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Abstract. Compiling indexing operations on n-dimensional arrays into
efficiently executable code is a challenging task. This paper focuses on
the reduction of offset computations as they typically occur when trans-
forming index vectors into offsets for linearized representations of n-
dimensional arrays. We present a high-level optimization to that effect
which is generally applicable, even in the presence of statically unknown
rank (n). Our experiments show run-time improvements between a factor
of 2 and 16 on a set of real-world benchmarks.

1 Introduction

Languages that permit us to express algorithms in a terse, consistent manner
enhance our thought processes, providing us with what Ken Iverson called ”tools
of thought” [1]. Data-parallel array languages, such as SaC, APL, and J, fall into
this class of programming languages. They offer the programmer such benefits
as shape-invariant programming, terse expression, and simpler control flow.

Some of these benefits arise from the use of index sets to specify data-parallel
indexing operations on multi-dimensional arrays [2,3,4]. Index sets may be
thought of as arrays of index vectors, in which each index vector specifies a
single element or an entire sub-array to be selected from an array. For example,
the index vector [3,4] in SaC could be used to select the element in row three
and column four of a rank-2 matrix, or to select the matrix of shape [7,6] at
hyperplane three and plane four from a tensor of shape [9,8,7,6].

As powerful as index vectors are on the level of algorithmic specifications, they
open a Pandora’s Box of troubles when it comes to generating highly efficient
executable code from them. If index vectors actually appear in code generated
by an array-language compiler, run-time performance can be severely degraded.
One source of performance degradation is memory management overhead arising
from dynamic allocation and deallocation of all arrays, including index vectors.
To avoid superfluous memory allocations and, even more importantly, to avoid
superfluous array copying, reference counting is used as predominant garbage
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collection technique. Although quite some research went into optimizing this
technique, such as the work described in [5,6,7], the dynamic creation of index
vectors within the innermost loops often cannot be avoided.

Another major source of performance degradation due to index vectors ap-
pears whenever the n-dimensional arrays they select from are internally repre-
sented in a linearized fashion. This requires all index vectors within selections
to be translated into offsets within the linearizations of the arrays they select
from. Although this may seem an inexpensive operation – n − 1 additions and
n−1 multiplications per selection into an n-dimensional array – it turns out that
indexing operations are usually heavily used within inner loops and, therefore,
have a significant impact on the overall run-time.

In a setting with fixed array dimensionality (rank) or shape, the runtime im-
pact can be alleviated by scalarizing indexing operations and consecutively ap-
plying standard optimization techniques. However, in generic array programming
languages such as SaC, where the programmer is not bound to predefine the
dimensionality of an array, scalarizing indexing operations often is not possible.
In this paper, we describe index-vector-elimination (IVE), an optimization
technique that independently of the static shape-knowledge is able to eliminate
redundant offset computations.

The paper is organized as follows: the next section gives a brief introduc-
tion of a stripped-down version of SaC which serves as our model language.
Section 3 presents an example which demonstrates the potential for code im-
provements due to array indexing within a typical loop kernel, and identifies
the improvements that our optimization targets. A formalization of index-vec-

tor-elimination, presented in Section 4, provides the required transformation
schemes for our model language SaCλ. Section 5 presents some performance
figures for a set of real-world benchmarks. We discuss related work in Section 6
and draw some conclusions in Section 7.

2 SaCλ

We now describe a stripped-down version of SaC, comprising only the bare
essentials of the language: its syntax has been modified to a λ-calculus style, in
order to ease comprehension by a functional-programming audience.

Figure 1 shows the syntax of SaCλ. A program consists of a set of mutu-
ally recursive function definitions and a designated main expression. Essentially,
expressions are either constants, variables or function applications. Since SaC

does not, at present, support higher-order functions nor nameless functions, all
abstractions (function definitions) are explicitly user-defined. Function applica-
tions are written in C-style, i.e., with parentheses around arguments, rather than
around entire applications of functions. Constants are either scalars or vectors of
expressions enclosed by square brackets. The reader may note here, that our for-
mal description of SaCλ distinguishes between LetExpr, Expr, and V al where
one would usually expect just Expr. This measure eases the formal specification
of code transformations in later sections. Since a transformation of the general
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Program ⇒ [ FunId = λ Id[ , Id ]* .LetExpr ; ]*
main = LetExpr ;

LetExpr ⇒ V al

| let Id = Expr in LetExpr

Expr ⇒ V al

| FunId ( V al [ , V al ]* )
| Prf ( V al [ , V al ]* )
| if V al then LetExpr else LetExpr

| with( V al <= Id < V al ) : LetExpr
genarray( V al , V al )

V al ⇒ Const

| [ [ V al [ , V al ]* ] ]
| Id

Prf ⇒ shape | dim | sel | ∗ | ...

