly, the folded code is also advantageous
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with respect to parallelisation. Considering that individual with-loops are
the basis for multi-threaded data parallel execution each with-loop inflicts
an expensive barrier synchronisation. Hence, in the above example with-
loop-folding also eliminates the need for one out of two barrier synchro-
nisations.

With-loop-folding is one prerequisite to make the compositional
programming style advocated in Section 2.5 feasible in practice with
respect to runtime performance. For the example of the compositional
specification of a convergence criterion in Fig. 9 with-loop-folding has
the effect of condensing all four operations, subtraction, absolute value,
greater equal, and any, into a single with-loop. Despite the compositional
specification of continue, the compiled code computes the convergence
criterion in a single step without introducing intermediate arrays or syn-
chronisation barriers in the case of multi-threaded execution.

Technically spoken, with-loop-folding aims at identifying array ref-
erences within the generator-associated expressions in with-loops. If the
index expression is an affine function of the with-loop’s index variable and
if the referenced array is itself defined by another with-loop, the array ref-
erence is replaced by the corresponding element computation. Instead of
storing an intermediate result in a temporary data structure and taking the
data from there when needed, we forward-substitute the computation of
the intermediate value to the place where it is actually needed.

The challenge of with-loop-folding lies in the identification of the
correct expression which is to be forward-substituted. Usually, the ref-
erenced with-loop has multiple generators each being associated with a
different expression. Hence, we must decide which of the index sets defined
by the generators is actually referenced. To make this decision we must
take into account the entire generator sequence of the referenced with-
loop, the generator of the referencing with-loop that is associated with the
expression which contains the array reference under consideration, and the
affine function defining the index.

The top of Fig. 11 shows an example for a more general situation.
The generator ranges of both with-loops do not cover the entire array.
Instead, they overlap without one being included within the other. As a
consequence, the result of the folding step requires the computation of the
intersection of the generators. In order to be able to do this in a system-
atic way, we first default generators by a full partition of range genera-
tors. The result of this extension is shown in the middle part of Fig. 11.
In case of the first with-loop, we obtain four additional generators. Sim-
ilarly, we extend the second with-loop by two additional generators. At
the same time, we turn the modarray-with-loop into a genarray-with-
loop. Having replaced the implicit rule of the modarray-with-loop by
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Fig. 11. With-loop-folding in the general case.

explicit range generators, there is no need any more to distinguish between
the two variants.

As pointed out before, with-loop-folding identifies references to
elements of with-loop-defined arrays within generator-associated expres-
sions of other with-loops. In the example of Fig. 11 there is one
potential optimisation case in each generator-associated expression of
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the second with-loop. Let us focus on the first one. We need to fig-
ure out how A[iv] is defined for each element of the generator-defined
index set. To do so systematically, we compute the intersection between
the generator ([0,0]<=iv<[ 4, 9]) and each generator of the first
with-loop. It turns out that the intersection with generator 5 of the first
with-loop in fact is empty and can be ignored. However, the other four
intersections are non-empty and lead to generators 1–4 of the folded
with-loop at the bottom of Fig. 11. Proceeding with the second genera-
tor ([4,0]<=iv<[9,4]), we find out that intersections with generators
2,3, and 5 are non-empty. These intersections lead to the new generators
5–7 of the folded with-loop.

An additional level of complexity arises as soon as the index expression
is not the with-loop variable itself, but an affine function of iv, as in the
third generator (A[iv-2]). In this case, we must adjust the generator under
consideration by the inverse of the affine function prior to computing any
intersections with the generators of the referenced with-loop. In the exam-
ple, this leads to the remaining three generators of the folded with-loop.

As in the example of Fig. 11 with-loop-folding may lead to quite
complex index spaces, although in practice such examples are rather rare.
Nevertheless, generation of efficiently executable code from complex gen-
erator sets is a challenging task, which is further complicated as soon as
generators use step and width specifications for periodic grids. There-
fore, we have developed code generation techniques to efficiently han-
dle complex generator sets.(42) Their presentation, however, is beyond the
scope of this paper. Likewise, a more thorough technical description of
with-loop-folding along with an investigation on runtime performance
impact can be found in Ref. 28.

