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Abstract. We report our experiences of programming in the functional
languageSaC[1] anumericalmethod for theKPI (Kadomtsev-Petiviashvili
I)equation.KPIdescribesthepropagationofnonlinearwaves inadispersive
medium. It is an integro-differential, nonlinear equation with third-order
derivatives, and so it presents a noticeable challenge in numerical solution,
as well as being an important model for a range of topics in computational
physics.The latter include: long internalwaves inadensity-stratifiedocean,
ion-acoustic waves in a plasma, acoustic waves on a crystal lattice, and
more. Thus our solution of KPI in SaC represents an experience of solving
a “real” problem using a single-assignment language and as such provides
an insight into the kind of challenges and benefits that arise in using the
functional paradigm in computational applications. The paper describes
the structure and functionality of the program, discusses the features of
functional programming that make it useful for the task in hand, and
touches upon performance issues.

1 Introduction

It is common knowledge that the uptake of the functional programming tech-
nology is impeded by the lack of convincing evidence of the functional paradigm
efficacy and suitability of expression. There is a considerable interest in seeing
so-called ‘real-life’ applications programmed in a functional language, especially
where these implementations show acceptable run-time performance and design
advantages of the functional programming method.

In functional programming, component algorithms, rather than whole prob-
lems, tend to be used as benchmarks. We ourselves evaluated the performance
of the Fast Fourier Transform component in the past [2] and so did the authors
of [3]; paper [4] uses the conjugate gradient method as a benchmark, and the
authors of [5] study the intricacies of matrix multiplication.

There is a significant advantage in using a whole application rather than a
component algorithm as a benchmark. Firstly, it provides a balance of design
patterns that may reflect more adequately the mix of methods, access patterns
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and programming techniques characteristic of a real-life programming project.
Secondly, one stands a better chance of discovering situations in which the quality
of expression or indeed the quality of generated code is properly challenged, so
that one may learn some important lessons.

This paper has precisely such intent. We have selected a problem in compu-
tational mathematics which is complex enough to be interesting, yet not too
complex, so that we are able to present the results and explain the design deci-
sions in a short conference paper. The rest of the paper is organised as follows.
The next Section introduces the equation and the solution method, Section 3
discusses the SaC implementation issues, Section 4 presents the conclusions we
have drawn from implementing the solution method in SaC, next Section briefly
discusses our equivalent Fortran code, Section 6 presents the results of perfor-
mance studies involving several platforms and commercial compilers as a basis
for comparison, and finally there are some conclusions.

2 The Equation

For this study we chose a problem that one of the authors had been familiar with
from the time some 20 years back when he was doing his PhD in computational
physics at University of Novosibirsk[6]: a Kadomtsev-Petviashvili equation. The
KPI (Kadomtsev Petviashvili I) has the following canonic form:
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For computational reasons, it is more convenient to use the equivalent form
of KPI:
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are the nonlinear, diffractive part and the dispersion term, respectively.
The KPI model is very general indeed. It describes any physical system in

which waves propagate mostly in one direction, but suffer from diffraction, i.e.
the divergence of a wave packet across the propagation direction; dispersion, i.e.
the widening of the wave along the propagation direction due to different parts
of it propagating at different velocities; and hydrodynamic non-linearity, i.e. the
fact that the wave tends towards steeper and steeper shapes until it either breaks
or the steepening is arrested by the dispersion effects.
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To give an idea of where the KPI model may apply, we quote its original
application to water surface waves[7], its use as a model of ion-acoustic waves in
plasma[8] and the application to string theory in high-energy physics[9], but also
such a down-to-earth area as computing wave-resistance of a ship that travels
at high speed along a waterway [10].

The numerical method for this paper has been borrowed from [11], except the
boundary conditions whose discretisation was not defined there, so we used one
of our own, bearing in mind that its effect on performance is insignificant.

The spatial derivatives in L and N were discretised thus:

−∂3u

∂x3 → −ui+2,j − 2ui+1,j + 2ui−1,j − ui−2,j

2Δx3 ,

∂u

∂x
→ ui+1,j − ui−1,j

2Δx

and
∂2u

∂y2 → ui,j+1 − 2ui,j + ui,j−1

2Δy
.

The integration along x was discretised by Simpson method and modified to
take account of the boundary conditions.