Fig. 1. The syntax of SaCλ

case into this restricted form is rather straight-forward, we take the liberty to
ignore some of these restrictions in our examples whenever this improves their
readability.

SaCλ provides a few built-in array operators, referred to as primitive functions
(Prf). Among these are shape and dim for computing an array’s shape and
dimensionality (rank), respectively. A selection operation, sel, is also provided; it
takes two arguments: an index vector, specifying the element to be selected, and
an array from which to select. These basic array operations are complemented by
element-wise extensions of arithmetic and relational operations, such as multiply
(∗) and greater-than-or-equal (>=), respectively. For improved readability, we
use the latter in infix notation throughout our examples.

On top of this language kernel, SaC provides the with-loop, a language con-
struct for defining array operations in a generic way. In the interest of simplified
exposition, we consider only a restricted form of the with-loop; fully-fledged
with-loops are described in [3].

As can be seen from Figure 1, with-loops in SaCλ take the general form:

with ( lower <= iv < upper) :expr
genarray( shape, default)

where iv is an identifier, lower, upper, and shape denote expressions that should
evaluate to vectors of identical length, and expr and default denote arbitrary
expressions that must evaluate to arrays of identical shape. Such a with-loop
defines an array of shape shape, whose elements are either computed from the
expression expr or from the default expression default. Which of these two val-
ues is chosen for an individual element depends on the element’s location, i.e.,
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it depends on its index position. If the index is within the range specified by
the lower bound lower and the upper bound upper, expr is chosen, otherwise
default is taken. As a simple example, consider this with-loop, which computes
the vector [0, 2, 2, 2, 0]:

with ([1] <= iv < [4]) : 2
genarray ( [5], 0)

Note that the use of vectors for the shape of the result and the bounds of the in-
dex space (also referred to as the ”generator”‘) allows with-loops to denote arrays
of arbitrary rank. Furthermore, the “generator expression” expr may refer to the
index position through the “generator variable” iv. For example, the with-loop

with ([1,1] <= iv < [3,4]) : sel([0], iv) + sel([1], iv)
genarray ( [3,5], 0)

yields the matrix

�
�

0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

�
� .

We can formalize the semantics of SaCλ by a standard big-step operational
semantics for λ-calculus-based applicative languages as defined in several text-
books, e.g., [8]. The core relations, i.e., those for conditionals, abstractions, and
function applications can be used in their standard form. Hence, only those re-
lations pertaining to the array specific features of SaCλ are shown in Figure 2.

As a unified representation for n-dimensional arrays we use pairs of vectors
< [ shp1, . . . , shpn], [ data1, . . . , datam] > where the vector [ shp1, . . . , shpn]
denotes the shape of the array, i.e., its extent with respect to the n individual
axes, and the vector [ data1, . . . , datam] contains all elements of the array
in a linearized form. Since the number of elements within an array equals the

product of the number of elements per individual axis, we have m =
n∏

i=1
shpi. The

linearization we choose is row-major, i.e., elements that correspond to variations
in the rightmost index only are consecutive in the vector of elements.

The first two evaluation rules of Figure 2 show how scalars as well as vectors
are transformed into the internal representation. The rule vect requires that all
elements need to be of the same shape, thereby ensuring shape consistency in
the overall result.

The next three rules formalize the semantics of the main primitive operations
on arrays: dim, shape, and sel. There are two aspects of the sel rule to be
observed: Firstly, we require the selection index to be of the same length as the
shape of the array to be selected from. This ensures scalar values as results.
If a more versatile selection is required, i.e., a selection that may return entire
subarrays, this can be achieved by embedding the selection operation into a
with-loop. Secondly, the selection requires a transformation of the index vector
into a scalar offset l into the linearized form of the array. The sum of products
used here reflects the row-major linearization we have chosen.
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const :
n → < [], [n] >

vect :
∀i ∈ {1, . . . , n} : ei → < [ s1, . . . , sm], [ di

1, . . . , di
p] >

[ e1, . . . , en] → < [ n, s1, . . . , sm], [ d1
1, . . . , d1

p, . . . , dn
1 , . . . , dn

p ] >

dim :
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

dim( e) → < [], [n] >

shape :
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

shape( e) → < [ n], [ s1, . . . , sn] >

sel :