3.3. WITH-Loop Fusion

With-loop-fusion addresses horizontal compositions of with-loops,
i.e. with-loops without data dependences which have similar generator sets
and preferably share references to the same argument arrays. Consider for
example a function body where both, the maximum element and the min-
imum element of a given array A is computed. This can be specified as

minv = minval(A);
maxv = maxval(A);

Inlining the with-loop-based definitions for minval and maxval leads to

minv = with
(iv < shape( A)): A[iv]

fold( min, MaxInt());
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maxv = with
(iv < shape( A)): A[iv]
fold( max, MinInt());

The idea of with-loop-fusion is to combine such with-loops into a
more versatile internal representation named multi-operator with-loop.
The major characteristic of multi-operator with-loops is their ability to
define multiple array comprehensions and multiple reduction operations as
well as mixtures thereof. For the above example, we obtain:

minv, maxv = with
(iv < shape( A)) : A[iv], A[iv]

fold( min, MaxInt())
fold( max, MinInt());

Prominent differences to with-loops as used so far are that each generator
is associated with a sequence of expressions rather than a single one, Like-
wise, the with-loop features a sequence of operation parts. We assume that
the number of generator-associated expressions is the same for each gener-
ator and coincides with the number of operation parts. In fact, each first
generator-associated expression is connected to the first operation part, etc.
Last but not least, the with-loop yields a sequence of values, one for each
operation part, that need to be bound to variables collectively.

Whereas the original code is desirable from a software engineering
perspective, the fused code has several advantages in terms of execution
speed. Both values minv and maxv are computed in a single sweep. This
allows us to share the overhead inflicted by the multi-dimensional loop
nest. Furthermore, we change the order of array references at runtime. The
intermediate code as shown above accesses the same array A in both with-
loops. Assuming array sizes typical for numerical computing, elements of
A are extremely likely not to reside in cache memory any more when they
are needed for execution of the second with-loop. With the fused code
both array references A[iv] occur in the same with-loop iteration and,
hence, the second one always results in a cache hit. Onward optimisations,
here common subexpression elimination, may remove the second memory
access entirely and reuse the value that already resides in a register. With
respect to parallelisation the elimination of one with-loop also eliminates
the need for one barrier synchronisation at runtime.

Similar to with-loop-folding with-loop-fusion is one prerequisite
to make the compositional programming style advocated in Section 2.5
feasible in practice with respect to runtime performance. Consider the con-
vergence criterion example discussed in Section 2.5. In practice, the con-
vergence criterion is used in conjunction with an iterative algorithm, each
step of which is likely to be represented by one or more with-loops.
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In this scenario with-loop-fusion has the effect of integrating the code
for computing one iteration step with the code for determining conver-
gence in a single with-loop.

Similar to with-loop-folding, the challenge of with-loop-fusion lies
in non-identical generator sets, which typically arise from preceding with-
loop-folding steps. Figure 12 shows a non-trivial example. In contrast to
with-loop-folding, the first subtask of with-loop-fusion is the identifi-
cation of suitable fusion candidates since they are unrelated in the data
flow graph. Two with-loops are considered for fusion if they are data
independent and their aggregate index sets are identical. The aggregate
index set is the union of all generator-defined index sets of a with-loop.
In the case of a genarray-with-loop, the aggregate index set is identical
with the set of legal indices of the array to be created.

Having found suitable folding candidates, we systematically compute
the pairwise intersections between each generator of the first with-loop
and each generator of the second with-loop. In the worst case the number
of generators in the fused with-loop equals the product of the numbers
of generators in the original with-loops. However, in practice this case is
rather rare since many intersections in fact turn out to be empty. Never-
theless, we take care to avoid fusion of with-loops that would lead to an
explosion in the number of generators.

