
On De�ning Application-Speci�c High-Level Array Operations by Means of

Shape-Invariant Programming Facilities

Sven-Bodo Scholz

Dept of Computer Science, University of Kiel, 24105 Kiel, Germany

e-mail: sbs@informatik.uni-kiel.de

Abstract

Most of the existing high-level array processing languages

support a �xed set of pre-de�ned array operations and a few

higher-order functions for constructing new array operations

from existing ones. In this paper, we discuss a more general

approach made feasible by Sac (for Single Assignement C),

a functional variant of C.

Sac provides a meta-level language construct called with-

loop which may be considered a sophisticated variant of the

forall-loops in HPF or of array comprehensions in func-

tional languages. It allows for the element-wise speci�cation

of high-level operations on arrays of any dimensionality: any

set of high-level array operations can be speci�ed by means

of with-loops and be made available in a library. This does

not only improve the
exibility of speci�cations, but also

simpli�es the compilation process.

By means of a few examples it is shown that the high-

level operations that are typically available in array pro-

cessing languages such as Apl or Fortran90 can be eas-

ily speci�ed as with-loops in Sac. Furthermore, we brie
y

outline the most important optimization techniques used in

the current Sac compiler for achieving e�ciently executable

code.

The paper �nally presents a performance comparison be-

tween a high-level speci�cation for the multigrid relaxation

kernel of the NAS benchmarks in Sac on the one hand and

low-level speci�cations in Sisal and in Fortran77 on the

other hand. It shows that the Sac implementation, despite

its higher level of abstraction, is competitive with the other

two both in terms of program runtimes and memory con-

sumption.

Keywords: High-Level Array Operations, Meta-Level Pro-

gramming, Shape-Invariant Programming, Compilation, Per-

formance Comparison.

1 Introduction

One of the key features of array processing languages such

as Apl[Ive62] or Fortran90[ABM

+

92] is that they provide

a �xed set of high-level array operations that are applica-

ble to arrays of any dimensionality. Although these pre-

de�ned operations can be implemented by e�ciently exe-

cutable dimension-speci�c target code, this approach has

some shortcomings.

Some numerical application problems require array op-

erations which cannot be easily expressed by means of these

primitives, often requiring rather complex compositions of

them which are hard to comprehend. To express these op-

erations more elegantly a feature is needed which allows to

de�ne new Apl-like primitives on an element-wise basis.

Moreover, the compilation of function compositions into

e�ciently executable code is far from straightforward as too

many intermediate arrays may be created which in a low-

level scalar-oriented speci�cation could be avoided. Opti-

mizations to this e�ect face di�erent di�culties, depending

on the level of abstraction on which they are being done:

Optimizations that operate more or less directly on source

programs, e.g. phrase recognition or array coordinate map-

ping [Bro85, Bud88, Mul88] require many di�erent optimiza-

tion rules to be implemented. However, only a few of these

rules can be implemented as algebraic transformations on

the source level. Most of them require an implicit transfor-

mation into a lower level of abstraction.

Another way to avoid intermediate arrays is to com-

pile the high-level array operations into programs (merely

dimension-speci�c nestings of loops) of more basic languages,

e.g. Fortran77 or C, and subsequently apply more gen-

eral optimizations, e.g. loop fusion, forward substitution, or

scalar replacement [PW86, ZC91, Can93, BGS94, Wol95].

Unfortunately, at this rather low level some of the high-

level information about the structure of nestings of these

loops and its interdependencies are not available anymore,

which restricts the applicability of these optimizations.

A more promising approach is taken in the APEX com-

piler [Ber97b, Ber97a], where Sisal [MSA

+

85] is chosen as

intermediate language for the compilation of Apl programs.

The advantage of this approach is that the for-loops in

Sisal allow to preserve more information about the struc-

ture of the high-level operations. Furthermore, the Sisal

compiler osc [Can93] o�ers excellent support for loop opti-

mizations and compilation to shared-memory multiproces-

sor systems.

