
On Optimising Shape-Generic Array Programs
Using Symbolic Structural Information

Kai Trojahner1, Clemens Grelck2, and Sven-Bodo Scholz2

1 University of Lübeck
Institute of Software Technology and Programming Languages

trojahner@isp.uni-luebeck.de
2 University of Hertfordshire

Department of Computer Science
{c.grelck,s.scholz}@herts.ac.uk

Abstract. Shape-generic programming and high run time performance
do match if generic source code is systematically specialised into non-
generic executable code. However, as soon as we drop the assumption of
whole-world knowledge or refrain from specialisation for other reasons,
compiled generic code is substantially less efficient. Limited effectiveness
of code optimisation techniques due to the inherent lack of knowledge
about the structural properties of arrays can be identified as the single
most important source of inefficiency.

However, in many cases partial structural information or structural
relationships between arrays would actually suffice for optimisation. We
propose symbolic array attributes as a uniform scheme to infer and to
represent partial and relational structural information in shape-generic
array code. By reusing the regular language to express structural prop-
erties in intermediate code, existing optimisations benefit from symbolic
array attributes with little or no alteration. In fact, program optimisa-
tion and identification of structural properties cross-fertilise each other.
We outline our approach in the context of the functional array language
SaC and demonstrate its effectiveness by a small case study.

1 Introduction

Shape-generic array programming means writing functions, modules and entire
programs in a style that completely or at least partially abstracts from the
structural properties of the arrays involved. For example, a shape-generic matrix
multiplication function is one that is applicable to pairs of matrices of any size,
as long as the extent of the second axis of the first matrix equals the extent of the
first axis of the second matrix. In fact, shape-generic array programming even
goes one step further and allows functions to abstract not only from the extents
of arrays along given axes, but even from the number of axes (or dimensionality
or rank). For example, the element-wise multiplication of two arrays can be
specified exactly once and applied to pairs of vectors, matrices, tensors and even
higher-dimensional arrays.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 K. Trojahner, C. Grelck, and S.-B. Scholz

The functional array programming language SaC [1,2] supports shape-generic
array programming. Multi-dimensional arrays are characterised by their rank,
an integer denoting the number of axes of an array, and their shape, a vector
containing the extent along each axis. By step-wise abstraction from rank and
shape, the type system of SaC distinguishes between three classes of array types,
named shape classes :

1. Array of Known Shape (AKS),
2. Array of Known Dimensionality (AKD) and
3. Array of Unknown Dimensionality (AUD).

An AKS type, for example int[10,10], describes the set of all arrays of some
base type and a certain shape (including fixed rank). An AKD type, for example
int[.,.], defines the number of axes, but leaves the extent along each axis open.
Finally, an AUD type like int[*] encompasses all arrays of a given base type
regardless of their structure. Together, the array types form a natural hierarchy
that induces a subtype relationship, e.g. int[10,10] ≺ int[.,.] ≺ int[*].

When it comes to compiling shape-generic programs into executable code, it
turns out that the run time performance of compiled AUD code is significantly
inferior to compiled AKD code, which in turn is significantly inferior to compiled
AKS (i.e. non-generic) code (cf. Section 5). This observation can be attributed to
essentially two independent sources of inefficiency: Firstly, generic code requires
the shape vector to be maintained in the heap at run time rather than being a set
of compile time constants. The lack of a static rank knowledge also entails that
no suitable nesting of loops can be generated to traverse an array. Instead, we
must rely on a relatively inefficient loop structure. Secondly, and more gravely,
many optimisation techniques are less effective if they lack structural information
on the arrays involved. This holds for standard code transformations like con-
stant folding, common subexpression elimination and loop unrolling just as for
array-specific optimisations [3,4,5] or optimisations in the memory management
subsystem [6].

Our recent work focussed on careful identification of where and how far to
specialise [7]. Still, specialisation is not always the solution since sufficient struc-
tural information may lack at compile time or the number of specialisations
may grow beyond feasability. Fortunately, many code optimisation techniques
can benefit from more modest gains in structural knowledge than those result-
ing from specialisation. For example, it may be useful to know the extent of an
AKD array along certain but not all axes. Or, we may exploit that an AUD
array has at least two inner axes of which we may even figure out the extent.
Or, we may improve programs utilising the knowledge that certain arrays have
the same shape or the same dimensionality as others.

This work aims at making such fine-grained structural information below the
level of shape classes available to optimisations by compile time inference. We
introduce symbolic array attributes as uniform representations of the ranks and
shapes of all arrays involved in an intermediate code representation. More pre-
cisely, we associate each definition of an array with new symbolic identifiers for
its rank and its shape. Like an array identifier is bound to an expression defining

On Optimising Shape-Generic Array Programs 3

that array, the associated rank and shape identifiers are bound to expressions
that extract the definition of the array’s rank and shape from its original defini-
tion. Any array-valued expression effectively is replaced by a triple of expressions.
The first one is the original expression defining both structure and element val-
ues of the array. The second expression defines the shape, but abstracts from
element values. The third expression defines the rank, but abstracts from con-
crete extents along the array’s axes. Whereas the original code describes the
relationships between arrays on the level of rank, shape and element values all
at the same time, the augmented code explicates these relationships at each level
individually.