Fusion of with-loops whose aggregate index sets differ is also fea-
sible; Fig. 13 shows an example. An additional preprocessing step is
required that adjusts a with-loop’s aggregate index space to the smallest
rectangular hull of the union of its original aggregate index set and that of
the fusion candidate. This preprocessing step introduces additional genera-
tors that are associated with the special (internal) expression nothing. It
represents a dummy value since for the corresponding elements of the gen-
erator-defined index set there is no computation required. Although any
computation is avoided for dummy indices, some loop overhead at run-
time cannot. Hence, this form of with-loop-fusion only makes sense if
the aggregate index sets are sufficiently similar. As shown in Fig. 13, this
form of with-loop-fusion typically leads to index spaces, as represented
by the set of generators, that differ from the shapes of the arrays defined.
A more thorough technical description of with-loop-fusion along with
an investigation on runtime performance impact can be found in Ref. 30.

3.4. WITH-Loop Scalarisation

Since the generator-associated expressions of with-loops are in fact
arbitrary SaC expressions, they may in particular again be with-loops.
With-loop-scalarisation, our third high-level code transformation
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Fig. 12. With-loop-fusion in the general case.

addresses nested compositions of with-loops. Such nestings occur fre-
quently in practice as soon as elementary types of an array operation are
not scalar, but turn out to be arrays themselves. For example, we may
write the element-wise sum of two 10-element vectors a and b of complex
numbers as
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Fig. 13. With-loop-fusion with non-identical aggregate index sets.

with
([0] <= iv < [10]): a[iv] + b[iv]

genarray( [10])

Whereas this definition looks very much like the element-wise sum on
arrays of built-in scalar values, the selections a[iv] and b[iv] actually
yield 2-element vectors of values of type double. Consequently, the oper-
ator + actually refers to the element-wise sum of arrays again rather than
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to the built-in operation on scalars. Hence, inlining the inner application
of + yields

with
([0] <= iv < [10]):

with
([0] <= iv < [2]): (a[iv])[jv] + (b[iv])[jv]

genarray( [2])
genarray( [10])

and, hence, a case of nested composition of with-loops. Assuming a
straightforward compilation into machine code, we must allocate (and de-
allocate) memory to accommodate the inner vector for each element of the
outer with-loop’s aggregate index set. Furthermore, we must copy the val-
ues of the inner vector into the overall result array in each iteration of the
outer with-loop, i.e., the result of the inner with-loop is a classical exam-
ple of a temporary data structure.

The idea of with-loop-scalarisation is to eliminate nestings of
with-loops and to transform them into single with-loops that operate
on scalar values. We achieve this by concatenating the bound and shape
expressions of the with-loops involved and by adjusting the generator
variables accordingly. For our example we obtain

with
([0,0] <= iv < [10,2]) : a[iv] + b[iv]

genarray( [10])

When comparing this code against the non-scalarised version above we
can observe several benefits. There are no more two-element vectors which
results in less memory allocations and deallocations at runtime. Further-
more, the individual values are directly written into the result arrays with-
out any copying from temporary vectors. With respect to multi-threaded
execution the scalarised with-loop provides a larger index space right
away that generally renders scheduling of workload to threads more effec-
tive.

After with-loop-folding and with-loop-fusion with-loop-scalar-
isation is the third prerequisite to make the compositional programming
style advocated in Section 2.5 feasible in practice with respect to runtime
performance. It allows us to use exactly the same compositional specifica-
tion of, for instance, the convergence criterion on arrays of scalar elements
as on arrays of arrays without paying a performance penalty for the lay-
ered specification.

Similar to with-loop-folding and with-loop-fusion the general case
is more complicated than an introductory example. For example, the
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presence of multi-generator with-loops requires us to define with-loop-
scalarisation general enough to cope with multiple outer generators each
being associated with different inner with-loop that again have multiple
generators. Furthermore, arrays are not necessarily defined by means of
with-loops. Many interesting optimisation cases, like the one sketched out
above, are likely to use simple vector composition rather than a complex
with-loop to define nested arrays. Such cases need a preprocessing trans-
formation into a semantically equivalent with-loop before with-loop-
scalarisation can be used to optimise the code.