Unfortunately, the choice of Sisal as intermediate lan-

guage has some drawbacks as well. In Sisal, all functions

/ array operations require the dimensionalities of the argu-

ments to be speci�ed explicitly. As a consequence, APEX

has to be restricted to those Apl programs where the dimen-

sionalities of all arrays can be inferred statically. Moreover,

the dimension-dependence of Sisal a priori precludes lan-

guage extensions that would allow to de�ne new primitive

array operations on an element-wise basis.

As a possible remedy for these problems we propose using

Sac [Sch96, Sch97a] either as intermediate language or even

as source language. Sac is a functional C-variant which

truly supports dimension-invariant speci�cations of array

operations. Besides providing a �xed set of primitives, SAC

o�ers meta-level language constructs which on the one hand

are versatile enough to specify arbitrary high-level array op-

erations and on the other hand are restrictive enough to

allow for the compilation into e�ciently executable code.

These constructs, called with-loops, may be considered so-

phisticated variants of the for-loops in Sisal, forall-loops

in Hpf, or of array comprehensions in functional languages.

They do not only allow for the speci�cation of operations

on arbitrary subranges of arrays but may also be speci�ed

in a form that is completely invariant against the shapes of

the arrays they are applied to.

This paper discusses the pros and cons of using with-

loops as meta-level language construct for de�ning high-level

array operations similar to those available in Apl. After giv-

ing a brief introduction to Sac in Section 2 the applicability

of with-loops for de�ning Apl-like primitives is investigated

in Section 3. For a few examples it is demonstrated how

such operations can be speci�ed and how using with-loops

for the speci�cation of such primitives quite naturally leads

to the introduction of yet other primitives and thus to a

more modular programming style. Section 4 brie
y sketches

the most important optimizations of the current Sac com-

piler, and Section 5 compares some performance �gures for a

high-level Sac speci�cation of the mgrid kernel of the NAS

benchmarks [BBB

+

94] with those of equivalent Fortran

and Sisal implementations.

2 Sac - a Short Introduction

Sac is a strict, purely functional language whose syntax in

large parts is identical to that of C. In fact, Sac may be

considered a functional subset of C extended by high-level

array operations which may be speci�ed in a shape-invariant

form. It di�ers from C proper mainly in that

� it rules out global variables and pointers to keep func-

tions free of side-e�ects,

� it supports multiple return values for user-de�ned func-

tions, as in many data
ow languages[AGP78, AD79,

BCOF91],

� it supports high-level array operations, and

� programs need not to be fully typed.

With these restrictions / enhancements of C a transfor-

mation of Sac programs into an applied �-calculus can easily

be de�ned. The basic idea for doing so is to map sequences of

assignments that constitute function bodies into nestings of

let-expressions, with the return-expressions being trans-

formed into the innermost goal expressions. Loops and if-

then-else statements are transformed into (local) letrec-

expressions and conditionals, respectively. For details see

[Sch96].

An array in Sac is represented by a shape vector which

speci�es the number of elements per axis, and by a data

vector which lists all entries of the array.

For instance, a 2 � 3 matrix

�

1 2 3

4 5 6

�

has shape

vector [2; 3] and data vector [1; 2; 3; 4; 5; 6]. The set of legit-

imate indices can be directly inferred from the shape vector

as

f[i

1

; i

2

] j 0 � i

1

< 2; 0 � i

2

< 3g

where [i

1

; i

2

] refers to the position (i

1

� 3 + i

2

) of the data

vector. Generally, arrays are speci�ed as expressions of the

form

reshape(shape vector, data vector)

where shape vector and data vector are speci�ed as lists of

elements enclosed in square-shaped brackets. Since arrays of

dimensionality 1 are in fact vectors, they can be abbreviated

as

[v

1

; :::; v

n

] � reshape([n], [v

1

; :::; v

n

]) .

A few high-level array operations are pre-de�ned in Sac,

e.g. dim and shape for inspecting the dimensionality and

the shape of an array, and a function psi for array element

/ subarray selection. Note here, that for reasons of conve-

nience psi(array, index vector) can be abbreviated as

array[index vector]. For a formal de�nition of these ar-

ray operations see [Sch96, Sch97b].

Any other high-level array operation has to be de�ned

by means of so-called with-loops. They are similar to the

for-loops in Sisal, but allow for the speci�cation of index

ranges within arrays of unknown dimensionality.