Since all three elements of the expression triples are regular expressions of
the language, they are automatically subject to a plethora of optimisations like
constant folding, constant/variable propagation or common subexpression elim-
ination to name just a few. This has a dual effect: The optimisations benefit
from symbolic structural information while at the same time the structural in-
formation is improved by the optimisations.

It is characteristic for our approach to represent and exploit structural and
relational properties of arrays in a purely compiler directed way. In particular,
the source language remains entirely unaffected. An alternative approach would
be to refine the type system towards using a variant of dependent types [8]. In
contrast to our work, that would require a substantial extension to SaC as a
programming language having a major impact on the style of programming.

The remainder of this paper is organised as follows: Section 2 defines a core
language that we use to illustrate our ideas. We formally define how we introduce
symbolic array attributes in Section 3 and how we use them for optimisation in
Section 4. In Section 5 we illustrate our approach by a small case study. We
discuss some related work in Section 6 and conclude in Section 7.

2 Introducing SaCmini

Many features of SaC are irrelevant for the context of this paper. Therefore,
we define a core language called SaCmini, which exposes the relevant features
in a condensed and simplified form. As defined in Fig. 1, a SaCmini program is
a sequence of potentially mutually recursive function definitions. Each function
definition consists of a return type, a function name, a typed parameter list in
parentheses and a code block. A code block is a sequence of variable-expression
bindings terminated by a goal-expression, that follows the key word return.
Alternatively, we may have a conditional where each branch either leads to a
further conditional or terminates with a goal-expression. This SaC-style notation
merely is a syntactic variation of a nesting of let-expressions and conditional
expressions in other functional languages.

Any expression (and hence any variable) denotes an array, which is charac-
terised by a rank scalar, a shape vector and a data vector. While the latter acts
as a store for element values, all structural information is encoded in the rank
scalar and the shape vector. The rank scalar describes the rank or dimensionality

4 K. Trojahner, C. Grelck, and S.-B. Scholz

Program ⇒ [FunDef]*

FunDef ⇒ Type Id ([Param [, Param]*]) Block

Param ⇒ Type Id

Block ⇒ { [Id = Expr ;]* Return }
| { [Id = Expr ;]* Cond }

Return ⇒ return (Id) ;

Cond ⇒ if (Id) Block else Block

Expr ⇒ Const | Id | FunAp | Vector | With

FunAp ⇒ Fun ([Id [, Id]*])

Vector ⇒ [[Id [, Id]*]]

With ⇒ with [Generator Block]* genarray (Id , Id)

Generator ⇒ ([Id <=] Id < Id)

Type ⇒ AKS-Type | AKD-Type | AUD-Type

AKS-Type ⇒ BaseType [[IntConst [, IntConst]*]]

AKD-Type ⇒ BaseType [. [, .]*]

AUD-Type ⇒ BaseType [*]

Fig. 1. Syntax of SaCmini

of the array; the shape vector describes an array’s extent along each dimension.
Consequently, the rank scalar denotes the length of the shape vector. In this
model, scalars are rank zero arrays with an empty shape vector and a data vec-
tor consisting of a single element. Arrays can be nested as long as the whole
array remains representable by rank, shape and data vector, i.e., all elements of
an array must have the same element type and shape.

In addition to the usual scalar constants and identifiers, expressions may be
applications of defined or of built-in functions. Built-in functions include the
usual arithmetic, logic and relational operators on scalars. Whenever appropri-
ate, we use infix notation for applications to improve readability. Array-specific
built-in operations are limited to the following:

– dim(A) yields the rank scalar of array A .
– shape(A) yields the shape vector of array A .
– sel(iv,A) yields the element of A at the index specified by the integer

vector iv .
– modarray(A,iv,v) yields a new array that is equivalent to A except for the

element at index position iv , which is set to the scalar value v .
– reshape(shp,A) returns a new array whose data vector is given by the one

of A but whose shape vector equals shp .

In applications of both sel and modarray the length of the index vector must
coincide with the rank of the array; in applications of reshape the product of

On Optimising Shape-Generic Array Programs 5

the elements of the desired shape vector must match that of the elements of the
existing shape vector.

Unlike SaC, SaCmini only supports non-nested expressions, i.e., arguments
to a function application for example may only be identifiers, but not expres-
sions again. This restriction simplifies the definition of compilation schemes; it
can easily be achieved in a preprocessing step (from full SaC) by recursively
extracting nested expressions and binding them to new identifiers. Nevertheless,
we allow ourselves to use nested expressions wherever appropriate to improve
the readability of code examples.

SaCmini also features a simplified version of SaC’s versatile array comprehen-
sion construct called with-loop. A with-loop of the form

with ... genarray(shp,def)

defines an array whose shape is given by appending the integer vector shp with
the shape of the default value def . Each element of a with-loop-defined array is
either set to the default value or computed according to the specification given in
one of the parts. Each part consists of a generator, which defines a set of index
positions, and an associated expression block, which determines the values of
array elements at index positions covered by the generator.

A generator (lb <=iv <ub) defines a rectangular index range delimited by a
lower bound vector lb and an upper bound vector ub . A missing lower bound
specification defaults to a zero vector with the length of ub . The index variable
iv is introduced in the generator, and its scope is limited to the associated
expression; it represents the current index position. Multiple parts allow us to
define different array elements according to different specifications. In order to
ensure deterministic results, the index sets defined by the various generators of
an individual with-loop must be pairwise disjoint.