iv → < [ n], [ i1, . . . , in] >
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

sel( iv, e) → < [], [ dl+1] >

where l =
n�

j=1
(ij ∗

n�
k=j+1

sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

* :

e1 → < [ s1, . . . , sn], [ d1
1, . . . , d1

m] >
e2 → < [ s1, . . . , sn], [ d2

1, . . . , d2
m] >

*( e1, e2) → < [ s1, . . . , sn], [ d1
1 ∗ d2

1, . . . , d1
m ∗ d2

m] >

with :

el → < [ n], [ l1, . . . , ln] >
eu → < [ n], [ u1, . . . , un] >

eshp → < [ n], [ shp1, . . . , shpn] >
edef → < [], [ d] >

∀i1 ∈ {l1, ..., u1 − 1} ... ∀in ∈ {ln, ..., un − 1} :
(λ Id . eb [ i1, ..., in]) → < [], d[i1,...,in] >

with( el <= Id < eu) : eb genarray( eshp, edef)
→ < [ shp1, . . . , shpn], [ d[0,...,0] , . . . , d[shp1−1,...,shpn−1]] >

where d[x1,...,xn] = d
iff ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj , ..., shpj − 1}

Fig. 2. An operational semantics for SaCλ

Element-wise extensions of standard operations such as the arithmetic and
relational operations are demonstrated by the example of the rule for
multiplication (*).

The last rule gives the formal semantics of the with-loop in SaCλ. The first
three conditions require the lower bound, the upper bound and the shape expres-
sion to evaluate to vectors of identical length. The next two conditions relate to
the default expression edef and the generator expression eb, respectively. They en-
sure that both the default expression and generator expression evaluate to scalar
values. Since the generator expression may refer to the index variable, this is for-
malized by transforming the generator expression into an anonymous function
and by evaluating a pseudo-application of this function to all indices specified in
the generator. The lower part of the with-loop-rule shows how the values from
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the individual generator expression evaluations and the value of the default ex-
pression are combined into the overall result. The result shape vector, which stems
from the shape expression, comprises a concatenation of the data vectors from the
individual generator expression evaluations. Since the generator does not neces-
sarily cover the entire index space, the default expression values need to be in-
serted whenever at least one element of the index vector [i1, . . . , in] is outside the
generator range, i.e., ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj, ..., shpj − 1}.
Formally, this is achieved by the “where clause” of the rule with.

3 A Motivating Example

Let us consider the following definition of an n-dimensional array R:
. . .let

R = A + shift( cv, A + B)
in . . .

where A, B, and cv are variables that are defined by some surrounding context
indicated by the three dots. We assume here that A and B denote n-dimensional
arrays of identical shape and that cv is an identifier that denotes an n-element
vector. Let us, furthermore, assume that + is a user-defined function that extends
scalar addition to n-dimensional arrays in an element-wise fashion, and that
shift implements an n-dimensional shift operation. Inlining the definitions of
these functions results in a nesting of with-loop-defined let expressions of the
form:

. . .let
R = let

C = with( 0*shape( A) <= iv < shape( A)) :
sel( iv, A) + sel( iv, B)

genarray( shape( A), 0)
in let

D = with( cv <= iv < shape( C)) :
sel( iv-cv, C)

genarray( shape( C), 0)
in with( 0*shape( A) <= iv < shape( A)) :

sel( iv, A) + sel( iv, D)
genarray( shape( A), 0)

in . . .

Optimizations such as with-loop-folding[3] transform this expression into an
expression that contains a single with-loop:

. . .let
R = with( cv <= iv < shape( A)) :

sel( iv, A) + sel( iv-cv, A) + sel( iv-cv, B)
genarray( shape( A), 0)

in . . .

A translation of such an expression into C-code leads to a loop nesting where
the innermost loop contains the computation of sel( iv, A) + sel( iv-cv, A) +
sel( iv-cv, B) as well as an assignment of the resulting value into the array R at
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the index position iv. As we can see from the semantics definition in Section 2,
these operations require the indices iv and iv - cv to be translated into suitable
offsets. Using vect2offset( iv, shp) as a short-cut notation for this conversion
of indices into offsets, we obtain code within the innermost loop that is similar to:
A_off0 = vect2offset ( iv , shape(A));
for( k = 0; k < shape(iv )[0]; k++) {

jv[k] = iv[k] - cv[k];
}
A_off1 = vect2offset ( jv , shape(A));
B_off0 = vect2offset ( jv , shape(B));
R[R_off0] = A[A_off0] + A[A_off1] + B[B_off0];

where the write-back offset R off0 is defined by the surrounding loop constructs.
The n-element vector jv serves as a compiler-introduced variable that holds the
result of the element-wise vector-subtraction iv-cv computed by the for-loop
in lines 2-4. A closer look at the example reveals that all arrays involved have
the same shape: we demanded A and B to have the same shape, which guarantees
the element-wise addition to be well-defined. Similarly, the result needs to be of
the same shape as well, since the shift operation’s result matches the shape of
its array argument.