A more thorough technical description of with-loop-scalarisation
along with an investigation on runtime performance impact can be found
in Ref. 29.

4. MULTI-THREADING

4.1. Parallelisation at a Glance

With generators defining sets rather than sequences of indices and
with associated expressions that may be evaluated independently of each
other and in any order, with-loops specify prototypical data parallel oper-
ations. Furthermore, the language design of SaC, which is characterised
by implementing any aggregate array operation in SaC itself by means of
with-loops, leads to an omnipresence of with-loops in intermediate SaC
code. Last but not least, the various optimisation techniques sketched out
in the previous section systematically improve the computational workload
per array element during the compilation process. In conjunction, these
properties make with-loops ideal candidates for parallelisation both with
distributed memory as well as with shared memory architectures in mind.
Notwithstanding the opportunity for genuine support of both architectural
models or even mixtures thereof, we have so far focussed on compiler-
directed parallelisation techniques for shared memory architectures based
on multi-threading.

When contemplating the multi-threaded execution of SaC programs, it
turns out that some program parts require sequential execution by a ded-
icated thread. For example, I/O operations must be performed in a sin-
gle-threaded way in order to preserve the sequential I/O behaviour. I/O
operations and state modifications in general are properly integrated into
the purely functional world of SaC by a variant of uniqueness types,(43)

named classes.(44) Enforcing the uniqueness property bans all state mod-
ifications from bodies of with-loops. Hence, the easiest way to preserve
sequential I/O behaviour is to restrict parallel program execution to indi-
vidual with-loops.
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Following this idea, a master thread executes most parts of a SaC
program in a single-threaded way, similar to sequential execution. Only
when it comes to computing a with-loop, the master thread creates the
desired number of additional worker threads. Subsequently, all worker
threads concurrently, but cooperatively, execute the single with-loop.
Meanwhile, the master thread merely awaits the termination of the worker
threads. After all worker threads have finished their individual shares of
work, they terminate, and the master thread resumes sequential execution.

4.2. Generating Multi-Threaded Code for Individual WITH-Loops

We illustrate the generation of multi-threaded code by means of a
prototypical with-loop of the form

a,b,c = with gen1 : g1, m1, f1
...

genn : gn, mn, fn

genarray( shp, def )
modarray( old )
fold( fop, neutr );

In order to demonstrate the different requirements of genarray-, mod-
array-, and fold-with-loops for parallelisation our prototypical with-
loop is in fact a multi-operator with-loop with three different operation
parts, one of each kind. While we abstract from a concrete number of
generator/expression pairs, we use exactly these three operation parts in
order to avoid an overly complicated representation. The extension of our
scheme to arbitrary numbers of operation parts and arbitrary mixtures
of the three kinds thereof is rather straightforward. We assume shp, def,
old, and neutr to denote simple identifiers rather than complex expres-
sions. In the case of SaC this is guaranteed by preceding compilation
steps, namely the functionalisation phase, as described in Section 3.1. In
contrast, gi, mi, fi denote potentially complex expressions, which corre-
spond to the three operation parts, genarray, modarray, and fold,
respectively. Likewise, the three variables a, b, and c are bound to the val-
ues computed by the genarray-, modarray-, and fold operation parts,
respectively.

Figure 14 shows the multi-threaded pseudocodes generated from this
prototypical with-loop for the master thread (left hand side) and for
worker threads (right hand side). We indicate the interaction between mas-
ter thread and worker threads by horizontal arrows. Whenever execu-
tion of the master thread reaches a with-loop, the master thread first
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Fig. 14. Compilation of with-loops into multi-threaded pseudo code.

allocates memory appropriate for storing the result arrays, i.e. the result
values associated with genarray and modarray operation parts. While
in the modarray case the shape of the result array can simply be adopted
from the referenced array, the genarray case requires us to concatenate
the given result shape with the shape of the elements. Since we enforce
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uniformity of subarrays, we can use the shape of the default element
as a representative. Due to the commitment to shared memory architec-
tures, explicit decomposition of arrays is obsolete. Hence, implicit dynamic
memory management for arrays can be adopted from the existing sequen-
tial implementation with only minor adaptations. Actually, arrays are still
stored in a single contiguous address space.