SaCmini and likewise SaC only have a very small set of built-in functions on
arrays. A comprehensive set of compound operations on arrays is provided as a

bool select(int idx, bool[.] array)
{
res = sel([idx], array);
return(res);

}

bool[*] select(int[.] idx, bool[*] array)
{
shp = drop(select(0, shape(idx)), shape(array));

res = with (iv < shp) {
elem = sel(idx ++ iv, array);
return(elem);

} genarray(shp, 0);
return(res);

}

Fig. 2. Generalised selection functions

6 K. Trojahner, C. Grelck, and S.-B. Scholz

standard library, where they are defined by means of with-loops. Even many
existing primitive functions are not intended for the general use, but rather serve
as implementation vehicles for more general standard library functions. As an
example, take the definition of a general selection facility in Fig. 2. The first
instance of select takes a single integer and a vector.1 In this case, the type in-
formation is sufficient to directly apply the built-in primitive sel without risking
a run time error. The second instance of select implements the general case of
selection: If the length of the selection vector is less than the dimensionality of
the array to be selected from, selection yields an entire subarray. We achieve this
by first dropping as many elements from the shape vector of the array as given
by the length of the selection vector before we create an array of that shape.
In the most relevant special case, the length of the selection vector actually co-
incides with the dimensionality of the array such that the application of drop
yields the empty vector. Hence, the subsequent with-loop creates an array with
an empty shape vector, which effectively is a scalar. Both auxiliary functions
drop and vector concatenation (++) can be found in Fig. 3. For a more detailed
explanation of the various SaC language features see [2]; a formal semantics may
be found in [7].

int[.] drop(int v, int[.] a)
{
dl = shape(a)[0] - v;
ds = [dl];

res = with ([i] < ds) {
drel = a[i + v];
return(drel);

} genarray(ds, 0);
return(res);

}

int[.] (++) (int[.] a, int[.] b)
{
sa = shape(a);
sb = shape(b);

res = with ([i] < sa) {
ael = a[i];
return(ael);

}
(sa <= [i] < sa + sb) {
bel = b[i - sa[0]];
return(bel);

} genarray(sa + sb, 0);
return(res);

}

Fig. 3. Auxiliary functions needed for the generalised selection

1 We use the base type bool here as an example only.

On Optimising Shape-Generic Array Programs 7

3 Symbolic Array Attributes

In non-generic array code (shape class AKS) any structural relationship between
arrays is properly expressed by their types. In non-specialised generic code, how-
ever, this property is immediately lost. For example, an application of the built-in
function modarray

v = modarray(a,iv,0);

is known to yield an array v with a shape identical to that of the first argument a.
Hence, the type inference system assigns v the type of a. Supposed a has a non-
generic AKS type, this accurately reflects the structural relationship between a
and v. However, if a has a generic AKD type say int[.], then v is also assigned
the type int[.]. This still reflects that a and v do have the same rank, but
the fact that both actually have the same shape is not expressed. In the AUD
case, we do not even know the equality of rank. This lack of information severely
limits our opportunities for code optimisation.

Symbolic array attributes are meant to fill this gap and provide a systematic
means to express partial structural information both with respect to individual
arrays as well as structural relationships between different arrays. We augment
any variable-expression binding in a function body with two (flattened) expres-
sions: one to denote the array’s rank (enclosed in round brackets) and one to
denote the array’s shape (enclosed in square brackets):

(vd)[vs] v = expr;

Only scalar constants, constant arrays and identifiers may occur in attribute
positions. More complex sub-expressions are lifted into additional variable-ex-
pression bindings. Thus, despite appearing on the left-hand side of the assign-
ment operator, symbolic array attributes are no less proper expressions than
those on the right-hand side. Depending on the shape class of an array, the
contents of vd and vs may vary, as outlined in the table below.

Shape class vd vs Example
AKS Const Array const (0)[[]]

(2)[[10,10]]
AKD Const Id (2)[s]
AUD Id Id (d)[s]

Although rank and shape of an array may not be known until run time, we can
consult their symbolic compile time representations using the attribute access
functions D and S. If the identifier a has been attributed with the pair (d)[s],
then D(a) gives d and S(a) yields s . The knowledge about the shape-preserving
properties of modarray, can now be encoded by assigning the result v exactly
those attributes of the modified array a :

(D(a))[S(a)] v = modarray(a,iv ,val);

In Fig. 4 we show the transformation scheme SAA that introduces symbolic
array attributes and, thus, makes array ranks and shapes explicit in terms of
SaCmini expressions. Rules of the form

C [[expr]] = expr ′

8 K. Trojahner, C. Grelck, and S.-B. Scholz

SAA [[type fun (params) { body }]]
= type fun (R [[params]]) { MIR [[params]]; SAA [[body]] }

SAA [[if (c) then else else]] = if (c) SAA [[then]] else SAA [[else]]

SAA [[return(a);]] = return(a);

SAA [[v = c ; R]] = (0)[[]] v = c ; SAA [[R]]

SAA [[v = sclprf (args); R]] = (0)[[]] v = sclprf (args); SAA [[R]]

SAA [[v = a ; R]] = (D(a))[S(a)] v = a ; SAA [[R]]

SAA [[v = shape(a); R]] =

⎧
⎨

⎩

(1)[[1]] vs = [D(a)];
(1)[vs] v = shape(a);
SAA [[R]]