With this knowledge of matching shapes, we can deduce that vect2offset(
jv, shape(A)) and vect2offset( jv, shape(B)) in fact compute the same
offset allowing us to reuse A off1 within the selection into B. Following the same
line of reasoning for R and A, we can reuse R off0 for A off0. These modifications
lead to an improved loop body of the form:
for( k = 0; k < shape(iv )[0]; k++) {

jv[k] = iv[k] - cv[k];
}
A_off1 = vect2offset ( jv , shape(A));
R[R_off0] = A[R_off0] + A[A_off1] + B[A_off1];

In order to improve this code further, we need to exploit the relation between
iv and jv and the consequent relation between R off0 and A off1. This, in
turn, requires us to have a closer look at the definition of vect2offset. From
the semantics definition in Section 2 we obtain that an index vector [i1, ..., in]

into an array of shape [s1, ..., sn] corresponds to to the offset
n∑

j=1
(ij ∗

n∏

k=j+1
sk).

From linear algebra, we know that
Lemma 1. For all vectors iv, cv, shp ∈ ZZn we have vect2offset( iv + cv,
shp) = vect2offset( iv, shp) + vect2offset( cv, shp).

Proof. By definition of vect2offset we have:
vect2offset( iv + cv, shp)

=
n∑

i=1
((ivi+cvi)*

n∏

j=i+1
shpj)

=
n∑

i=1
(ivi*

n∏

j=i+1
shpj)+

n∑

i=1
(cvi*

n∏

j=i+1
shpj)

= vect2offset( iv, shp) + vect2offset( cv, shp)
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This linearity in the first argument of vect2offset lets us lift the loop-invariant
part of the index computation from the loop body by pre-computing an offset:

coffset = vect2offset( cv, shape(A))

and by defining A off1 as:

vect2offset( jv, shape(A)) + coffset

Subsequently, we can reuse the offset R off0 within the computation of
A off1, which yields a loop body of the form:

A_off1 = R_off0 + coffset;
R[R_off0] = A[R_off0] + A[A_off1] + B[A_off1];

Assuming A to be an n-dimensional array, our optimizations have reduced the
number of arithmetic operations within the loop body from 7 ∗ n − 4 to 3, i.e.,
we eliminate 70% of the arithmetic operations when A is a rank-2 matrix, and
84% when A is of rank 3. Furthermore, since all vect2offset operations have
been eliminated, neither iv nor jv need to be allocated or freed within the loop
body anymore.

4 Index Vector Elimination

From our example, we can see that the intended optimizations cannot be done on
the level of SaCλ itself. Instead, we need to apply them to a level that is closer
to the generated C code. The way we achieve this is to make the transformation
of index vectors into offsets explicit and to separate it from the selection into
the linearized array representation.

4.1 Splitting the Selection Operation

The basic idea is to introduce two new primitive operations: vect2offset and
idxsel, which represent the offset computation and the selection within the
linearized representation, respectively. A formal definition of their semantics is
given in Figure 3. The vect2offset rule is almost identical to the sel rule. The
only difference is that instead of returning an element from the array, only the
scalar offsel l is returned. This allows the idxsel rule to simply expect a scalar
as index argument for a selection in the linearized representation of the array.
Together, these two operations can be used to replace applications of the oper-
ation sel. The code transformation to that effect is shown in Figure 4. It shows
the essential rule of a transformation scheme SPLIT which recursively traverses
SaCλ programs and replaces every occurrence of an application sel( iv, A) by
an expression of the form idxsel( vect2offset( iv, A), A). However, the
nesting restrictions on SaCλ require a slightly more complex pattern to look
for and a nesting of let expressions as replacement. Note here, that all inserted