The resulting scheme can be summarized as follows:

un+1/3 = un + γ1ΔtN(un) + α1Δt
L(un+1/3) + L(un)

2
,

un+2/3 = un+1/3 + γ2ΔtN(un+1/3) + ρ1ΔtN(un) + α2Δt
L(un+2/3) + L(un+1/3)

2
,

un+1 = un+2/3 + γ3ΔtN(un+2/3) + ρ2ΔtN(un) + α3Δt
L(un+1) + L(un+2/3)

2
,

which accounts for the Crank-Nicholson representation of the diffractive term
and the conventional Runge-Kutta time-integration to the third order of ac-
curacy. Here all α,γ and ρ are scalar constants chosen to achieve the required
approximation accuracy. The boundary conditions are periodic in y and absorb-
ing ∂2u

∂x2 = 0 in x at both ends of the interval. The upper indices n+1/3, n+2/3,
and n + 1 refer to the 3 substeps of time-integration that make up a full step.

3 Implementation

With the above equations as a starting point, we identify the following tasks.
First of all, since the above scheme is implicit in x, and a 5-point stencil is used
for L, a pentdiagonal solver is required for all three substeps. The solver (which
is a re-write of [12]) is a particular case of the LU-decomposition solver, taking
advantage of the fact that the matrix only has five nonzero diagonals to reduce
the solution complexity from O(n3) down to O(n) by recurrent substitution.
While this algorithm is recurrent in x, it is fully data-parallel in y. Hence we



Implementing a Numerical Solution of the KPI Equation 163

decided to produce a one-dimensional implementation of the solver (the recur-
rences in question) which will take as many additional axes as required by the
environment. The number of additional axes in our case would be one, since we
are focusing on the two-dimensional KPI; however the equation itself is defined
for three dimensions as well, hence the aforementioned additional flexibility is
quite important for developing a future-proof program. Next, the pentdiagonal
solver has, naturally, an elimination and a back-substitution phase, of which the
former can be pre-computed (save for the right-hand side), thanks to the lin-
earity of the scheme in the third derivative. Hence we need two functions, one
for the eliminator and one for the rest of the solver. The eliminator is displayed
in Fig. 1. Notice that the code is rank-monomorphic, in that it expects a fixed
rank of its arguments a, b, c, d, e, which are the contents of five nonzero diagonals
of the equation matrix, and in that it produces four fixed-rank arrays. Contrast
that with the main solver, presented in Fig. 2. Here the result has undeclared
rank, which can be 1,2, or more, which is decided on the basis of the shape of the
similarly undeclared right-hand side f . The function pent will ensure that the
shape of the result agrees with the shape of the argument; in any case, only the
first dimension of both f and the result is explicitly referred to in the code. The
very significant advantage of that has been that we could fully test this function
on short one-dimensional data and then use it in the program for 2d arguments
without any uncertainty as to its correctness in that case. Such rank invariance
is not available with conventional array programming using, e.g., Fortran-90.

Similarly we designed a little function for Simpson integration, Fig. 3, which is
rank-invariant, so it could be fully tested in a single dimension and then applied
in two dimensions as the scheme demands.

Figure 14 displays the main program. It defines several constants and creates
the first copy of u, which is the field array, by setting its shape and filling it in
with the known soliton distribution (for which the SaC code is not shown). Next,
it prepares the 5 diagonals a-e for the solver taking into account the boundary
conditions. This results in a code pattern whereby first an array is initialised
with the regular value, and then the boundaries are set by specific definitions.
Notice that the five arrays are in fact two-dimensional, which has nothing to
do with the two dimensions of the KPI equation, but merely reflects the fact
that the numerical scheme has three substeps, so it is convenient to initialize
the diagonals for all three substeps at once (by grouping them into a dimension)
and then use the correct vector at each substep. This is achieved by using a 3-
element vector eps in defining the default value for each of the diagonals. Finally
the eliminator prepent is run for all substeps simultaneously, using the second
dimension of the diagonal arrays.