SAA [[v = reshape(s ,a); R]] =

⎧
⎨

⎩

(0)[[]] vd = S(s)[0];
(vd)[s] v = reshape(s ,a);
SAA [[R]]

SAA [[v = modarray(a ,iv ,v); R]]
= (D(a))[S(a)] v = modarray(a ,iv ,v); SAA [[R]]

SAA [[v = []; R]] = (1)[[0]] v = []; SAA [[R]]

SAA [[v = [a0,...,an−1]; R]] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0)[[]] vd = 1 + D(a0);
(1)[[1]] vss = [vd];
(1)[vss] vs = [n] ++ S(a0);
(vd)[vs] v = [a0,...,an−1];
SAA [[R]]

SAA [[v = fun (args); R]] = R [[v]]= fun (args);MIR [[T [[fun]]v]];SAA [[R]]

SAA [[v = with parts genarray(s ,d); R]]

=

⎧
⎨

⎩

(0)[[]] vd = S(s)[0];
(vd)[s] v = with SAA [[parts]] genarray(s ,d);
SAA [[R]]

∣
∣
∣
∣
∣
∣
if D(d)≡ 0

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0)[[]] ss0 = S(s)[0];
(0)[[]] vd = ss0 + D(d);
(1)[[1]] vss = [vd];
(1)[vss] vs = s ++ S(d);
(vd)[vs] v = with SAA [[parts]] genarray(s ,d);
SAA [[R]]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

otherwise

SAA [[(lb <= iv < ub) block R]]
= (lb <= SAA′ [[iv]][[ub]] < ub) SAA [[block]] SAA [[R]]

SAA′ [[iv]][[ub]] = (1)[S(ub)] iv

SAA′ [[[i1, ..., id]]][[ub]] = [(0)[[]] i1, ..., (0)[[]] id]

Fig. 4. Transformation scheme for inserting symbolic array attributes

On Optimising Shape-Generic Array Programs 9

denote the context-free replacement of a program fragment expr by a another
program fragment expr ′. The scheme SAA does not only express the relation-
ships between the arguments and the shapes of the results of the SaCmini built-in
functions, but also ensures proper attribute annotation at function boundaries.

Identifiers bound to constants or applications of scalar-valued functions (in-
cluding dim) are assigned the attribute pair (0)[[]]. Identifiers bound to the
values of other identifiers (i.e. a = b;) share the same pair of attributes. By
definition, the result of function shape(a) is a vector of length equal to the
rank of a . This correspondence is expressed in the symbolic array attribute
(1)[[D(a)]], which is converted into flat code to adhere to our grammar. Vice
versa, the rank of the result of reshape(s,a) is determined by the length of
vector s , which is accessed by selecting the first element from the shape of s .

The vector construct [a0,...,an−1] yields an array whose rank is given by
increasing the rank of a0 by one. The shape vector is obtained by concatenating
[n] and the shape vector of a0

2 using the function (++) depicted in Fig. 3.
The with-loop with ... genarray(shp,def) generalises array construc-

tion. The rank of its result can be computed by adding the rank of the default
value def 2 to the length of vector shp . Similar to vector construction, comput-
ing the shape vector requires to concatenate shp and the shape vector of def .
The index vector is also annotated with symbolic array attributes by the aux-
iliary scheme SAA′ before the main scheme is recursively applied to the parts.
Here, we exploit the restriction that index vector and boundary vectors must
coincide in length.

As explained so far, SAA inserts symbolic array attributes that describe an
array’s rank and shape in terms of existing arrays within the scope of the function
body. For obvious reasons this approach can neither be carried over to function
parameters nor to arrays defined by function applications. In both cases, we fall
back to introducing applications of the built-in functions dim and shape. This is
formalised by the auxiliary scheme MIR shown in Fig. 5. Scheme R only serves
to provide fresh identifiers and thus avoid naming conflicts. The relationship
between rank, shape and value of a function parameter or an application result is
established by the additional application of an internal pseudo function saabind:

(d)[s] v’ = saabind(d,s ,v);

The assignment associates the identifier v’ with the rank d and the shape s .
However, it makes no statement about the array attributes of v which may not
be present at all. Thus, the above line is substantially different from

(d)[s] v’ = v ;
which states that v’ and v are identical and thus have the same attributes.

2 By definition all elements of a vector must have the same shape. Likewise, all el-
ements of an array created using a genarray-with-loop must match the default
element in shape. If the compiler does not manage to guarantee this property by
static analysis, the code generator inserts a run time check into compiled code.
Thus, we may safely adopt one representative here, which is either the first element
of a non-empty vector or the default element of a with-loop.

10 K. Trojahner, C. Grelck, and S.-B. Scholz

MIR [[t [s1,...,sd] a]] =

⎧
⎨

⎩

(0)[[]] ad = d ;

(1)[[d]] as = [s1,...,sd];

(d)[[s1,...,sd]] a = saabind(ad,as,R [[a]]);

MIR [[t [•1, ..., •d] a]] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(0)[[]] ad = d ;

(1)[[d]] as = shape(R [[a]]);
(0)[[]] as1 = as[0];

...