Index Vector Elimination — Making Index Vectors Affordable 27

vect2offset :

iv → < [ n], [ i1, . . . , in] >
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

vect2offset( iv, e) → < [], [ l] >

where l =
n�

j=1
(ij ∗

n�
k=j+1

sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

idxsel :

idx → < [], l >
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

idxsel( idx, e) → < [], [ dl+1] >

⇐⇒ 0 ≤ l < m

Fig. 3. Operational semantics for vect2offset and idxsel

SPLIT

�
�
let

Id = Expr
in Exprb

�
� �

��������������	
�������������


let

idx = vect2offset( iv, A)
in let

Id = idxsel( idx, A)
in SPLIT�Exprb�

if Expr ≡ sel( iv, A)

let

Id = SPLIT�Expr�
in SPLIT�Exprb�

otherwise.

Fig. 4. Inserting explicit index computations

identifiers idx need to be unique, i.e., they must not be used anywhere else in
the given program. Those rules of the SPLIT scheme that match the remaining
constructs of SaCλ are not shown as they only propagate the scheme into all
existing sub-expressions.

The soundness of this transformation follows directly from the semantics of
sel, vect2offset, and idxsel:

Theorem 1. SPLIT is sound wrt. the semantics of SaCλ

Proof. From the semantics definitions in Figure 2 and Figure 3 we can see that
it suffices to show that

iv → < [ n], [ i1, . . . , in] >
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

idxsel( vect2offset( iv, e), e) → < [], [ dl+1] >

where l =
n∑

j=1
(ij ∗

n∏

k=j+1
sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk
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We have

e → < [ s1, . . . , sn], [ d1, . . . , dm] >
iv → < [ n], [ i1, . . . , in] >

vect2offset( iv, e) → < [], [ l] >
[vect2offset]

e → < [ s1, . . . , sn], [ d1, . . . , dm] >

idxsel( vect2offset( iv, e), e) → < [], [ dl+1] >

where l =
n∑

j=1
(ij ∗

n∏

k=j+1
sk)

[idxsel]

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk ∧ 0 ≤ l < m

All that remains to show is that the condition 0 ≤ l < m is redundant. 0 ≤ l
follows directly from the definition of l and the requirement that 0 ≤ ik < sk for

all k. From the latter we can furthermore deduce that l =
n∑

j=1
(ij ∗

n∏

k=j+1
sk) ≤

n∑

j=1
((sj−1)∗

n∏

k=j+1
sk) =

n∑

j=1
(

n∏

k=j

sk−
n∏

k=j+1
sk) =

n∏

k=1
sk−

n∏

k=n+1
sk <

n∏

k=1
sk = m.

q.e.d.

Once all offset computations are explicit, the three optimizations explained in-
formally in the previous section can now be formalized.

4.2 Reusing Offset Computations

In order to reuse offset computations, we must identify expressions of the form
vect2offset(iv, A) and vect2offset(iv, B) where the shapes of A and B
are statically known to match. There are several ways to determine this equality.
Once the shapes of A and B are statically known [9], equality can be statically
decided. Even without the presence of static shape knowledge, shape equality
often can be statically decided using inference techniques such as Shape Clique
Inference, outlined in [10], or Symbolic Array Attributes, outlined in [11]. For our
purposes here, we assume this information to be available.

Figure 5 shows the key rule of a transformation scheme REUSE that identi-
fies such situations and replaces the second application of vect2offset by the
offset computed from the first one. The REUSE scheme maps SaCλ programs
and an environment S of identifier triples to a potentially modified program.
Triples (iv, A, idx) each represent an existing definition of an offset idx by an
application of vect2offset to an index vector iv and an array A. The scheme
starts out with an empty environment and traverses into all subexpressions.
Whenever an application vect2offset( iv, A) is found, the environment is
searched for an entry (iv, B, idx) with shape( B) = shape( A). If found, the
application of vect2offset is replaced by the variable idx, otherwise a new triple
is appended to the end of S, denoted by ++ as symbol for concatenation. Note
that our syntactic restrictions ensure that we always find identifiers in argument
position.
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REUSE

�
�
let

Id = Expr
in Exprb

, S

�
�

�

������������������	
�����������������


let

Id = idx
in REUSE�Exprb , S�

if Expr ≡ vect2offset( iv, A)
and ∃ < iv, B, idx> ∈ S
with shape( A) = shape( B)

let

Id = Expr
in REUSE�Exprb , S ++ < iv , A, Id >�

if Expr ≡ vect2offset( iv, A)
and � ∃ < iv, B, idx> ∈ S
with shape( A) = shape( B)

let

Id = REUSE�Expr , S�
in REUSE�Exprb , S�

otherwise.