The syntax of with-loops is de�ned in Fig. 1. Basically,

WithExpr) with (Generator [Filter]) Operation

Generator) Expr <= Identifier <= Expr

Filter) [step Expr [width Expr]]

Operation) [f LocalDeclarations g] ConExpr

ConExpr) genarray (Expr ; Expr)

j modarray (Expr ; Expr ; Expr)

j fold (FoldFun ; Expr ; Expr)

FoldFun) + j � j Identifier

Figure 1: with-loops in Sac.

they consist of three parts: a generator part, a �lter part,

and an operation part. The generator part de�nes lower

and upper bounds for a set of index vectors and an 'index

variable' (Identi�er in the second rule of Fig. 1) which rep-

resents an element of this set. The optional �lter part may

restrict the set of index vectors in the following way: let a,

b, s, and w denote expressions that evaluate to vectors of

the length n. Then

(a <= i vec <= b step s width w)

denotes the following set of index vectors:

fi vec j 8i2f0;:::;n�1g : a

i

� i vec

i

� b

i

^ (i vec

i

� a

i

) modulo s

i

< w

i

g:

The operation part speci�es the operation to be performed

on each element of the index vector set de�ned by the gener-

ator / �lter part. Three di�erent kinds of operation parts for

the generation of arrays are available in Sac (see ConExpr

in Fig. 1). Their functionality is de�ned as follows:

Let shp and idx denote Sac-expressions that evaluate to

vectors, let array denote a Sac-expression that evaluates to

an array, and let expr denote an arbitrary Sac-expression.

Furthermore, let fold op be the name of a binary commu-

tative and associative function (FoldFun in Fig. 1) with

neutral element neutral. Then

� genarray(shp, expr) generates an array of shape

shp whose elements are the values of expr for all index

vectors from the speci�ed set, and 0 otherwise;

� modarray(array, idx, expr) returns an array of shape

shape(array) whose elements are the values of expr

for all index vectors from the speci�ed set, and the

values of array[idx] at all other index positions.

� fold(fold op, neutral, expr) sets out with the neu-

tral element neutral to fold with the binary operation

fold op the values of expr found in all index positions

from the speci�ed set. It is the responsibility of the

programmer to make sure that the function fold op

is commutative and associative in order to guarantee

deterministic results.

To increase program readability, local variable declarations

may precede the operation part of a with-loop. They allow

for the abstraction of (complex) subexpressions from the

operation part.

3 De�ning dimension-invariant array operations in Sac

In this section the applicability of the with-loop constructs

in Sac for de�ning Apl-like array operations is investigated.

As a �rst example, we try to de�ne two functions take and

dropwhich realize the " and # operators ofApl, respectively.

take expects two arguments: a vector new shape which

speci�es the size of the sub-array to be taken and an ar-

ray A from which the elements are to be extracted of. The

resulting array res is of shape new shape and its elements

are de�ned as follows: for each legal index vector i vec of

res we have res[i vec] = A[i vec]. This speci�cation can

directly be translated into a Sac function:

inline double[] take(int[] new_shp, double[] A)

{

res = with (. <= i_vec <= .)

genarray(new_shp, A[i_vec]);

return(res);

}

Note here, that double[] and int[] are type declarations

in Sac that denote array types of unknown shape with basic

type double and int, respectively. Furthermore, in the gen-

erator part of the with-loop a shorthand notation, the dot

symbol, is used for the speci�cation of the upper and lower

bound of the index range to be processed. It denotes the

minimum and maximum legal index vector of the resulting

array.

A function drop can be de�ned similarly. However, in

contrast to take, the elements of the resulting array are

taken from the argument array by adding to the index vector

i vec an o�set given as the �rst argument of drop:

inline double[] drop(int[] offset, double[] A)

{

new_shp = shape(A)-offset;

res = with (. <= i_vec <= .)

genarray(new_shp, A[i_vec+offset]);

return(res);

}

The computation of the shape of the resulting array (new shp)

as well as the access to A require + and - to be applicable to

arrays as well. This can easily be achieved by de�nitions of

the following kind:

inline double[] +(double[] A, double[] B)

{

res = with (. <= i_vec <= .)