The actual time stepping is performed by a for-loop at the end of the main
function. During the step the array u is redefined three times, each time with
the corresponding scheme formula. With little difficulty, one can see the original
mathematics by looking at the program. The main discrepancy is the choice of
indices for the constants α,γ and ρ which have to start from 0 since that is the C
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1 inline
double[.], /* p */

3 double[.], /* q */
double[.], /* bet */

5 double [.] /* den */
prepent( double[.] a,

7 double[.] b,
double[.] c,

9 double[.] d,
double[.] e)

11 {
n = shape( a)[0];

13 buf = genarray( [n], undef);
p = buf; q = buf; bet = buf; den = buf;

15

bet [0] = 1.0 / c[0];
17 p[0] = -d[0] * bet [0];

q[0] = -e[0] * bet [0];
19

bet [1] = -1.0 / ( c[1] + b[1] * p[0]);
21 p[1] = ( d[1] + b[1] * q[0]) * bet[1];

q[1] = e[1] * bet [1];
23 den [1] = b[1];

25 for ( i=2; i<n; i++) {
bet[i] = b[i] + a[i] * p[i -2];

27 den[i] = -1.0 / ( c[i] + a[i] * q[i-2] +
bet[i] * p[i-1]);

29 p[i] = ( d[i] + bet[i] * q[i -1]) * den[i];
q[i] = e[i] * den[i];

31 }

33 return( p, q, bet , den);
}

Fig. 1. SaC code of the eliminator of the pentdiagonal solver

convention, while they start from 1 in the algorithm. Other than that, we have
managed to represent the numerical scheme well near ditto.

4 Lessons and Conclusions

First of all, we must report that the programmer on this project is the first author
of the present paper, and that he had no prior experience in SaC programming,
was not associated with the SaC development team (while the other authors
belong to it) and therefore was a good model of a brave ‘computational scientist’,
willing to learn a new language. This was helped further by the fact that the
author in question is a computational scientist by training (up to and including
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inline
2 double [*]
pent ( double[.] p,

4 double[.] q,
double[.] bet ,

6 double[.] den ,
double[.] a,

8 double[.] f)
{

10 n = shape( a)[0];
u = genarray( shape( f), undef);

12 u[0] = f[0] * bet [0];
u[1] = ( den[1] * u[0] - f[1]) * bet[1];

14

for ( i=2; i<n; i++) {
16 u[i] = ( a[i] * u[i-2] + bet[i] * u[i-1] - f[i]) *

den[i];
18 }

u[n-2] = u[n-2] + p[n-2] * u[n-1];
20

for ( i=n-3; i>=0; i--) {
22 u[i] = u[i] + p[i] * u[i+1] + q[i] * u[i+2];

}
24

return( u);
26 }

Fig. 2. The main part of the pentdiagonal solver written in SaC

the doctoral level), with an established research record in this area. Hence the
experiment in SaC coding should be considered relevant, if only small-scale.
There is, of course, a slight inadequacy in that the author in question, while
not being familiar with SaC at the start of the experiment, had taught various
undergraduate subjects pertaining to functional programming, and so cannot
be considered totally unfamiliar, even though a conscious effort was made to
approach the task with a completely open, pragmatically driven mind.

Nevertheless, the first experience to be reported is that

Programming in SaC does not require any re-tuning of the application
programmer’s mental skills.

Indeed, as the code displayed so far suggests, the programmer only uses very
familiar language features:

– definitions, perceived as assignments;
– data-parallel definitions, encoded as so-called with-loops, but which feel

almost like normal elementwise assignment found in Fortran. The differ-
ence, while profound on the conceptual level, is superficial for an applications
programmer.
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inline
2 double [*]
simps( double[*] f,

4 double h)
{

6 r = genarray( shape( f), undef);
n = shape( f)[0];

8 r = with (i)
([0]<=[i]<=[0]) : (11.0*f[0]+14.0* f[1]-f[2])/24.0;

10 ([1]<=[i]<=[n-2]) : (f[i -1]+4.0*f[i]+f[i+1])/3.0;
genarray( [n], 0.0);

12

rs = r[2]; r[2] = r[1]; r[1] = r[0]; r[0] = 0.0;
14

for ( i=3; i<=n-1; i++) {
16 x = r[i];

r[i] = r[i-2] + rs;
18 rs = x;

}
20

return( r * h);
22 }

Fig. 3. The integrator

– functions which, due to the availability of multiple results, feel more like
Fortran procedures with the input and output parameters neatly separated
out.

The conclusion is that SaC does not frighten off a computational scientist to
the extent that fully-fledged functional languages would. There are plenty of
familiar features in SaC, presented in a very slight guise, making the whole
concept of SaC totally nonthreatening. More importantly, the following features
of functional languages do not play any role in SaC, namely

– recursive functions and recursive data structures. Indeed, while the under-
lying mechanisms might be recursive, the appearance of the code is data-
parallel (with-loops) and iterative/recurrent (for-loops). We did not use any
of the generally recursive mechanisms of the functional paradigm.