Fig. 5. Reusing index computations

The soundness of this transformation follows almost directly from the shape
equality predicate:

Theorem 2. REUSE is sound wrt. the semantics of SaCλ.

Proof. Given a subexpression vect2offset( iv, A). From the definitions in Fig-
ure 5 we know that < iv, B, idx> ∈ S, iff we already encountered a subexpression
of the form idx = vect2offset( iv, B) while traversing the program. Given that
vect2offset( iv, A) → < [], [ l] > and the shape equivalence of A and B, we
can conclude that vect2offset( iv, B) → < [], [ l] >. As all identifiers and idx
in particular are unique, i.e. there is only a single assignment, it follows that
idx→ < [], [ l] >. q.e.d.

4.3 Reusing with-loop Offsets

The REUSE scheme introduced in the previous subsection only detects previous
applications of vect2offset as potential reuse candidates. From our example
in Section 3, we have seen that we often can reuse the offset for storing individ-
ual with-loop-computed elements into the overall with-loop-result. Due to the
data-parallel nature of with-loops, this ”assignment“ and thus the required off-
set is not explicit in SaCλ. We formalize this optimization on a higher level than
the generated C-code by taking a similar approach as with the initial splitting of
the sel operation. We transform our with-loops into a slightly lower-level vari-
ant idxwith that makes the ”write-back-offset“ explicit. Its syntax differs from
that of standard with-loops only by an additional identifier within the genera-
tor. This second generator variable introduces a name for the write-back-offset
which in the body of the with-loop can be referred to. The formal semantics
of idxwith are given in Figure 6. As we can see from the semantics it is almost
identical to that of the standard with-loop. In fact, the only difference is that
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idxwith :

el → < [ n], [ l1, . . . , ln] >
eu → < [ n], [ u1, . . . , un] >

eshp → < [ n], [ shp1, . . . , shpn] >
edef → < [], [ d] >

∀i1 ∈ {l1, ..., u1 − 1} ... ∀in ∈ {ln, ..., un − 1} :
(λ Id . (λ Idx . eb p) [ i1, ..., in]) → < [], d[i1,...,in] >

idxwith( el <= Id,Idx < eu) : eb genarray( eshp, edef)
→ < [ shp1, . . . , shpn], [ d[0,...,0] , . . . , d[shp1−1,...,shpn−1]] >

where d[x1,...,xn] = d
iff ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj , ..., shpj − 1}

and p =
n�

j=1
(ij ∗

n�
k=j+1

shpk)

Fig. 6. Further extended operational semantics for SaCλ

REUSE

�
���
let

Id = with( lb <= iv < ub) : Exprbody

genarray( shp, def)
in Expr

, S

�
		�

�

let
Id = idxwith( lb <= iv, wlidx < ub) :

REUSE�Exprbody , S ++ < iv , Id , wlidx >�
genarray( shp, def)

in REUSE�Expr , S�

Fig. 7. Reusing WITH-loop offsets

the body expression eb now is extended by two variable definitions rather than
one: Id for the actual index vector and Idx for the corresponding write-back-
offset.

Before we can try to use this new offset, we need to transform all with-loops
accordingly. This is achieved by slightly extending the REUSE scheme from the
previous section. The additional rule presented in Figure 7 replaces all standard
with-loops by the new idxwith-version. Again, all introduced identifiers wlidx
need to be unique.

Whenever a with-loop is transformed, a new triplet is added to the environ-
ment containing the name of the index variable iv, the name of the array to
be computed Id, and the write-back-offset wlidx introduced by the idxwith-
version of the with-loop. This information can then be used for the substi-
tution of redundant vect2offset computations as described in the previous
subsection.

Theorem 3. The extended REUSE is sound wrt. the semantics of SaCλ.