modarray(A, A[i_vec] + B[i_vec]);

return(res);

}

As a more sophisticated example consider the function

rotate that rotates the elements of an array by a pre-speci�ed

number num of elements in a pre-speci�ed dimension dim:

inline double[] rotate(int dim, int num, double[] A)

{

max_rotate = shape(A)[dim];

num = num % max_rotate;

if(num < 0)

num = num + max_rotate;

offset = modarray(0*shape(A), [dim], num);

slice_shp = modarray(shape(A), [dim], num);

res = with (offset <= i_vec <= shape(A)-1)

modarray(A, i_vec, A[i_vec-offset]);

res = with (0*slice_shp <= i_vec <= slice_shp-1)

modarray(res, i_vec, A[shape(A)-slice_shp+i_vec]);

return(res);

}

After normalizing num to a positive integer between 0

and the maximum number of elements of A in dimension

dim the computation of the rotated array is done in several

steps. In order to avoid modulo operations for the compu-

tation of each element of the resulting array B, two di�er-

ent o�sets to the index vectors i vec are computed: one

for those elements which have to be copied from positions

with lower index vectors to positions with higher index vec-

tors (offset) and another one (shape(A)-slice shp) for

those elements that have to be copied from positions with

higher index vectors to positions with lower index vectors.

Besides the introduction of an overloaded version of * for

scalars and arrays, the computation of the vectors offset

and slice shp requires a function modarray which allows

single elements of an array to be changed. As for the over-

loaded version of +, the implementation of these functions

can be speci�ed straight-forwardly by means of with-loops

and therefore are omited here.

After offset and slice shp are computed the rotation

of array elements can be expressed by two consecutive with-

loops, each of which copies a part of the array elements.

All primitive array operations that are available in lan-

guages such as Apl or Fortran90 can be de�ned in Sac in

a similar way. Moreover, de�ning array operations by means

of with-loops may encourage programmers to introduce fur-

ther abstractions (primitives) whenever deemed necessary.

This may not only increase the readability of programs but

may also lead to a more modular programming style and

thus increase program re-usability.

4 Compiling with-loops into E�ciently Executable Code

The freedom gained by the with-loops with respect to spec-

ifying high-level array operations, which in fact introduces

a meta language level, must of course be complemented by

a much more generic compilation process than that of pre-

de�ned array operations. This section outlines the most

important optimizations used in the current Sac compiler

to generate C code from such speci�cations that compares

well with hand-optimized versions.

To examplify this optimization process we take the def-

inition of the rotate function from the previous section as

a running example and assume an application of the form

rotate(1, n, A) where n is meant to refer to an integer

that is not known at compile time and A refers to an array

of shape [100, 100].

As one of the �rst optimizations applied in the Sac com-

piler, all speci�cations of dimension-invariant array oper-

ations are specialized to dimension-speci�c versions as far

as possible. For this purpose, the Sac compiler includes an

elaborate type inference system which through a hierarchy of

array types infers the most speci�c types of these parameters

statically. This enables the compiler to translate Sac func-

tion de�nitions into function codes that are adapted exactly

to the shapes of the arrays they are applied to. Similarly,

with-loops can be compiled into nestings of for-loops in

compliance with the shape of the indexing vectors speci�ed

in the generator parts. If necessary, the compiler may even

generate several instances of function or with-loop codes to

operate on arrays of changing dimensionalities and shapes.

With respect to the running example, a specialized ver-

sion of rotate is built which makes use of the known shape

of A:

inline double[100, 100] rotate_100_100(int dim,

int num,

double[100, 100] A)

{

max_rotate = [100, 100][dim];

num = num % max_rotate;

if(num < 0)

num = num + max_rotate;

offset = modarray(0*[100, 100], [dim], num);

slice_shp = modarray([100, 100], [dim], num);

B = with (offset <= i_vec <= [100, 100]-1)

modarray(A, i_vec, A[i_vec-offset]);

B = with (0*slice_shp <= i_vec <= slice_shp-1)

modarray(B, i_vec, A[[100, 100]-slice_shp+i_vec]);

return(B);

}

After applying standard optimizations, e.g. inlining, con-

stant folding, and constant propagation [ASU86, BGS94], we

obtain:

...

num = num % 100;

if(num < 0)

num = num + 100;

B = with ([0, num] <= i_vec <= [99, 99])

modarray(A, i_vec, A[i_vec-[0, num]]);

B = with ([0,0] <= i_vec <= [99, num-1])

modarray(B, i_vec, A[[0, 100-num]+i_vec]);

...