(0)[[]] asd
= as[d−1];

(1)[[d]] as’ = [as1,...,asd
];

(d)[as] a = saabind(ad,as’ ,R [[a]]);

MIR [[t [*] a]] =

⎧
⎪⎪⎨

⎪⎪⎩

(0)[[]] ad = dim(R [[a]]);
(1)[[1]] ass

= [ad];

(1)[ass
] as = shape(R [[a]]);

(ad)[as] a = saabind(ad,as,R [[a]]);

Fig. 5. Compilation scheme for representing array attributes at function boundaries

Depending on the shape class of the argument, different code patterns are
used. For AKS arrays, both attributes are simple constants. This also holds for
the rank attribute of AKD arrays. Their shape, however, must be determined
dynamically. The elements of the shape vector are selected one by one and re-
assembled to form a new vector. Doing so we introduce mirrors for the whole
shape vector and for all the elements which can be obtained by selecting from
the new shape vector. In the AUD case, the pattern essentially applies dim and
shape. The additional code line serves to encode the correspondence between
the length of the shape vector and the rank of the array. The auxiliary scheme T
used in the rule function application yields the base type of the function value.

4 Effects of Symbolic Array Attributes

Symbolic array attributes provide uniform access to the ranks and shapes of
arrays even if these properties are unknown until run time. In conjunction, they
reflect all static relationships between rank scalars, shape vectors and array val-
ues within one function. A compiler may now exploit this information as a foun-
dation for program optimisation. In particular, symbolic array attributes allow
the compiler to statically eliminate data dependencies resulting from accessing
array rank and shape properties.

Fig. 6 shows the basic partial evaluation steps that exploit symbolic array
attributes. All applications of dim(a) and shape(a) are replaced by the cor-
responding attribute values D(a) and S(a), respectively. Even applications of
saabind(d,s ,a) can actually be eliminated if there are symbolic array at-
tributes for a identical to (d)[s], which may well happen as a result of function
inlining. Although these transformations seem simple, they are in fact crucial

On Optimising Shape-Generic Array Programs 11

SVO [[dim(a)]] = D(a) if D(a) defined

SVO [[shape(a)]] = S(a) if S(a) defined

SVO [[saabind(ad,as,a)]] = a if D(a) ≡ ad ∧ S(a) ≡ as

Fig. 6. Optimisation schemes for dim, shape, and saabind

for triggering a plethora of further optimisations that may even not be aware of
symbolic array attributes.

By means of symbolic array attributes the available information on partial
structural information of individual arrays as well as the structural relation-
ships between different arrays are explicitly modeled in terms of regular SaCmini

expressions. As such they are subject to standard optimisations like constant
folding, constant/variable propagation or common subexpression elimination to
name just a few. Relationships between arrays like shape equality are expressed
in the most natural way: by having all queries for the shape of one or another ar-
ray be replaced by the same (symbolic) identifier. High-level optimisations like
with-loop-folding [3] or with-loop-fusion [5] and memory management tech-
niques like update-in-place or memory reuse [6] benefit from this information
with little or no alteration. Likewise, shape cliques [9] can be identified without
further analysis: all arrays belonging to the same shape clique have the same
symbolic shape identifier.

Symbolic array attributes make exactly those rank and shape computations
explicit in intermediate code that otherwise would be created by the code gener-
ator at a much later stage of the compilation process. If not a single optimisation
applies, we end up with the same code generated in the end as without symbolic
array attributes. However, our experience shows that typically our optimisa-
tions are quite effective, and, hence, rank and shape computation are partially
performed at compile time and shared among different arrays in many cases.

5 Case Study

In this section, we demonstrate how symbolic array attributes influence the
compilation process. Instead of quantifying performance using a broad range
of benchmarks, our case study aims at illustrating in detail how program opti-
misation is affected and why symbolic array attributes allow us to generate more
efficient code. For this purpose, we choose a small but very important example:
element-wise mapping of a function to an array in a shape-generic way. In the
absence of higher-order functions in SaCmini (and in SaC), we need a concrete
definition for each scalar operator. This functional pattern appears in abundance
in generic SaC applications.

Fig. 7 shows the standard library implementation of extending the scalar
boolean negation operator to boolean arrays of any shape. Essentially, the func-
tion (!) defines the result array to have the same shape as the argument array

12 K. Trojahner, C. Grelck, and S.-B. Scholz

bool[*] (!) (int[*] a)
{
s = shape(a);
res = with (iv < s) {

ael = a[iv];
return(!ael);

} genarray(s, false);
return(res);

}

Fig. 7. Case study: element-wise mapping of a function to a generic array

bool[*] (!) (int[*] a’)
{
(0) [[]] ad = dim(a’);
(1) [[1]] ass = [ad];
(1) [ass] as = shape(a’);
(ad)[as] a = saabind(ad,as,a’);
(1) [[1]] shs = [ad];
(1) [shs] s = shape(a);
(0) [[]] rd = shs[0];
(rd)[s] res = with ((1)[shs] iv < s) {

(0) [[]] d = shape(iv)[0];
(0) [[]] ss = shape(s)[0];
(0) [[]] dl = ss - d;
(1) [[1]] ds = [dl];
(0) [[]] dd = shape(ds)[0];
(dd) [ds] shp = with ([(0)[[]]j] < ds) {

(0)[[]] drel=s[j+d];
return(drel);

} genarray(ds,0);
(0) [[]] aed = shape(shp)[0];
(aed)[shp] ael = with ((1)[dub] jv < shp) {

(0)[[]] elem=sel(iv++jv,a);
return(elem);

} genarray(shp,0);
return(!ael);

} genarray(s, false);
return(res);

}

Fig. 8. The example with inlined functions and symbolic shape attributes

with all elements being set to the negated values of the corresponding elements
of the argument array. As the function signature deliberately leaves the struc-
ture of argument arrays unrestricted, selection into the argument array refers to
the second instance of select from Fig. 2. Hence, it also relies on the auxiliary
functions drop and (++) shown in Fig. 3.