Proof. Analog to Theorem 2. q.e.d.
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4.4 Splitting Offset Computations

In our motivating example, we have seen that splitting an offset computation
whose index vector stems from a sum/difference of vectors into a sum/differ-
ence of offset computations often triggers further reuse or other optimizations
such as loop-invariant-removal [12]. With the offset computations being
made explicit by the SPLIT scheme, we can now define another scheme SOC

which detects such situations and transforms the offset computation accordingly.
Similar to the REUSE scheme, the SOC scheme takes an additional parameter
which carries quadruples consisting of 3 identifiers and one arithmetic operation;
it collects these quadruples (Id, LinOp, jv, kv), which represent an application
of either + or - (denoted by LinOp) to two arrays jv and kv whose result is kept
in a variable Id, while traversing through the program. Whenever the traversal
finds an application of vect2offset to an identifier that is the first compo-
nent of any of the quadruples seen so far, the code transformation is triggered.
Figure 8 shows the main rule of the SOC scheme. Due to our restricted syntax
both situations of interest are captured in the context of a let expression. If an
addition or a subtraction is encountered, a new quadruple is inserted into the
environment. Applications of vect2offset are only transformed if the index ar-
gument is known to be a sum/difference of vectors, i.e., if a quadruple with the
index variable as first component is contained in the environment. Note here,
that the scheme is applied recursively to the result of the transformation. This
ensures that arbitrary nestings of index operations will be properly split. In all
other cases, the transformation is applied to the subexpressions only.

SOC

�
�
let

Id = Expr
in Exprb

, E

�
�

�

���������������������������	
��������������������������


let

Id = Expr
in SOC�Exprb , E ∪ < Id , LinOp, jv , kv >�

if Expr ≡
LinOp( jv, kv),

SOC

�
������������

let

jvoff = vect2offset( jv, A)
in let

kvoff = vect2offset( kv, A)
in let

Id = LinOp( jvoff , kvoff )
in Exprb

, E

�
											�

if Expr ≡
vect2offset( iv, A)

and
< iv, LinOp, jv, kv> ∈ E

.

let

Id = Expr
in SOC�Exprb , E�

otherwise.

Fig. 8. Splitting of vect2offset operations on linear combinations
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Theorem 4. SOC is sound wrt. the semantics of SaCλ.

Proof. The theorem follows immediately from Lemma 1. q.e.d.

Although the transformation is correct wrt. the semantics of SaCλ its application
bears several problems.

Firstly, the semantics does not make any assumptions about the representa-
tion of the indices. However, Lemma 1 only holds for index vectors from ZZn not
for finite subsets of ZZn such as n-element integer-vectors. Here, we may have
to deal with overflow problems: while an expression vect2offset( iv-cv, A)
may be within the limits of a given integer format, vect2offset( iv, A) or
vect2offset( cv, A) may not. As a consequence, a transformed program may
yield a runtime error although the untransformed one does not. The only way to
avoid this problem is to restrict the transformation to those cases where we can
statically prove that the offset computations are within the limits of the chosen
index representation. It turns out that this is the frequent case as the indices
are usually composed from a with-loop-generated index and a constant offset
vector. For both of these, a static guarantee can be computed if the shape of the
array to be selected from is statically known.

The second difficulty with this transformation stems from the fact that the
transformation by itself leads to a code degradation if we are dealing with vectors
of length ≥ 2: We replace a vector addition of an n-element vector (n operations)
and an offset computation ( 2∗n−2 operations) by one scalar operation and two
offset computations ( 4∗n−4 operations). Only the fact that this transformation
often triggers other optimizations such as the REUSE scheme of the IVE or
loop-invariant-removal has a positive runtime effect. As a consequence, a
conservative implementation needs to apply a reverse transformation if such
sums of offset computations remain after an application of the aforementioned
optimizations.

These considerations lead to the following order of transformations during in-

dex-vector-elimination: First, we apply the SPLIT-scheme in order to make
the offsets explicit, followed by the SOC-scheme which may generate further
offset computations. Then, we apply REUSE and loop-invariant-removal

in order to get rid of as many offset computations as possible. Finally, we revert
those transformations of the SOC-scheme whose components have neither been
eliminated nor have been moved by loop-invariant-removal.

5 Performance

In our motivation example, we were able to save at least 70% of the arithmetic
instructions within the inner loop by applying index-vector-elimination pro-
vided we were dealing with at least rank 2 arrays. Of course, this represents a
best-case scenario, as we were able to remove all index computations. To get an
idea of the impact of index-vector-elimination on real-world applications, we
measured the performance gains archived by applying index-vector-elimina-

tion to two sets of benchmarks: The first set is taken from a SaC benchmark
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Fig. 9. Performance with and without IVE

suite that has previously been used for comparisons with Fortran, whereas the
remainder are APL-derived, APEX-generated SaC programs. Our benchmark
suite represents a mix of array ranks. However, all our benchmarks are either
dominated by rank-1 or by rank-2 arrays.