Note here, that for reasons of simplicity we treat the

overloaded versions of the arithmetic functions as well as

the function modarray as if they would be primitives. In the

actual compiler this is achieved by unrolling these with-

loops and applying the standard optimizations mentioned

above. At this stage of compilation a Sac-speci�c compiler

optimization called with-loop-folding is applied which tries

to fusion consecutive with-loops (for details see [Sch97c]).

The result of this fusion process is an internal with-loop

representation which may have multiple disjoint generator

parts. In this particular case the compiler inferes two gen-

erator parts: one for the range from [0, num] to [99, 99]

and the other one from [0,0] to [99, num-1]:

...

num = num % 100;

if(num < 0)

num = num + 100;

B = internal_with :

[0, num] <= i_vec <= [99, 99] : A[i_vec-[0, num]];

[0,0] <= i_vec <= [99, num-1] : A[[0, 100-num]+i_vec];

...

Finally, another Sac-speci�c compiler optimization called

index vector elimination is applied (for details see [Sch96,

Sch97b]). This optimization tries to eliminate vectors that

are built for indexing purposes only. In our example these

are [0, num], [0, 100-num], and even i vec. Since the

data vectors of all arrays in Sac are compiled into a
at

C representation, the expressions A[i vec-[0, num]] and

A[[0, 100-num]+i vec] can be compiled into C array ac-

cesses A data[i vec offset - num] and

A data[100-num+i vec offset], respectively, where A data

refers to the data vector of A and i vec offset refers to

an o�set into A data which is created implicitly during the

compilation of the with-loop. Due to a sophisticated com-

pilation scheme for the internal with-loop representation we

�nally obtain compiled C-code which looks quite similar to

a hand-coded version:

...

num = num % 100;

if(num < 0)

num = num + 100;

... // allocate memory for B_data

i_vec_offset=0;

for(tmp_0 = 0; tmp_0<=99; tmp_0++)

for(tmp_1 = 0; tmp_0<=num-1; tmp_1++, i_vec_offset++)

B_data[i_vec_offset] = A_data[100-num+i_vec_offset];

for(tmp_1 = 0; tmp_0<=num-1; tmp_1++, i_vec_offset++)

B_data[i_vec_offset] = A_data[i_vec_offset - num];

...

5 A Performance Comparison

This section brie
y presents some comparative performance

�gures which show to which extent the Sac approach is

competitive with Fortran77 and Sisal implementations

in terms of runtime e�ciency and memory space consump-

tion. An exhaustive discussion of these results can be found

in [Sch97b]

1

. The comparison is based on the multigrid ker-

nel MG of the NAS-benchmarks [BBB

+

94] which performs

some prespeci�ed number of complete multigrid cycles on a

three-dimensional array of 2

n

; n 2 f3; 4; :::g entries per axis

in the �nest grid. Each cycle moves through a sequence of

mappings from the �nest to the coarsest grid of 4 � 4 � 4

entries, followed by a sequence of alternatingly doing relax-

ations and coarse-to-�ne grid mappings back to the �nest

grid.

The Fortran implementation of this algorithm was di-

rectly taken from the benchmark

2

, the Sisal program was

hand-coded to perform the same elementary computations

in the same order as the Fortran benchmark, whereas

the Sac program heavily utilizes with-loops to de�ne a

dimension-invariant solution.

The hardware platform used for this contest was a Sun

UltraSparc-170 with 192MB of main memory. The For-

tran program was compiled by the Sun Fortran compiler

f77 version sc3.0.1 which generates native code directly. The

Sisal and Sac programs were compiled by the Sisal com-

piler osc, version 13.0.2, and by the Sac compiler sac2c,

respectively, both of which produce C-code as output. The

Gnu-C-compiler gcc version 2.6.3 was used to compile the

C-code to native machine code. Program execution times

1

The runtime �gures presented in this paper are di�erent from

those in [Sch97b] since the back-end of the actual Sac compiler incor-

porates some of the optimizations mentioned in that paper as future

work.