Fig. 8 shows the intermediate code after inlining the functions select and
drop. Due to the limited space we refrain from inlining the application of ++ as

On Optimising Shape-Generic Array Programs 13

well. Without symbolic shape attributes no further optimisation would be possi-
ble. It is needless to say that this code shows a very poor run time performance.
There is one with-loop alone for computing the shape shp of the selected ele-
ment which is a relict from the drop function. Although it is bound to always
yield the same result, the with-loop is evaluated for each element of the new
array res. It cannot be lifted out of the outer with-loop because it depends
on the index vector iv via ds, dl and d. Even worse, as the selected element is
a scalar, shp must always be the empty vector []. Hence, the following with-
loop will only produce a single element by selecting into the array a at position
iv++[] = iv.

However, annotating the code with symbolic array attributes, as described in
Section 3, drives the optimisation process way beyond. The key to eliminating
overhead in the outer with-loop lies in the highlighted code section in Fig. 8. By
identifying that iv and s have in fact the same shape, it becomes apparent that
the shape of the selected element is [], i.e., the element turns out to be scalar.
The symbolic shape attributes allow us to partially evaluate both shape(iv)
and shape(s) to shs, such that both d and s become shs[0], which is further
resolved to ad. Exploiting the algebraic property that x − x = 0 makes dl
become zero and thus ds turns into the constant vector [0]. Hence, standard
optimisations transform the four highlighted lines of code in Fig. 8 into

(0) [[]] d = ad;
(0) [[]] ss = ad;
(0) [[]] dl = 0;
(1) [[1]] ds = [0];

The optimisation process continues in a similar fashion. With ds = [0], the
inner with-loop that computes shp, the shape of the element selected from
a, is known to merely yield the empty vector []. As a consequence, the sym-
bolic array attributes of ael have been refined to constants, namely (0)[[]].
Furthermore, with shp = [], the with-loop performing the selection itself can
be unrolled, yielding ael = sel(iv++[], a), which in turn is simplified to
ael = sel(iv, a).

Finally, by eliminating common subexpressions and dead code, we obtain the
code shown in Fig. 9. The result looks strikingly similar to the original program
in Fig. 7. However, instead of being forced to use the expensive generic selection
function from Fig. 2, we now employ the built-in function sel. Moreover, the
symbolic array attributes clearly reflect the shape equality between argument
and result. This property is exploited by the compiler to generate code that
tries to immediately reuse the memory that holds a for storing res [6].

In order to quantify the effect of the transformations enabled by symbolic
array attributes in our case study, we have created a synthetic micro benchmark:
We run 100 negations of an array of 2000 × 2000 elements3 on a 3 GHz Intel
Xeon processor. Fig. 10 shows program run times and memory consumption of
the micro benchmark for compiled AKS, AKD and AUD code. Symbolic array
3

SaC stores boolean values as integers rather than bits. Hence, we need approximately
16MB of memory to store one array.

14 K. Trojahner, C. Grelck, and S.-B. Scholz

bool[*] (!) (int[*] a’)
{
(0) [[]] ad = dim(a’);
(1) [[1]] ass = [ad];
(1) [ass] as = shape(a’);
(ad)[as] a = saabind(ad,as,a’);
(ad)[as] res = with ((1)[ass] iv < as) {

(0)[[]] ael = sel(iv, a);
return(!ael);

} genarray(as, false);
return(res);

}

Fig. 9. The fully optimised example

attributes have no impact on the compilation of non-generic code. The AUD
variant profits the most from the extended optimisation capabilities: execution
time is reduced by 95% from 149.5s to 7.1s. This is not surprising given how much
overhead has been eliminated from the intermediate program. The remaining
slowdown with respect to the AKS program is explained by the lower efficiency
of the AUD array traversal code. In both the AUD and the AKD case, symbolic
array attributes enable memory reuse, thereby reducing space requirements to
the AKS level. The AKD program especially benefits from this: its run time is
reduced by 28%, approaching the AKS run time.

In generic array programming, small functions like the negation on arrays
serve as building blocks for more complex operations. Fig. 11 illustrates this
concept by means of a shape-generic implementation of element-wise logical
implication. The function is composed of negation and disjunction, where the
implementation of the latter follows the familiar pattern. Since our type system
cannot express the shape conformability restriction on the argument arrays, we
use an application of reshape instead. The run time figures show that symbolic
array attributes have a drastic effect beyond the improvements we observed in
the compilation of the individual components. Since the applications of shape

 1

 10

 100

 1000

AUDAKDAKS

R
un

tim
e

in
 s

ec
on

ds

no SAA
with SAA

 0

 10

 20

 30

 40

 50

AUDAKDAKS

M
em

or
y

de
m

an
d

in
 m

ill
io

n
by

te
s no SAA

with SAA

Fig. 10. Run time and memory impact of symbolic array attributes

On Optimising Shape-Generic Array Programs 15

bool[*] impl(bool[*] a, bool[*] b)
{
a = reshape(shape(b), a);
return(!a | b);

}

 1

 10

 100

 1000

AUDAKDAKS

R
un

tim
e

in
 s

ec
on

ds

no SAA
with SAA

Fig. 11. Run time performance of logical implication on arrays

used in the constituent functions have been removed, with-loop-folding is able
to merge the two consecutive with-loops performing negation and disjunction.
Hence, the AKD execution time is reduced by 56% from 3.9s to 1.7s, once more
reaching the performance level of the AKS variant. The AUD run time drops
by almost 98% from 442.5s to 9.8s, making the once prohibitively expensive
shape-generic program useful in practice.