5.1 Experimental Framework

We used an AMD-based platform (Opteron 165 (1.8GHz)) equipped with 4GB
of RAM, operating SuSE Linux 10.1 64-bit. For compiling the SaC source code
we used the current version of the sac2c compiler (rev 15076) with the GNU
gcc compiler version 4.1.0 as the back-end compiler. We enabled the default set
of optimizations, which include standard optimizations, such as common-sub-

expression-elimination, loop-invariant-removal and loop-unrolling,
as well as SaC-specific optimizations like with-loop folding, with-loop

scalarization and with-loop fusion (for details on the default optimiza-
tions of SaC see [3]). The resulting C code was compiled using the -O3 option
of gcc.

To enable measurement of the impact of index-vector-elimination on the
run time of each benchmark, we created one executable with index-vector-

elimination enabled and one with that optimization disabled. We measured
execution time using user time from the Linux /usr/bin/time function.
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5.2 Analysis

Our results are presented in Figure 9. For each benchmark there are two bars:
a black one representing the runtime with IVE enabled and a light gray one de-
noting the runtime with IVE disabled. Since the IVE-enabled times were always
faster, we use the non-IVE times as a reference time, displaying speedups against
that time rather than absolute runtimes. Higher black bars indicate higher run-
time performance.

We sorted the benchmarks according to their dominant array rank: rank-1
examples are on the left; rank-2 ones are on the right. We can see that the
rank-1 examples gain by a factor of 2 to 4 times. Since we know that rank-
1 arrays cannot profit from any reuse or splitting of offset computations, this
effect can be attributed to the avoidance of dynamic allocation of 1-element
vectors. The stark variation in the effect derives from the differences in memory
access/computation ratios found in the various benchmarks.

For the rank-2 examples, the gains vary even more. Here, our reuse opti-
mizations and the offset computation splittings contribute as well, producing
speedups between about 3 and 16 times. The gain in speedup vs. the rank-1
examples thus varies between a factor of 1.5 and 4, showing that our theoretical
example falls nicely into that range.

6 Related Work

index-vector-elimination addresses a rather specific setting: the translation
of n-dimensional selections specified as shape vectors into scalar offsets into lin-
earized representations of n-dimensional arrays. This setting prevails in array
languages such as APL, Nial, and J. However, most of these languages have
traditionally been interpreted, rather than compiled, because it was thought,
for many years, that language semantics precluded effective application of op-
timizations such as index-vector-elimination. Of the several APL compiler
projects that have been conducted, including [13,14,15,16,17,18], most do not
achieve a very high-level of optimization. The APEX [18] compiler is the only
project we are aware of that aims at utmost run-time efficiency. That run-time
efficiency was enabled, in some degree, by the advent of Static Single Assign-
ment, and the SISAL project. The former was a key factor in improving data
flow analysis; the latter pushed the state of the art with respect to vector-
oriented optimizations. Both of these ultimately had an impact on run-time code
efficiency.

Although the SISAL compiler achieved very good run-time performance [19],
a counterpart to index-vector-elimination was not required, as SISAL rep-
resents n-dimensional arrays as nestings of vectors. However, that run-time rep-
resentation is less favorable for higher-dimensional problems, as described in
[18,20]. These observations led to a proposal for true n-dimensional arrays in
SISAL [21]. Although several implementation issues and optimizations on these
linearized representations are described in [20,22] none of them pertains to IVE.
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The APEX project recently switched from generating SISAL code to gener-
ating SaC code, to avoid fundamental algebraic limitations of nested vectors as
a method of representing arrays. and in order to be able to make use of opti-
mizations such as index-vector-elimination. In fact, run-time deficiencies of
APEX-generated SaC-code partially triggered this research.

One key element of index-vector-elimination is the existence and use of a
shape predicate as explained in Section 4. It can be derived from such techniques
as Shape Clique Analysis [10] or Symbolic Array Attributes [11].

7 Conclusions

This paper presents index-vector-elimination, an optimization for avoiding
run-time overhead arising from index vectors and their conversions into scalar
offsets for linearized array representations. We describe three program traversals
which, when orchestrated properly, for most examples, eliminate all index vectors
within the innermost loop and reuse, to a large extent, offset computations. We
formally describe the transformations, prove their soundness, and discuss their
effectiveness in terms of arithmetic operations involved.

Although the run-time overhead may seem negligible, it turns out that nearly
all array-dominated applications can benefit significantly from IVE. Our mea-
surements for a set of benchmark kernels on a variety of array ranks show that
speedups of 2 to 16 can be expected depending on the predominant array rank
and the nature of the application.
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