To enable worker threads to cooperatively participate in the com-
putation of a with-loop we must first set-up an execution environment
equivalent to that of the master thread. More precisely, all those vari-
ables referred to within the body of the with-loop, but defined before,
must also exist in the worker thread. Moreover, they must be initialised to
the current values in the master thread to ensure proper execution of the
with-loop by each worker thread. The required information must be com-
municated to the worker threads before they start execution of productive
code.

In a shared memory environment communication between threads
can be realised by writing to and reading from global data structures.
Therefore, each with-loop in a SaC program is associated with a global
buffer, called task frame. The task frame is tailor-made for communication
between master thread and worker threads for that individual with-loop.
The master thread stores the values of all free variables of the various
generator-expression pairs in the task frame. Additionally, we store some
more information specific to the operation parts: the base addresses of
memory allocated to store the result arrays of genarray and modar-
ray operations, the result shapes and the default values of genarray
operations, the referenced arrays of modarray operations, and the neu-
tral elements of fold operations. It is important to note here that due to
the shared memory environment we only communicate array descriptors,
rather than the arrays themselves. We do not store the fold operation in
the task frame because for the time being SaC does not support higher-
order functions in general. Hence, the fold operation is not a computable
expression, but literally the name of an existing function or operator.

Eventually, the desired number of worker threads is created. The
actual number may either be fixed at compile time, or it is determined
by a command line parameter or by an environment variable upon pro-
gram start. In any case, the number of threads remains constant through-
out an entire program run. All worker threads uniformly execute the code
shown on the right hand side of Fig. 14, but each thread may identify
itself by means of a unique ID. As a first step, a worker thread sets up
its execution environment by extracting the required information from the
task frame. Access to the task frame can always be granted without costly
synchronisation of threads via critical regions or similar. As long as the
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master thread writes to the task frame, it is known to be the only thread
in the process. As soon as multiple threads exist, the task frame is used as
a read-only buffer.

Although all worker threads execute exactly the same code, they must
address pairwise disjoint subsets of the overall index space for parallel
execution to make sense. This additional side condition must be taken
into account when eventually compiling a with-loop into nestings of
for-loops in C. Even in the sequential case, generation of efficient code
from with-loops with multiple interleaved generators has proved to be an
extremely complicated and challenging task.(25,42) Therefore, we want to
reuse the existing sequential code generation scheme for with-loops as
far as possible. However, we need to associate each element of the result
array with exactly one thread. The scheduling of array elements to threads
directly affects workload distribution among processors and is vital for
performance.

The solution adopted in Fig. 14 keeps code generation and scheduling
as separate as possible. As a first step, each worker thread determines the
overall index space of the with-loop by means of a system function Clos,
which yields the smallest rectangular hull of the transitive closure of the
generators. Then, each worker thread calls the system function UnqSubset
to identify a rectangular index subspace IdxSeti based on its unique ID and
the index space ISpace. Proper implementations of UnqSubset guarantee
that each index is covered by exactly one such index subspace. Different
implementations of UnqSubset allow us to realise various different sched-
uling techniques without affecting the compilation scheme otherwise. Based
on programmer annotations or on compiler heuristics, the most appropriate
scheduler implementation may be selected.

After initialisation of the execution environment and allocation of a
rectangular index subspace by the loop scheduler, execution of the with-
loop by an individual worker thread proceeds almost as in the sequen-
tial case. In Fig. 14, this is indicated by the recursive application of code
generation. The main difference between generation of multi-threaded and
generation of sequential code here is that we restrict the range of any for-
loop in compiled code to the intersection between its original range and
the index subspace IdxSeti allocated by the with-loop scheduler.