6 Related Work

An example for the importance of structural information for array processing is
Jay’s FISh [10]. In FISh, each function f is accompanied by a shape function #f
that maps the shape of the argument to the shape of the result. Shape inference
proceeds by complete static evaluation of these shape functions and rejects all
programs for which it fails. As a consequence, FISh does not support non-
uniform functions like take and drop for which the result shape depends on
argument values rather than only shapes.

SaC is less restrictive than FISh and properly supports non-uniform opera-
tions. However, efficiency of compiled code nevertheless depends on the accuracy
of the available shape information [11]. To improve structural information we
previously focused on a combination of partial evaluation and selective function
specialisation [7]. Bernecky recently introduced the concept of shape cliques, sets
of arrays of provably equal shape [9], and investigated their impact on a selected
optimisation: index vector elimination. Symbolic array attributes generalise the
concept of shape cliques by representing partial and relational structural infor-
mation explicitly in the code. In particular, symbolic array attributes allow us
to identify shape cliques, but go beyond this specific application.

Runtime performance is not a key issue in untyped, interpreted array lan-
guages like MatLab, APL or J. However, as soon as attempts are indeed made
to accelerate program execution, structural array properties gain interest. For
example, the Falcon MatLab compiler [12] by de Rose and Padua infers either
precise shapes or rather fuzzy approximations like notMatrix and notScalar.
Recently, Joisha and Banerjee [13] presented an approach for inferring symbolic

16 K. Trojahner, C. Grelck, and S.-B. Scholz

array shapes that is based on modeling the shape semantics of the built-ins in an
algebraic system and evaluation of the resulting expressions using term rewrit-
ing. Another approach taken by McGosh [14] is to use propositional logic to
represent the constraints on the variables. The shape constraints of each state-
ment are expressed as sequences of clauses, before a whole-procedure solution
for all shapes is computed by finding n-cliques in the constraint graph. In the
domain of APL Bernecky proposed array predicates [15] as a framework to rep-
resent knowledge about arrays that exceeds structural information, e.g., a vector
may be attributed as sorted if it is the result of a sort operation. In a setting
dominated by powerful built-in operations such predicates can be maintained
and exploited at a later stage, e.g. to avoid (re-)sorting of an already sorted
array.

All the approaches mentioned so far share with ours the aim to identify
information that is hidden in the code. An alternative class of approaches en-
able the user to express constraints on arrays by more expressive type systems.
Dependent types [8] naturally lend themselves for this purpose as they allow
the use of (dynamic) terms to index within families of types. Unfortunately,
the problem of type equality is generally undecidable as it boils down to de-
ciding whether two index terms denote the same value. For example, Augusts-
son’s Cayenne [16] is a fully dependently typed language. Its type system is
undecidable and it lacks phase distinction. Both problems can be overcome
by restricting the type language. For example, epigram [17,18] (Altenkirch,
McBride, McKinna) rules out general recursion in type-forming expressions to
retain decidability. Other, light-weight approaches such as Xi and Pfenning’s
dml [19], Xi’s applied type system [20], and Zenger’s indexed types [21] allow
term-indexing into type families only for certain index sorts. The type-checking
problem can then be reduced to constraint solving on these sorts, which is
decidable.

Our work is in part inspired by the above mentioned dependently typed pro-
gramming systems. Symbolic array attributes may be regarded as index-terms
into the type family of multi-dimensional arrays of a given base type with SaC

itself being used as the term language. However, our approach does not aim
at providing stronger typing facilities, but at obtaining a uniform representa-
tion of the knowledge already present in a program. In consequence, there is no
obligation of keeping type equality decidable. There is also a relation to work
which aims at optimising dependently typed programs. Xi and Pfenning report
successful array bounds check elimination [22], Xi even outlined a scheme for
dead code removal through dependent types in dml [23]. McKinna and Brady
describe optimisations in the compilation of epigram to remove compile time
only values from terms as well as array bounds checks [24].

7 Conclusion and Future Work

We have proposed a novel approach to represent incomplete structural informa-
tion on shape-generic arrays inferred by the compiler. The appealing

On Optimising Shape-Generic Array Programs 17

characteristic of our symbolic array attributes is that they map information from
the domain of shapely types into the domain of the expression language where a
plethora of optimisation techniques wait to be reused to improve the compile time
knowledge on structural properties of shape-generic arrays. As a consequence,
we observe a cross-fertilisation between code optimisation and gathering of ad-
ditional structural information. Our case study demonstrates how our technique
may substantially improve the run time behaviour of shape-generic code without
the need for specialisation into non-generic code. Although we have illustrated
the concept of symbolic array attributes in the context of SaC, the ideas can be
carried over to other settings with support for generic array programming rather
straightforwardly.