– higher-order functions. These would be the main kind of “glue” in main-
stream functional programming, and would normally present a considerable
difficulty to a computational scientist, especially where cost intuitions are
essential. A SaC applications programmer does not make any use of these
at all.

To summarise, the reason why a computational scientist would find SaC usable
are the absence of fundamentally unfamiliar concepts and the presence of familiar
ones albeit in a somewhat unusual form.
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The lack of control flow does not preclude “update mentality”, thanks to the
single-assignment rather than non-assignment semantics and terminology, but
requires the programmer to be aware of the two major programming modes:

data-parallel, via with-loops, and recurrent, via for-loops.

The programmer in this experiment felt acutely aware of recurrences. Indeed,
the code shows the importance of recurrent definitions (and their explicit repre-
sentations) quite convincingly. The integration function, the pentdiagonal solver
and even the main computational scheme are all recurrent as well as being data-
parallel. The programmer was assured by the other authors that the for-loop is
translated efficiently by the SaC compiler, so recurrences need not be avoided.
Equally, the programmer was continually aware of the data-parallelism of SaC

constructs. In approaching those, the most important feature turned out to be
rank subtyping, which allowed arrays to be represented in lower dimensions and
consistently used in higher dimensions, as mentioned in the previous Section.
This simplified testing as well as making the code unusually flexible.

Substitutional nature of SaC definitions positively encourages the programmer
to introduce as much notation as may be required to achieve readability and

expressiveness.

Under normal circumstances, the programmer is wary of extra variables in a
program, as these normally cause additional memory allocation and, more im-
portantly, additional memory cycles, synchronisation (if multithreading is used),
cache conflicts, etc. So one’s instinct would be to only use scalar “work” vari-
ables when formulae start to get too large. This applies even more to the use of
functions, since the machinery of local variables and parameter-passing inflicts
additional costs.

SaC, on the other hand, allows the programmer to forget such concerns com-
pletely. Indeed, the programmer in this experiment was assured by the SaC

team that any variables defined in a function will be completely transparent:
data will be “pulled through” them with no additional memory allocation or
synchronisation being at all necessary. The same applies to inlined functions.
They are completely transparent to the code generator of SaC, so it can be
safely assumed that such functions act merely as substitutions at the source
level, both semantically and efficiency-wise. The programmer has found that to
be very useful.

It should be mentioned that the substitutional nature of variable definitions
in SaC liberates the programmer from the duty to assiduously declare every
variable that he may for any reason wish to introduce. Having to declare ev-
ery variable is seen as a virtue in the imperative world: a modern Fortran

programmer writes a proud ”IMPLICIT NONE” in each module to prevent the
compiler from using default types. However if the whole point of a variable is
to denote a chunk of unwieldy expression which happens to have an application
meaning, then there is no reason why that denotation must be fully attributed
and potentially hold memory. It was a refreshing experience to use SaC variables
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as pure notation, not memory address synonyms, for which the functional style
ought to be credited.

5 Fortran Blues

For our performance studies, we have re-implemented the numerical method
in Fortran 90/95 as a basis for comparison. One must note that writing the
same code in Fortran was neither easy nor convenient. The main problem was
that the whole rank structure of the algorithm had to be reconsidered. While,
theoretically, rank polymorphism is available to the user of Fortran 95, in
practice this is severely impeded by the total lack of rank subtyping. It turned
out to be impossible to define a function that takes an argument of a higher
rank and treats it as a uniform collection of lower-rank array components to be
processed componentwise. The only exception is so-called elementwise functions

function simps(f,h)
2 implicit none

DOUBLE PRECISION ,intent(in),dimension (0:XM -1,0:YM -1)::f
4 DOUBLE PRECISION , intent(in) :: h

DOUBLE PRECISION , dimension (0:XM -1,0:YM -1) :: simps
6 DOUBLE PRECISION :: rs, w

8 integer :: i,j

10 do j=0, YM -1
simps(0,j) = (11*f(0,j)+14*f(1,j)-f(2,j))/24*h

12 do i=1,XM -1
simps(i,j) = (f(i-1,j)+4.0*f(i,j)+f(i+1,j))/3*h

14 end do
end do

16

do j=0, YM -1
18 rs=simps(2,j)

simps(2,j)=simps(1,j)
20 simps(1,j)=simps(0,j)

simps(0,j)=0
22

do i=3,XM -1
24 w=simps(i,j);

simps(i,j)=simps(i-2,j)+rs
26 rs=w

end do
28 end do

30 end function

Fig. 4. The Fortran version of the Simpson integrator
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subroutine prepent(a,b,c,d,e,P,Q,BET ,DEN)
2 implicit none