In the case of genarray and modarray operations our scheduling
mechanism suffices to let the worker threads compute and initialise the
resulting array allocated by the master thread. For fold operations, how-
ever, each worker thread initialises a local accumulation variable, denoted
ci in Fig. 14, by the neutral element of the fold operation. Consequently,
each worker thread computes a partial fold result, which upon completion
it writes back into the task frame. In order to avoid costly synchronisation
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upon concurrent access to the task frame by worker threads, the task
frame provides a dedicated entry for each worker thread.

While worker threads terminate after having completed their task,
the master thread awaits termination of all worker threads. Only then, it
extracts the partial fold results from the task frame, and combines them to
sequentially generate the overall fold result. Eventually, the master thread
resumes sequential execution of the program.

4.3. Enhancing the Execution Model

The compilation scheme defined in Section 4.2, addresses individual
with-loops. In compiled code, there is no connection between multi-
threaded execution of consecutive with-loops. This limited scope facili-
tates the definition of a basic compilation scheme, yet it excludes any
optimisation across multiple with-loops. Following the multi-threaded
execution of one with-loop, all worker threads terminate during synchro-
nisation. The same number of worker threads is again created for the
multi-threaded execution of the following with-loop. Program execution
is a sequence of steps alternatingly performed in single-threaded and in
multi-threaded mode, as illustrated on the left hand side of Fig. 15.
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Fig. 15. Comparison of pure and enhanced fork/join execution models.
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This fork/join execution model is conceptually simple. Synchronisa-
tion and communication events are confined to thread creation and thread
termination. Worker threads do not interact with each other at all. How-
ever, the price for simplicity is excessive runtime overhead due to frequent
creation and termination of threads. Although the associated costs are
much smaller than those for process creation and termination, they are
still prohibitive for successful parallelisation.

There are basically two approaches to reduce runtime overhead with-
out leaving the overall model of organisation. Firstly, we may improve
the implementation of thread creation and termination, e.g. by caching
worker threads during periods of sequential execution and by employ-
ing efficiently implemented synchronisation and communication constructs
instead.(33) Secondly, we may combine multiple data independent instances
of skeletons into a single instance of some more versatile meta skele-
ton.(45) While the first approach reduces the costs associated with each
individual such event, the second approach reduces the number of costly
synchronisation and communication events. We proceed with discussing
the former approach while the latter is addressed in Section 4.4.

A solution which combines the conceptual simplicity of the fork/join
approach with an efficient execution scheme is shown on the right hand
side of Fig. 15. In the enhanced fork/join model, the desired number of
worker threads is created once at program start, and all threads remain
active until the whole program terminates. Two tailor-made barriers, the
start barrier and the stop barrier, realise all necessary synchronisation
among threads.

After creation, worker threads immediately hit a start barrier. As
soon as the master thread encounters the first with-loop, the start bar-
rier is lifted. The worker threads thereupon activated share the computa-
tion of the with-loop, exactly as in the pure fork/join model. Unlike in
the pure fork/join model, the master thread temporarily turns itself into a
worker thread and joins the other threads in the cooperative execution of
the with-loop. Regular worker threads that have completed their individ-
ual computations pass the following stop barrier and, with nothing else to
do, immediately move on to the next start barrier. After having finished its
own assignment of work, the master thread waits at the stop barrier for
the longest-running worker thread to arrive. Only then the master thread
proceeds with subsequent (sequential) computations.

In the absence of particular hardware support for efficient multi-
threading (i.e. on standard shared memory multi-processor systems) thread
creation and termination are costly operations as they typically require
operating system interaction. The enhanced fork/join model may be
thought of as caching threads while they are not productively computing.
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The applications we consider typical for SaC spend the overwhelming part
of their execution time computing with-loops. As a consequence, the time
spent executing sequential code in between two with-loopsis negligible.
This justifies the continuous allocation of resources even when they are
not effectively used for very short periods of time.

4.4. SPMD Optimisation

The enhanced fork/join execution model significantly reduces synchro-
nisation costs by replacing thread creation and thread termination by
less expensive start and stop barriers, respectively. Nevertheless, program
execution stalls at each stop barrier until arrival of the longest-running
worker thread, and start and stop barriers are still major sources of over-
head. An orthogonal approach to optimising multi-threaded program exe-
cution is to reduce the number of synchronisations performed at runtime.
Our aim is to create larger program sections of multi-threaded execution
without intercepting synchronisation and communication events. Besides
avoiding the cost immediately associated with the execution of the barrier
code and the need to wait for the longest-running worker thread, larger
regions of parallel execution also render loop scheduling techniques more
effective.

