
Classes and Objects as Basis for I/O in SAC

Clemens Grelck and Sven-Bodo Scholz ∗

September 3, 1995

Abstract

In imperative languages I/O is realized through sequences of side-effecting function
applications/ procedure invocations. This seems to be a suitable way of specifying
I/O since it coincides with an intuitive understanding of it as sequences of actions. In
contrast, functional languages carefully have to avoid side-effects to sustain referential
transparency. Many different solutions, such as dialogues, continuations, monads and
uniqueness typing have been proposed.

The I/O facilities of Sac are based on uniqueness typing. Instead of using an
explicit type attribute as in Clean, unique types are introduced as special modules
called classes. To provide a syntax as close as possible to that of imperative languages,
we propose two new mechanisms to be included on top of classes in Sac: a call-by-
reference mechanism and global objects. Although a combination of both mechanisms
allows for very imperative-like notations, we can define a purely functional semantics.
Thus we combine the advantages of referential transparency with the expressiveness of
imperative I/O. Moreover, these two mechanisms allow the programmer to introduce
and manipulate states of arbitrary data-structures within Sac.

1 Introduction

Sac[Sch94] is a programming language primarily intended for numerical applications. For
the efficient implementation of large numerical applications on multiprocessor architectures
extensions of imperative languages (HPF[For94], C*[Fra91], etc.) as well as tailor-made
functional languages (Sisal[Can93], etc.) have been proposed. The most important ad-
vantage of the functional over the imperative paradigm is its referential transparency, or
the absence of side-effects. All function applications can be treated as values, i.e., many
well-known compiler optimizations such as common subexpression elimination, loop invari-
ant removal, and others can be generalized to eliminate superfluous function applications
as well. The Church-Rosser-Property guarantees the determinacy of results irrespective
of execution orders, facilitates the identification of program parts that can be evaluated
concurrently, and thus compilation to multiprocessor architectures.

∗Christian–Albrechts–Universität zu Kiel, Institut für Informatik und Praktische Mathematik,
Preußerstraße 1 – 9, D – 24105 Kiel Germany, EMail: cg,sbs@informatik.uni-kiel.d400.de



Though numerical applications written in the functional language Sisal[Can93] have
demonstrated their superiority over equivalent Fortran programs, easily outperforming them
by factors of more than two in multiprocessor systems, there are still considerable acceptance
problems. Apart from pragmatic considerations pertaining to investments made in a large
body of programs written in imperative languages which cannot easily be disposed of, there
is a considerable reluctance to familiarize with the functional programming styles and with
some syntactical peculiarities of functional languages.

In order to overcome these acceptance problems, we take the alternative approach of
identifying in the widely accepted imperative language C a subset whose semantics allows
for a purely functional interpretation. This language, to which we will refer as Sac (for
Single Assignment C) to emphasize its functional character, also allows us to fall back on
highly sophisticated existing compiler technology. Most of the basic constructs of C can be
adopted as a kernel of Sac (for details see [Sch94]):

• Multiple Assignments can be viewed as nested single assignment blocks, i.e. the scope
of a variable simply extends over the sequence of statements between two consecutive
assignments to it.

• C-conditionals, which apparently violate the static scoping rule, are integrated into
the functional world by copying the assignments that follow a conditional into both
of its branches.

• C-loop-constructs are treated as shortcut notations for tail-end recursive functions
similar to the loop-constructs available in single assignment languages like ID[AGP78],
VAL[AD79], or Sisal[Can93].

It is well accepted that functional languages need to include mechanisms which allow
for an orderly interaction with a state. However, it must be kept free of side-effects in order
to sustain the Church-Rosser-Property. These mechanisms are primarily required for I/O
purposes and for updating operations on large data-structures, which in a purely functional
world would otherwise have to be copied several times. The integration of explicit states
and destructive updates is also of interest from a software engineering point of view: when
structuring a program by the data-structures it operates on, i.e. according to the object-
oriented paradigm, it is crucial for the programmer to have explicit control over the number
of objects (data-structures) generated, over each object’s lifetime, and over modification
facilities.