DOUBLE PRECISION ,intent(in),dimension (0:XM -1)::a,b,c,d,e
4 DOUBLE PRECISION ,intent(out),dimension (0:XM -1)::P,Q

DOUBLE PRECISION ,intent(out),dimension (0:XM -1)::BET ,DEN
6

BET (0) = 1/c(0)
8 P(0) = -d(0)* BET (0)

Q(0) = -e(0)* BET (0)
10

BET (1) = -1/(c(1)+b(1)*P(0))
12 P(1) = (d(1)+b(1)*Q(0))*BET (1)

Q(1) = e(1)* BET (1)
14 den (1) = b(1)

16 do i=2, XM -1
BET(i)=b(i)+a(i)*P(i-2);

18 DEN(i)= -1.0/(c(i)+a(i)*Q(i-2)+ BET(i)*P(i -1));
P(i)=(d(i)+BET(i)*Q(i-1))*DEN(i);

20 Q(i)=e(i)*DEN(i);
end do

22 end subroutine

Fig. 5. Elimination in Fortran

that can apply themselves to scalar components. The design ploy referred to
earlier, when a function was defined on 1d arrays and applied to 2d arrays
implicitly along the lower dimension, is not possible in Fortran.

We consequently had to opt for a fixed-rank design, and insert explicit DO-
loops in the code which merely spanned the ranges of unprocessed index variables.
We could have used data-parallel expressions with explicit array sections, but felt
that that would obfuscate the algorithm even more than the extra indices. Figure
5 shows the Fortran version of the integrator, where all the j-loops had to be
inserted into a code otherwise very similar to the one in Fig. 3.

The two parts of the linear solver had to be treated differently: the elimination
stage was programmed as rank 1, see Fig. 5 whilst the back-substitution stage
was made explicitly two-dimensional, Fig. 6.

On the positive side, the code is remarkably close to SaC, which demonstrates
how low the barrier to the functional method would be for anyone involved in
mainstream numerical computing. Such a programmer would only need to un-
learn a few reflexes (avoidance of notation, variable declarations for nonessential
objects, etc.) and perhaps learn a few SaC library functions.

6 Performance

We have measured the runtime of both Fortran and SaC versions of the poro-
gram for varying problem sizes on three platforms: Intel XEON/Linux, AMD
Athlon 64/Linux and Sun UltraSPARC/Solaris.
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function pent(p,q,bet ,den ,a,f)
2 implicit none

DOUBLE PRECISION , intent(in), dimension (0:XM -1) :: p
4 DOUBLE PRECISION , intent(in), dimension (0:XM -1) :: q

DOUBLE PRECISION , intent(in), dimension (0:XM -1) :: bet
6 DOUBLE PRECISION , intent(in), dimension (0:XM -1) :: den

DOUBLE PRECISION ,intent(in),dimension (0:XM -1,0:YM -1)::f
8 DOUBLE PRECISION , dimension (0:XM -1,0:YM -1) :: pent

10 do j=0,YM -1
pent (0,j)=f(0,j)*bet(0)

12 pent (1,j)=(den (1)* pent (0,j)-f(1,j))*bet(1)
end do

14

do i=2, XM -1
16 do j=0,YM -1

pent(i,j)=(a(i)*pent(i-2,j)+bet(i)*
18 *pent(i-1,j)-f(i,j))*den(i)

end do
20 end do

do j=0,YM -1
22 pent(XM -2,j)=pent(XM -2,j)+p(XM -2)* pent(XM -1,j)

end do
24 do i=XM -3,0,-1

do j=0, YM -1
26 pent(i,j)= pent(i,j)+p(i)* pent(i+1,j)+q(i)*pent(i+2,j)

end do
28 end do

end function pent

Fig. 6. Back substitution in Fortran

For the Intel and AMD processors, the Fortran code was compiled using
the Intel Fortran Compiler (or ifort for short) version 9.0. For the SaC pro-
gram, the current research compiler sac2c v1.00-alpha has been used. To yield
comparable results, the Intel C Compiler (or icc for short) version 9.0 served
as the back-end compiler for sac2c. For both Intel compilers the -fast option
was specified to switch on any speed optimisations. Since the -fast option is
currently not supported for AMD Athlon processors, a lesser option -O3 was
used when compiling for these.