2

We only simpli�ed the initial array generation and modi�ed the

problem-size.

and space demands were measured by the operating system

timer and process status commands, respectively.

Fig.2 shows the time and space demands of all three

multigrid implementations for three di�erent problem-sizes,

these being 32, 64, and 128 elements per axis. The bars in

time
timeSAC

SAC

SISAL

f77

problem-
size

mgrid_3d

1.0

0.5

1.5

32 64 128

0.
10

s

0.
09

s

0.
16

s

0.
80

s

0.
76

s

1.
14

s

6.
5s

6.
0s

9.
1s

SAC

SISAL

f77

problem-
size

mgrid_3d

32 64 128

mem
memSAC

3.0

2.0

1.0

2.
5M

B

9.
0M

B

58
M

B

3.
6M

B

11
.6

M
B

74
M

B5.
3M

B

27
.0

M
B

17
3M

B

Figure 2: Time and Space Demand for Multigrid Relaxation

on 3 Dimensional Arrays

the upper diagram depict execution times relative to that of

the Sac program, with absolute times for one full multigrid

cycle annotated inside the bars. For all three problem sizes

the code compiled from the Sac program requires the short-

est execution time. The Fortran and Sisal programs, re-

spectively, require about 8% and about 50% more execution

time.

The diagram in the lower part of Fig. 2 compares the rel-

ative space-demands of the three implementations. It shows

that the Fortran program is the most space-e�cient one,

requiring on average only 80% of the space taken by the

Sac program. The memory demand of the Sisal program

signi�cantly exceeds that of both of the others, in the case

of the largest problem size by more than a factor of two.

6 Conclusion

In this paper, we discuss the pros and cons of using Sac for

specifying high-level array operations. Instead of provid-

ing a �xed set of primitives, Sac o�ers meta-level language

constructs which, on the one hand, are versatile enough to

specify arbitrary high-level array operations, and on the

other hand are restrictive enough to allow for the compi-

lation into e�ciently executable code. These constructs,

called with-loops, may be considered sophisticated variants

of the forall-loops in Hpf or of array comprehensions in

functional languages. They do not only allow for the spec-

i�cation of operations on arbitrary subranges of arrays but

may also be speci�ed in a form that is completely invariant

against the shapes of the arrays they are applied to.

By means of simple examples it is shown that the high-

level array operations that are typically available in array

processing languages such as APL or Fortran 90 can be

easily speci�ed as with-loops in Sac. Thus, di�erent sets

of prede�ned high-level array operations may be provided

through di�erent versions of the standard library. As a con-

sequence, the user may not only choose the appropriate set

of high-level primitives but may even adapt the set of func-

tions to each application's individual needs.

In addition to the gains made in terms of speci�cational

exibility, the meta-level approach proposed for Sac o�ers

also advantages when it comes to compiling compositions of

high-level array operations into e�ciently executable code.

Instead of requiring many speci�c optimization rules, a gen-

eral scheme for folding with-loops su�ces to avoid super-

uous intermediate arrays. By means of an example it is

shown that these operations are transformed into code that

is identical to its hand-coded counterparts.

Finally, the paper compares some performance �gures

of high-level Sac speci�cations of the multigrid relaxation

kernel from the NAS benchmarks against low-level speci�-

cations in Sisal and Fortran77. Despite its higher level of

abstraction, the Sac implementation is compiled into code

which is competitive with the other implementations both

in terms of program runtimes and memory consumption.

References

[ABM

+

92] J.C. Adams, W.S. Brainerd, J.T. Martin, et al.:

Fortran90 Handbook - Complete ANSI/ISO Ref-

erence. McGraw-Hill, 1992. ISBN 0-07-000406-4.

[AD79] W.B. Ackerman and J.B. Dennis: VAL-A

Value-Oriented Algorithmic Language: Prelim-

inary Reference Manual. TR 218, MIT, Cam-

bridge, MA, 1979.