Several solutions for the integration of states and destructive updates into the functional
paradigm have been proposed (for surveys see [HS89, Per91, JW93, AP95, CH93]), which
may roughly be classified as stream-based approaches and environment-based approaches.

In stream-based approaches the communication with the outer world is done via streams
so that the state and the state modifications can be situated outside the functional frame-
work, e.g. in the operating system. These approaches are not applicable to Sac since it
neither provides streams nor other conceptually infinite data-structures.

The environment-based approaches incorporate states and state-modifications into the
functional world by the introduction of new objects which can only be used in a very



restricted way. A state is passed as argument to a modification function either explicitly,
as for instance in the uniqueness typing approach[AP95, SBvEP93], or implicitly, as for
instance by a higher-order function (”bind”) in the monadic approach[Wad92, JW93].

The monadic approach too is not suitable for an integration into Sac since it requires
higher-order functions in conjunction with a polymorphic type system, both of which are
not available in Sac. Moreover, concurrent state modifications on disjunct state-partitions
(non-monolithic states) still seem to be an unsolved problem with monads[LJ94].

The uniqueness typing approach, as proposed for Clean[AP95], seems to be the best
solution for Sac. In Clean, states can be represented by variables, and the modifica-
tion functions, e.g. the I/O primitives, are explicitly applied to states. As a consequence,
these states would have to be copied whenever they are used in two or more indepen-
dent subexpressions. These situations may be avoided by means of the type attribute
uniqueness[SBvEP93]. An expression is said to be unique if it is not referenced more than
once in a function’s body or, more precisely, in each branch of a conditional/case construct
if it does not appear anywhere else in the body. So, if in all applications of a given function
f the ith argument ai is unique, the heap-space holding the value of ai may be re-used in
the body of f (destructive update). In particular, a function that returns an object of the
same type as one of its unique arguments may simply overwrite the heap-location of that
argument.

The advantages of this approach are twofold. First, an integration into Sac requires
only a small extension of the existing type-system. Second, non-monolithic state modifica-
tions can be deduced directly since all state partitions are explicitly represented by distinct
variables.

However, the mechanisms for inspecting and modifying states as provided by the unique-
ness typing approach have some major deficiencies:

• Modifications of a state a by a function f may only be specified as a = f(a); . This
notation has two drawbacks: it permits renaming the state by writing b = f(a); in-
stead, and it requires a return value to be specified which from a pragmatical point
of view is superfluous.

• All states that need to be inspected or modified within a particular nesting of function
invocations have to be explicitly passed as arguments to all intermediate functions.
As a consequence, the argument and return lists of the function definitions must be
extended by the state variables that have to be received from and returned to the
calling functions even if none of the intermediate functions perform operations on
them.

• The complete external environment is represented by a generic state ”’World”‘. When-
ever parts of the environment need to be accessed, they have to be explicitly extracted
from and re-integrated into that state.

We found out that these deficiencies can be overcome by introducing two new mecha-
nisms on top of uniqueness typing. The first is a call-by-reference mechanism for specifying
state modifications without the necessity of returning the modified state. The other mech-
anism introduces global objects that can be accessed in the body of any function without



passing them as arguments. By introducing two meaning-preserving transformation schemes
which successively eliminate these constructs, we show that they do not violate the refer-
ential transparency. This is done by inserting additional arguments and return values as
needed.

These transformations are applied before doing the compilation phases that need to
exploit referential transparency, such as the above-mentioned optimizations and the parti-
tioning of programs into concurrently executable parts. When sequential threads of C-code
are generated as target code, all parameters that have been added are eliminated again.

The paper is organized as follows: chapter 2 explains how uniqueness typing and a strict
separation of unique from non-unique components is achieved in Sac. These basic constructs
are successively extended by the call-by-reference mechanism described in chapter 3 and by
the global objects described in chapter 4. The paper concludes with a short summary given
in chapter 5.