A limitation of our approach so far is the fact that our analysis is mostly intra-
functional. Function inlining and function specialisation with respect to sym-
bolic array attributes are two ways to infer structural properties across function
boundaries. However, both are somewhat orthogonal to our approach. Instead,
we intend to embed our current work in a more general framework that actually
extends the shape-generic type system by a variant of dependent types adapted
to the special needs of shape-generic programming. This step would allow us
to express structural relationships between function parameters and function
results in a systematic way. Symbolic array attributes would then serve as an
implementation vehicle for type inference and as an interface between the type
system and the optimisation framework.

References

1. Scholz, S.B.: Single Assignment C — Efficient Support for High-Level Array Opera-
tions in a Functional Setting. Journal of Functional Programming 13(6), 1005–1059
(2003)

2. Grelck, C., Scholz, S.B.: SAC — A Functional Array Language for Efficient Multi-
threaded Execution. International Journal of Parallel Programming 34(4), 383–427
(2006)

3. Scholz, S.B.: With-loop-folding in SAC — Condensing Consecutive Array Opera-
tions. In: Clack, C., Hammond, K., Davie, T. (eds.) IFL 1997. LNCS, vol. 1467,
pp. 72–92. Springer, Heidelberg (1998)

4. Grelck, C., Scholz, S.B., Trojahner, K.: With-Loop Scalarization: Merging Nested
Array Operations. In: Trinder, P., Michaelson, G.J., Peña, R. (eds.) IFL 2003.
LNCS, vol. 3145, pp. 118–134. Springer, Heidelberg (2004)

5. Grelck, C., Hinckfuß, K., Scholz, S.B.: With-Loop Fusion for Data Locality and Par-
allelism. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS, vol. 4015,
pp. 178–195. Springer, Heidelberg (2006)

6. Grelck, C., Trojahner, K.: Implicit Memory Management for SAC. In: Grelck, C.,
Huch, F. (eds.) Hardware Specification, Verification and Synthesis: Mathematical
Aspects. LNCS, vol. 408, Springer, Heidelberg (1990)

7. Grelck, C., Scholz, S.B., Shafarenko, A.: A Binding-Scope Analysis for Generic
Programs on Arrays. In: Butterfield, A. (ed.) IFL 2005. LNCS, vol. 4015, pp. 212–
230. Springer, Heidelberg (2006)

8. Martin-Löf, P.: Intuitionistic Type Theory. Biblio-Napoli (1984)

18 K. Trojahner, C. Grelck, and S.-B. Scholz

9. Bernecky, R.: Shape Cliques. In: Horváth, Z., Zsók, V., eds.: Proceedings of the
18th International Symposium on Implementation of Functional Languages, IFL
2006, Budapest, Hungary, September 4-6, 2006, Eötvös Loránd University 1–12
(2006)

10. Jay, C., Steckler, P.: The Functional Imperative: Shape! In: Hankin, C. (ed.) ESOP
1998 and ETAPS 1998. LNCS, vol. 1381, pp. 139–153. Springer, Heidelberg (1998)

11. Kreye, D.: A Compilation Scheme for a Hierarchy of Array Types. In: Arts, T.,
Mohnen, M. (eds.) IFL 2001. LNCS, vol. 2312, pp. 24–26. Springer, Heidelberg
(2002)

12. de Rose, L., Padua, D.: Techniques for the translation of matlab programs into
fortran 90. ACM Transactions on Programming Languages and Systems 21(2),
286–323 (1999)

13. Joisha, P., Banerjee, P.: An algebraic array shape inference system for matlab.
ACM Transactions on Programming Languages and Systems 28(5), 848–907 (2006)

14. McCosh, C.: Type-based specialization in a telescoping compiler for matlab. Master
Thesis TR03-412, Rice University, Houston, Texas, USA (2003)

15. Bernecky, R.: Reducing Computational Complexity with Array Predicates. In:
Picchi, S., Micocci, M. (eds.) Proceedings of the International Conference on Array
Processing Languages (APL’98), Rome, Italy, pp. 46–54. ACM Press, New York
(1998)

16. Augustsson, L.: Cayenne – a language with dependent types. In: International
Conference on Functional Programming. pp. 239–250 (1998)

17. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1), 69–111 (2004)

18. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter.
Manuscript, available online (2005)

19. Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In: Aiken, A.
(ed.) Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’99), pp. 214–227. San Antonio, Texas, USA,
ACM Press, New York (1999)

20. Xi, H.: Applied Type System (extended abstract). In: Berardi, S., Coppo,
M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 394–408. Springer,
Heidelberg (2004)

21. Zenger, C.: Indexed types. Theorectical Computer Science 187(1-2), 147–165 (1997)
22. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.

In: Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, Montreal, pp. 249–257 (1998)

23. Xi, H.: Dead code elimination through dependent types. In: Gupta, G. (ed.) PADL
1999. LNCS, vol. 1551, pp. 228–242. Springer, Heidelberg (1999)

24. McKinna, J., Brady, E.: Phase distinctions in the compilation of epigram. Draft,
available online (2005)

	On Optimising Shape-Generic Array ProgramsUsing Symbolic Structural Information
	Introduction
	Introducing SaCmini
	Symbolic Array Attributes
	Effects of Symbolic Array Attributes
	Case Study
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