[AGP78] Arvind, K.P. Gostelow, and W. Plou�e: The

ID-Report: An asynchronous Programming Lan-

guage and Computing Machine. Technical Re-

port 114, University of California at Irvine, 1978.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman: Compilers

- Principles, Techniquies, and Tools. Addison-

Wesley, 1986. ISBN 0-201-10194-7.

[BBB

+

94] D. Bailey, E. Barszcz, J. Barton, et al.: The

NAS Parallel Benchmarks. RNR 94-007, NASA

Ames Research Center, 1994.

[BCOF91] A.P.W. B�ohm, D.C. Cann, R.R. Oldehoeft, and

J.T. Feo: SISAL Reference Manual Language

Version 2.0. CS 91-118, Colorado State Univer-

sity, Fort Collins, Colorado, 1991.

[Ber97a] R. Bernecky: An Overview of the APEX Com-

piler. Technical Report 305/97, University of

Toronto, 1997.

[Ber97b] R. Bernecky: APEX: The APL Parallel Execu-

tor. Master's thesis, University of Toronto, 1997.

[BGS94] D.F. Bacon, S.L. Graham,

and O.J. Sharp: Compiler Transformations for

High-Performance Computing. ACM Comput-

ing Surveys, Vol. 26(4), 1994, pp. 345{420.

[Bro85] J. Brown: Inside the APL2Workspace. SIGAPL

Quote Quad, Vol. 15, 1985, pp. 277{282.

[Bud88] T. Budd: An APL Compiler. Springer, 1988.

[Can93] D.C. Cann: The Optimizing SISAL Compiler:

Version 12.0. Lawrence Livermore National

Laboratory, LLNL, Livermore California, 1993.

part of the SISAL distribution.

[Ive62] K.E. Iverson: A Programming Language. Wiley,

New York, 1962.

[MSA

+

85] J.R. McGraw, S.K. Skedzielewski, S.J. Allan,

R.R. Oldehoeft, et al.: Sisal: Streams and Iter-

ation in a Single Assignment Language: Refer-

ence Manual Version 1.2. M 146, Lawrence Liv-

ermore National Laboratory, LLNL, Livermore

California, 1985.

[Mul88] L.M. Restifo Mullin: A Mathematics of Arrays.

PhD thesis, Syracuse University, 1988.

[PW86] D.A. Padua and M.J. Wolfe: Advanced Com-

piler Optimizations for Supercomputers. Comm.

ACM, Vol. 29(12), 1986, pp. 1184{1201.

[Sch96] S.-B. Scholz: Single Assignment C { En-

twurf und Implementierung einer funktionalen

C-Variante mit spezieller Unterst�utzung shape-

invarianter Array-Operationen. PhD thesis, In-

stitut f�ur Informatik und Praktische Mathe-

matik, Universit�at Kiel, 1996.

[Sch97a] S.-B. Scholz: An Overview of Sac { a Func-

tional Language for Numerical Applications. In

R. Berghammer and F. Simon (Eds.): Program-

ming Languages and Fundamentals of Program-

ming, Technical Report 9717. Institut f�ur Infor-

matik und Praktische Mathematik, Universit�at

Kiel, 1997.

[Sch97b] S.-B. Scholz: On Programming Scienti�c Ap-

plications in Sac - A Functional Language Ex-

tended by a Subsystem for High-Level Array Op-

erations. In Werner Kluge (Ed.): Implementa-

tion of Functional Languages, 8th International

Workshop, Bad Godesberg, Germany, Septem-

ber 1996, Selected Papers, LNCS, Vol. 1268.

Springer, 1997, pp. 85{104.

[Sch97c] S.-B. Scholz: With-loop-folding in Sac{

Condensing Consecutive Array Operations. In

C. Clack, T. Davie, and K. Hammond (Eds.):

Proceedings of the 9th International Workshop

on Implementation of Functional Languages.

University of St. Andrews, 1997, pp. 225{242.

[Wol95] M.J. Wolfe: High-Performance Compilers for

Parallel Computing. Addison-Wesley, 1995.

ISBN 0-8053-2730-4.

[ZC91] H. Zima and B. Chapman: Supercompilers

for Parallel and Vector Computers. Addison-

Wesley, 1991.