2 Uniqueness Types in Sac

Uniqueness types have proved to be a suitable mechanism for dealing with states and state
transitions in a functional language [AP95, SBvEP93]. The introduction of uniqueness types
requires their clean separation from regular types. In contrast to the type attribute UNQ
of Clean [PvE94], Sac adopts for this purpose terms and mechanisms from the object-
oriented programming paradigm. This is motivated by the observation that objects in this
paradigm typically represent states, which may be created, modified, and removed under
the explicit control of the application programmer.

Uniqueness types are introduced into Sac in the form of classes. In object-oriented pro-
gramming, a class consists of a basic type definition and a set of functions, which exclusively
grant access to data structures of the basic type. Expressions of this type are called objects
of the respective class. More advanced object-oriented mechanisms, e.g. inheritance, are
not required for our approach. However, their integration into Sac may be a subject of
future research.

Sac already provides a suitable concept for modeling classes: the module system [Sch94].
A Sac-module consists of two files containing a module declaration and a module imple-
mentation. The module implementation comprises type and function definitions and may
be specified in Sac as well as in any other programming language that is compatible with
the C linkage system. The module declaration serves as an interface for the external usage
of a module’s types and functions. Functions are exported by declaring their names and
signatures. Types may either be exported explicitly or implicitly. For an explicit type, the
name as well as the implementation are given in the module declaration. In contrast, the
implementation of an implicit type is hidden within the respective module implementation
and only its name is made public in the declaration. As a consequence, exported functions
of the respective module remain as the sole interface through which variables of an implicit
type may be accessed. Since this conforms to the specification of classes as given above,
they are introduced into Sac as special modules.

Apart from using key-words like ClassDec instead of ModuleDec, the only difference



between classes and modules arises from the fact that a class always provides a special
implicit type. The name of this type is identical to the name of the class itself. By definition,
it is a uniqueness type representing the basic type of the class. With respect to its special
characteristics, the type is not mentioned in the class declaration in order to distinguish it
from ordinary implicit types.

To illustrate the concepts proposed in this paper, the integration of I/O facilities into
Sac is presented in the form of a case study throughout the remaining sections. Figure 1
shows a first solution based on classes and objects. The case study comprises an excerpt
of the declaration of a class File and a small program illustrating the usage of File. This
class is designed to permit access to the file system and the standard I/O channels.

The functions of our class File, as shown in the declaration of figure 1, are typical
representatives of three types of class functions. A constructor function like open stdout

produces an object of the respective class. Objects are consumed by the application of
a destructor function like close stdout. The function fprintf represents the third type
of class functions. Conceptually, it consumes a File-object (e.g. stdout) and produces
a new File-object, but from a pragmatical point of view, this may be interpreted as the
implicit modification of a single object. In this case, the interpretation reflects a possible
implementation that takes advantage of the uniqueness property of objects by performing
a destructive update on the respective data structure. Giving the conceptually new object
the same name as the one that has been consumed underlines this idea.

A generic class named World is designed to allow the specification of programs which
interact with their external environment. The class World has exactly one generic object
called world. When given to a program’s main function as a parameter, world represents
the entire external environment of the program.

To allow for non-monolithic I/O, more specialized objects can be derived from world,
which represent disjoint partitions of the environment. The application of the constructor
function open stdout to world in figure 1 extracts the standard output channel from the
initially monolithic representation of the environment. This results in a new object stdout
representing the standard output channel, and in a modified object world representing the
remaining environment.

Once the object stdout is available, world is no longer needed to send output to the
standard output channel by applications of the function fprintf 1.

Since interactions with the environment are part of a program’s result, the representation
of the modified environment has to be returned by the program’s main function. In the
example shown in figure 1, the standard output channel is re-integrated into the remaining
environment by an application of the destructor function close stdout. Afterwards, world
is returned by main as the monolithic representation of the modified environment.

1In general, I/O-primitives in Sac provide a functionality similar to their counterparts in C, combining a
format string with a variable number of arguments. However, some simplifications apply within this paper
in order to avoid confusion.