In principle, with-loop-folding and with-loop-fusion have exactly
this effect. However, their applicability is restricted by various side condi-
tions, which often could be neglected when solely having synchronisation
requirements in mind. The main problem here is the fact that with-loops
describe both a computational task and a coordination behaviour, i.e. the
organisation of the parallel execution of the given task by multiple threads.
Creating regions of parallel execution that stretch over several with-loops
which neither permit with-loop-folding nor with-loop-fusion requires
explicit separation of these two concerns.

Therefore, we introduce SPMD skeletons as intermediate representa-
tions of the coordination behaviour of regions of parallel execution. Within
such regions, which may contain multiple with-loops, program execution
follows the “Single Program, Multiple Data” approach, hence the name. As
a starting point, each with-loop that is to be executed in parallel is inter-
nally embedded within an SPMD skeleton. Then, we systematically aim
at identifying SPMD skeletons without data dependences. Any two such
SPMD skeletons are merged into a single one containing all with-loops
embedded in the former individual skeletons. This optimisation step is only
restricted by data dependences and not by additional properties of the gener-
ator sets as is the case with both with-loop-folding and with-loop-fusion.
In the further compilation process all code responsible for coordination of
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threads and communication between threads is derived from the SPMD
skeletons.

5. CONCLUSION

We have presented the design and sketched out the implementation
of the functional array programming language SaC. The paper gives a
comprehensive account of the interplay between language design, com-
piler optimisation, and generation of multi-threaded code. It is this care-
ful interplay that allows us to compile high-level declarative SaC programs
into executable code whose runtime performance is competitive with that
of low-level machine-oriented solutions.

A SaC-specific language construct called with-loop takes a key role
in this task. Its carefully chosen design provides the grounds for speci-
ficational power combined with suitability for program reorganisation as
well as code generation for multi-threaded execution. Besides an extensive
introduction into the expressive power of with-loop the paper explains the
three most important with-loop optimisations. They transform composi-
tions of many simple with-loops, as they result from a compositional pro-
gramming style, into few though significantly more complex with-loops.
Furthermore, we outline the most important organisational measures that
are required to compile such complex with-loops into multi-threaded
code.

High-level program transformations and generation of multi-threaded
code are no isolated issues. In fact, they depend on each other to achieve
the overall goal of high runtime performance. On the one hand, the
program transformations are mandatory to achieve high sequential per-
formance. Without them parallelisation would start from uncompetitive
performance levels and, hence, would hardly justify the effort. In fact,
high-level program transformations account for many optimisations that
in other approaches are dealt with when generating parallel code. They
(silently) eliminate the need for synchronisation and communication and
identify coarser-grained parallelisation candidates. On the other hand,
fully implicit, compiler-directed parallelisation gives the extra competitive
edge in terms of performance, despite the high-level declarative style of
programming.

Although the proposed techniques — in principle — can be applied
in an imperative setting as well, it is doubtful whether the same overall
effectiveness can be achieved. As can be seen from the transformations pre-
sented in the paper, it is crucial for all these measures that expressions can
be moved rather freely within functions if not the entire program. While
the opportunities for such movements can be easily detected statically in the
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functional setting, an imperative setting is far more restrictive. There, slight
program modifications may introduce potential side-effects that inhibit fur-
ther optimisations. Furthermore, explicit storage declarations often prevent
optimisations which, in the functional context, due to the implicit memory
management can be done.

Due to space limitations we have neither discussed any larger example
of a SaC program nor have we shown any runtime performance figures.
In previous publications we have investigated several case studies in-depth
substantiating our above claims to achieve competitive runtimes despite a
declarative style of programming. The interested reader is referred to Refs.
34–36 for additional information of this kind.
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