The Sun UltraSPARC binaries were built using the Sun Studio Fortran com-
piler (or sfort for short) version 9.0. Again, for the sake of comparability, the
Sun Studio C compiler (or scc for short) version 9.0 was used as the back-end
compiler of sac2c. For both compilers, the -fast option was employed to obtain
optimised binaries.

For all platforms the run-times of both implementations were measured in
three consecutive runs and the average value was used. Values with a deviation
higher than 5% were not considered.
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Fig. 7. Relative runtime of the two KPI implementations on a dual Intel XEON 3.0GHz
machine. The runtime of the Fortran implementation is used as the base value.

Figure 7 shows the measured run-times on a dual Intel XEON 3.0GHz machine
running Red Hat Enterprise Linux. The run-times of the SaC implementation
are given relative to the Fortran run-times which serve as base values. The
problem size is given in elements per axis of the data array which is the largest
array size used within the algorithm. The results show that the SaC implemen-
tation outperforms the Fortran version by about 25%, despite its higher level
of abstraction.
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Fig. 8. Heap usage of the SaC and Fortran implementation in MB, measured on the
Intel XEON machine

To find the reasons of the runtime advantage of the SaC implementation
on the Intel XEON platform, we have measured the heap usage of both im-
plementations for each problem size. Figure 8 gives the details. Obviously, the
SaC implementation has a smaller memory footprint as the Fortran version,
irrespective of the given problem size. A closer analysis reveals that the SaC
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Fig. 9. Heap usage on the Intel XEON machine in multiples of data array size

heap usage is constantly 40% below the Fortran heap usage. This points to
the SaC version of KPI handling memory reuse more efficiently and therefore
requiring fewer simultaneous copies of the data array or intermediate arrays. To
strengthen this assumption, we have calculated the overall heap usage in terms
of multiples of the data array size. The results for both implementations of KPI
are presented in Fig. 9.

The heap size of the Fortran implementation turns out to be about 15 times
the size of the field array u. Given the declaration of 14 auxiliary arrays within
the Fortran source code, this suggests that the Fortran compiler did not
attempt to optimise array allocation. It seems that all arrays were allocated
statically exactly as they have been declared by the programmer.

On the other side, the heap usage of the SaC version of KPI is approximately 9
times the size of the field array, despite liberal use of array expressions associated
with auxiliary variables.
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Fig. 10. Relative runtime of the two KPI implementations on a AMD Athlon 64 2.0GHz
machine. The runtime of the Fortran implementation is used as the base value.
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As a second benchmarking platform, an AMD Athlon 64 2.00GHz machine
running SuSE Linux was used. Figure 10 gives the measured run-times. Similar
to the results for the Intel XEON machine, the SaC implementation outper-
forms the Fortran version of KPI. Note that the advantage of the SaC version
increases from about 7% for small problem sizes to 25% for a 2000 ×2000 data
array.

This gave rise to the question whether low memory usage and high locality
are more important to achieve good run times on the AMD machine than pure
code efficiency. To investigate this further, we enabled a more aggressive version
of With-loop Scalarisation [13] for the sac2c compiler to allow for optimisations
that duplicate code to achieve higher locality and lower memory usage. Figure
11 shows the measured run times. The improvement is at least 10% for all tested
problem sizes.
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Fig. 11. Relative run time of the two KPI implementations on a AMD Athlon 64
2.0GHz machine. The SaC version was explicitly optimised for memory usage by the
compiler. The runtime of the Fortran implementation is used as base value.

As our final benchmarking platform we used a SunFire 15k equipped with
72 UltraSparc III processors running at 900MHz under Sun Solaris. Figure 12
presents the measured run times. As on the AMD Athlon machine, we have mea-
sured two versions of the SaC implementation. The sac2c/scc version was com-
piled using the default settings of the sac2c compiler, whereas for the sac2c/scc
opt version the more aggressive optimisations have been enabled.