ClassDec File :

own:

{

funs: File, World open_stdout(World);

World close_stdout(File, World);

File fprintf(File, string);

}

import File: all;

File printline(File stdout, string message)

{

stdout = fprintf(stdout, message);

stdout = fprintf(stdout, "\n");

return(stdout);

}

File Header(File stdout)

{

stdout = printline(stdout, "This is SAC !");

return(stdout);

}

int, World main(World world)

{

stdout, world = open_stdout(world);

stdout = Header(stdout);

stdout = fprintf(stdout, "Hello World.\n");

world = close_stdout(stdout, world);

return(0, world);

}

Figure 1: Providing I/O facilities based on classes.

3 A Call-by-Reference Mechanism

The only way to specify the modification of an object is by means of a function that
conceptually consumes an object and produces a new one, written in the purely functional
form a = f(a); . Since, in these cases, the explicit specification of a return value from
a pragmatical point of view is superfluous, we introduce a short cut notation similar to
those of call-by-reference mechanisms in imperative languages. Reference parameters are



distinguished from ordinary parameters by the address operator “&”; it indicates that
the respective object is returned implicitly, i.e. an explicit return value is omitted in the
function’s definition as well as in its applications. In order to allow the specification of
functions without any explicit return value, the syntax of Sac is extended by void-functions
as known from C . Figure 2 illustrates the usage of the new notation with a modified version
of the case study.

ClassDec File :

own:

{

funs: File open_stdout(World &);

void close_stdout(File, World &);

void fprintf(File &, string);

}

import File: all;

void printline(File &stdout, string message)

{

fprintf(stdout, message);

fprintf(stdout, "\n");

}

void Header(File &stdout)

{

printline(stdout, "This is SAC !");

}

int main(World &world)

{

stdout = open_stdout(world);

Header(stdout);

fprintf(stdout, "Hello World.\n");

close_stdout(stdout, world);

return(0);

}

Figure 2: Providing I/O facilities with the call-by-reference mechanism.

We can observe that Header and printline have become void-functions. Only the ad-
dress operators “&” in their parameter lists still indicate that they actually modify stdout.
Applying the call-by-reference notation to I/O primitives like fprintf allows for specifying



I/O operations in a way that is much more similar to C than the first approach in figure 1.
This can be noticed particularly in the body of printline. Furthermore, world no longer
has to be returned explicitly by main.

In a pre-processing step, the Sac-compiler transforms all occurrences of the short cut
notation into their equivalent purely functional forms. Therefore, compilation phases that
rely on referential transparency are not affected. An outline of the transformation algorithm
consisting of four rules is given in figure 3.

1. For each function in an imported class or module declaration:

• For each call-by-reference parameter <type> & :

– Delete the address operator & .

– Add <type> to list of return types.

2. For each function definition:

• For each call-by-reference parameter <type> & <ident>:

– Delete the address operator & .

– Add <type> to list of return types.

– Add <ident> to list of return values in the function’s return-instruction.

3. For each function application of the form r1, . . . , rm = fun(e1, . . . , en);
where ei = fun2(a1, . . . , ak) and each ej, 1 ≤ j < i, does not contain another function
application:

• Let tmpx be a new, previously unused variable of the same type as ei.

• Replace r1, . . . , rm = fun(e1, . . . , en); by
tmpx = fun2(a1, . . . , ak);
r1, . . . , rm = fun(e1, . . . , ei−1, tmpx, ei+1, . . . , en);

4. For each function application of the form r1, . . . , rm = fun(e1, . . . , en);
where all ei do not contain other function applications:

• For each ei passed using call-by-reference:

– Extend the return list by ei resulting in
r1, . . . , rm, ei = fun(e1, . . . , en);.

Figure 3: Transformation algorithm for the call-by-reference mechanism.

Rules 1 and 2 make implicit return values explicit. Syntactically, this requires the intro-
duction of additional return values and, in the case of a function definition, the extension
or the reintroduction of the return-statement.



Example:
void printline(File &stdout)

{ ... }

is transformed into
File printline(File stdout)

{ ...

return(stdout);

}

Rule 4 eliminates the short cut notation for function applications.
Example:

fprintf(stdout, message);

is transformed into
stdout = fprintf(stdout, message);

Unfortunately, this is not always as easy as in the above example. Problems arise from
function applications that are nested within expressions, e.g. other function applications.
Rule 3 takes care of this special case. Assume the following example:

{ A = create_stack_object();

B = create_stack_object();

...

push(B, pop(A));

...

remove_stack_object(A);

remove_stack_object(B);

... }

Let the signatures of push and pop be as follows:
void push(stack_class&, int) ,
int pop(stack_class&) .

Eliminating the call-by-reference notation according to rule 1 adds additional return values
to push and pop, resulting in the modified signatures:

stack_class push(stack_class, int) ,
int, stack_class pop(stack_class) .

In the example, the short cut notation for the application of pop cannot be eliminated
in its specific syntactical position because, in Sac, functions that are nested within other
expressions are required to have exactly one return value. As a consequence, the application
of pop must be extracted from the application of push. According to rule 3, the above
example is transformed into:

{ ...

tmp1 = pop(A);

push(B, tmp1);

... }

Now, the applications of push and pop can simply be adjusted to their modified signatures
according to rule 4, resulting in:



{ ...

tmp1, A = pop(A);

B = push(B, tmp1);

... }

If a particular nesting of function applications contains modifications of the same object
in independent subexpressions, then rule 3 results in a left-to-right sequentialization of the
respective modifications.

Systematically applying the transformation algorithm to the program in figure 2 results
in a notation identical to our first approach as shown in figure 1.

Concerning our implementation, all additional return values introduced by the pre-
processing algorithm are removed again when sequential threads of C-code are generated
by the Sac-compiler. Instead, a Sac-function that modifies an object is compiled to a
C-function that requires a pointer to the respective data structure. Accordingly, the appli-
cation of such a Sac-function is compiled to an application of the corresponding C-function
to the address of the specific data structure. In other words, a call-by-reference mechanism
is applied in these cases. Thus, our short cut notation can be considered to represent a
full-fledged call-by-reference parameter passing mechanism.

Nevertheless, some restrictions apply to the usage of reference parameters in a function’s
body. They may neither be part of the function’s return-statement nor of any function
application which might result in the consumption of the respective object. These restric-
tions are necessary to rule out situations that would result in the introduction of uniqueness
violations by the transformation algorithm.

4 Global Objects

All objects needed by a particular function must explicitly be passed to it as arguments.
This concerns objects that are directly accessed by the function itself, e.g. stdout by
printline in figure 2, as well as objects which are only passed as arguments to other
functions, e.g. stdout in Header. As a consequence, parameter lists are considerably ex-
tended even though most parameters are passed through without any action, especially if
several function calls are nested in each other. Furthermore, it complicates the subsequent
introduction of operations on objects into an existing application program, e.g. adding out-
put statements for debugging purposes.

To overcome these deficiencies, another notational short cut is introduced into Sac:
global objects which can be accessed in any function regardless of whether or not they are
passed as parameters. They may be created using the new Sac instruction objdef, whose
syntax is:
objdef <class> <ident> = <expr>;

This defines a global object of class <class> that is called <ident> and is generated by
<expr>. Usually, <expr> is an application of a constructor function of <class>. The
modified version of the case study in figure 4 illustrates the usage of global objects.

Since stdout is defined as a global object, it can be accessed by the function printline

without being passed as a parameter. Having a closer look at the function definition of



ClassDec File :

own:

{

funs: File open_stdout(World &);

void fprintf(File &, string);

}

import File: all;

objdef File stdout = open_stdout(world);

void printline(string message)

{

fprintf(stdout, message);

fprintf(stdout, "\n");

}

void Header()

{

printline("This is SAC !");

}

int main()

{

Header();

fprintf(stdout, "Hello World.\n");

return(0);

}

Figure 4: Providing I/O facilities with global objects.

Header, we can observe that stdout has completely disappeared. It is no longer needed
because Header itself does not send output to stdout and the new printline does not
require it as an argument.

Global objects can be derived from other previously defined global objects as stdout

is derived from world. In this context, world is considered to be the sole generic global
object of class World. Global objects cannot be removed by the application program. They
are generated by the runtime system when program execution starts and removed when it
terminates. Therefore, the function close stdout, as used in the preceding versions of the
case study, is no longer exported by File.

As pointed out above, global objects represent a notational short cut for explicitly



passing all necessary objects as arguments to each function. This includes all global objects
that are directly accessed by the function itself as well as those needed by functions applied
in its body. We propose a transformation algorithm that eliminates all applications of the
new notation in a Sac-program. When extending the pre-processing algorithm by the four
additional rules outlined in figure 5, compiling phases relying on referential transparency
are not affected by the introduction of global objects.

1. For each function definition except main:

• Create a list of all global objects needed. These are not only the global ob-
jects accessed by the function itself but recursively all global objects needed by
functions applied in its body.

• Add all objects needed to the parameter list of the function applying the call-
by-reference mechanism.

2. For each function application:

• If the function has been modified according to the first rule:

– Adjust the application by passing the respective objects explicitly to the
function.

3. For each global object definition objdef <class> <ident> = <expr>; :

• Insert the object definition <ident> = <expr>; right before the first original
statement in the body of main.

• If <expr> contains world or recursively any other global object <object> of class
<objclass> that is derived from world :

– Insert an application of the generic function
void reintegrate(<class>, <objclass> &)

at the end of main:
reintegrate(<ident>, <object>);

• Delete the global object definition.

4. If the generic global object world appears in any object definition:

• Make sure that World & world occurs in the parameter list of main.

Figure 5: Transformation algorithm for eliminating global objects.

The basic idea of the transformation algorithm is given by rule 1. However, finding
out which global objects are needed by a particular function is not as difficult as it may
appear on first sight due to the absence of higher-order functions in Sac. Of course, all
function applications must be adjusted accordingly (rule 2). Each global object definition
is replaced by an object definition local to main (rule 3). Special attention must be paid



to the correct removal of global objects related to the external environment. The generic
function reintegrate is designed to reconstruct world as the environment’s monolithic
representation before program termination. Whenever a program is designed to interact
with its environment, world has to be passed as a parameter to its main-function (rule 4).

Applying this transformation algorithm to the program of figure 4 results in a notation
very similar to that of figure 2. In fact, only the application of the function close stdout

is replaced by an application of the generic function reintegrate.
Similar to the implementation of the call-by-reference mechanism, all additional pa-

rameters and return values introduced by the pre-processing algorithm are removed when
generating sequential threads of C-code. Instead, a global object is compiled to an external
C-variable. Thus, global objects not only represent a syntactical short cut, convenient for
the application programmer, but allow for an efficient implementation as well.

However, the same restrictions apply for the usage of global objects as for that of ref-
erence parameters. Additionally, a global object may not be passed as an argument to a
function that already makes use of it. As the other restrictions, this one is necessary to
avoid the introduction of uniqueness violations by the transformation algorithm.

In fact, global objects may not only be defined in a program but in a module or class
implementation as well. In this case, they can be exported by the respective module or class
in the same way as functions. If imported into a program, such a global object may be used
exactly as if it was defined by the program itself. In figure 6, this concept is illustrated by
a fragment of the last version of our case study.

ClassDec File :

own:

{

global objects: File stdout;

funs: void fprintf(File &, string);

void printf(string);

}

...

Figure 6: Importing global objects from classes

The global object stdout is declared in a new section of the class declaration. The class
implementation of File has become responsible for creating and removing stdout as well
as for the correct application of world. Therefore, the constructor function open stdout

has become obsolete and is no longer provided by File. Since stdout is available in the
implementation of File as well, the class may provide functions which implicitly operate
on it, e.g. a function printf that implicitly writes to the standard output channel as in C.



5 Conclusion

In this paper we describe the mechanisms for handling states and state modifications in Sac.
Due to its basis of uniqueness typing, the class concept of Sac can be safely integrated
without violating referential transparency. In order to provide more comfortable means
for the modification of states, two typically imperative mechanisms are adopted: call-by-
reference parameters and global objects. They allow the programmer to omit some argument
and return values which from a pragmatical point of view are superfluous. As a consequence,
the introduction of states and state modifications into existing programs is facilitated since
functions can modify states without requiring them as arguments. Besides being helpful
when global objects such as counters or stacks are needed, this feature of Sac is essential
whenever output operations temporarily have to be integrated for debugging purposes.

As shown in the preceding chapters, these two constructs do not violate the referential
transparency since they are syntactical short cuts for purely functional expressions. How-
ever, the resulting syntax allows for another interpretation which might be more familiar to
programmers who are used to imperative languages. Functions that have a call-by-reference
parameter or modify global objects can be considered to perform side-effects. Further-
more, one might assume a sequential control-flow between such ”’side-effecting”‘ functions
because a particular sequence of state modifications is guaranteed although explicit data-
dependencies are missing.

This dualism of a purely functional meaning on the one hand and a possible imperative
interpretation on the other hand allows the programmer to specify state modifications in
the style he is used to. Therefore, we hope that Sac might overcome some of the acceptance
problems that functional languages normally suffer from.

Moreover, the imperative interpretation allows the compiler back-end to finally generate
sequential threads of C-code that do perform these side-effects. All superfluous arguments/
return values are omitted at the implementation level, thus improving the C-code generated.
As a consequence, all functions provided by the standard C-libraries can directly be used in
Sac. This meets the design goal of Sac to adopt as much as possible from C and simplifies
the integration of I/O into the Sac-compiler.

References

[AD79] W.B. Ackerman and J.B. Dennis: VAL-A Value-Oriented Algorithmic Lan-
guage: Preliminary Reference Manual. TR 218, MIT, Cambridge, MA, 1979.

[AGP78] Arvind, K.P. Gostelow, and W. Plouffe: The ID-Report: An asynchronous Pro-
gramming Language and Computing Machine. Technical Report 114, University
of California at Irvine, 1978.

[AP95] P. Achten and R. Plasmeijer: The ins and outs of Clean I/O. Journal of
Functional Programming, Vol. 5(1), 1995, pp. 81–110.



[Can93] D.C. Cann: The Optimizing SISAL Compiler: Version 12.0. Lawrence Liv-
ermore National Laboratory, LLNL, Livermore California, 1993. part of the
SISAL distribution.

[CH93] M. Carlsson and T. Hallgren: FUDGETS - a Graphical User Interface in a Lazy
Functional Language. In FPCA ’93, Copenhagen. ACM, 1993, pp. 321–330.

[For94] High Performance Fortran Forum: High Performance Fortran language specifi-
cation V1.1, 1994.

[Fra91] J. Frankel: C* language reference manual. Thinking Machines Corp., Cam-
bridge MA, 1991.

[HS89] P. Hudak and R.S. Sundaresh: On the Expressiveness of Purely Functional I/O
Systems. Technical report, Yale University, 1989.

[JW93] S.L. Peyton Jones and P. Wadler: Imperative functional programming. In POPL
’93, New Orleans. ACM, 1993.

[LJ94] J. Launchbury and S. Peyton Jones: Lazy Functional State Threads. In Pro-
gramming Languages Design and Implementation. ACM, 1994.

[Per91] N. Perry: The Implementation of Practical Functional Programming Languages.
PhD thesis, Imperial College, London, 1991.

[PvE94] M.J. Plasmeijer and M. van Eckelen: Clean 1.0 Reference Manual. University
of Nijmegen, 1994.

[SBvEP93] S. Smetsers, E. Barendsen, M. van Eeklen, and R. Plasmeijer: Guaranteeing
Safe Destructive Updates through a Type System with Uniqueness Information
for Graphs. Technical report, University of Nijmegen, 1993.

[Sch94] S.B. Scholz: Single Assignment C – Functional Programming Using Imperative
Style. In John Glauert (Ed.): Proceedings of the 6th International Workshop on
the Implementation of Functional Languages. University of East Anglia, 1994.

[Wad92] P. Wadler: Comprehending Monads. Mathematical Structures in Computer
Science, Vol. 2(4), 1992.