To our surprise, the performance figures on the SunFire platform tell a differ-
ent story compared to the cases discussed so far. For the conservatively optimised
version of the SaC implementation, the Fortran version is between 50% and
a factor of 2 faster. The more aggressively optimized version of the SaC imple-
mentation comes far closer to the Fortran version and even exceeds it in speed
for large problem sizes. Compared to the results for the AMD Athlon machine,
the differences between the two SaC versions is more striking. To investigate
whether the performance difference is due to the better heap management of the
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Fig. 12. Relative runtime of the two KPI implementations on a SunFire 15k. The SaC
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Fig. 13. Heap usage on the SunFire 15K in multiples of data array size

SaC compiler, we measured the heap usage of the aggressively optimised SaC

version and the Fortran version. The results are given in figure 13. Here as
well, we calculated the heap usage in multiplies of the size of the data array.

As the Figure shows, the heap usage of the SaC implementation converges at
5 times the data array size, whereas the Fortran implementation uses about
eleven times the data array size. The huge difference in memory consumption
for small problem sizes can be explained by memory used for initial setup.

An detailed investigation of why the Sun Studio Fortran compiler yields better
runtime results while using more heap space would require close inspection of the
object code and is as such beyond the scope of this paper. Due to the superscalar
nature and large cache sizes of the SPARC processors being used, pipeline and
cache effects may have a large impact on the runtime performance. As the SaC

compiler does not generate machine code directly but instead uses the Sun C
compiler as back end, pipeline and cache optimisations are out of its reach.
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1 int main ()
{

3 dx = 0.1; dy = 0.1; dt = 0.0002;
n = 500; m = 400; x0 = 15.0;

5 alpha = [ 8.0/15.0 , 2.0/15.0 , 1.0/3.0] * dt;
gamma = [ 8.0/15.0 , 5.0/12.0 , 3.0/4.0] * dt;

7 rho = [ -17.0/60.0, -5.0/12.0] * dt;
eps = alpha / ( 4.0* dx*dx*dx);

9 u = with (ij)
(. <= [i,j] <= .) : soliton( dx*tod( i) - x0,

11 dy*tod( i -199));
genarray( [ n, m], undef);

13 a = genarray( [ n], -eps);
a[0] = 0.0; a[1] = 0.0;

15 a[n-2] = 2.0*a[n-3]; a[n-1] = a[n-2];
a = { [i,j] -> a[j,i]};

17 b = genarray( [n], 2.0* eps);
b[0] = 0.0; b[1] = -b[2]; b[n-2] = 3.0*b[n-3];

19 b[n-1] = 2.0*b[n-3]; b = { [i,j] -> b[j,i]};
c = genarray( [n], 1.0);

21 c[0] = c[0]+2.0* eps; c[1] = c[1]+6.0* eps;
c[n-2] = c[n-2] -6.0* eps; c[n-1] = c[n-1] -2.0* eps;

23 c = { [i,j] -> c[j,i]};
d = genarray( [n], -2.0*eps);

25 d[0] = 2.0*d[2]; d[1] = 3.0*d[2];
d[n-2] = -d[n-3]; d[n-1] = 0.0; d = { [i,j] -> d[j,i]};

27 e = genarray( [n], eps);
e[0] = 2.0*e[2]; e[1] = e[0];

29 e[n-2] = 0.0; e[n-1] = 0.0;
e = { [i,j] -> e[j,i]};

31 p, q, bet , den = prepent( a, b, c, d, e);
out = 0;

33 for ( iter =1; iter <100000; iter ++) {
out = display( u, iter , out);

35 Nubase = N( u, dx, dy);
f = u + gamma [0]* Nubase +

37 alpha [0]*0.5*L(u,dx);
u=pent( p[0], q[0], bet[0], den[0], a[0], f);

39 f = u + gamma [1]*N( u, dx, dy) +
rho[0]* Nubase + alpha[1]*0.5* L(u,dx);

41 u = pent( p[1], q[1], bet[1], den[1], a[1], f);
f = u + gamma [2]*N( u, dx, dy) +

43 rho[1]* Nubase+alpha[2]*0.5* L(u,dx);
u = pent( p[2], q[2], bet[2], den[2], a[2], f);

45 }
return( out);

47 }

Fig. 14. The main program of the SaC implementation



176 A. Shafarenko et al.

The conclusion to be drawn from these results is twofold. First of all, we have
shown that the SaC compiler is capable of creating binaries in the same runtime
league as two industrial-strength Fortran compilers. Secondly, we have seen
that whether a Fortran implementation or SaC implementation yields better
run times depends on the interplay of the SaC optimisations, the chosen C
compiler and the executing machinery. To what extent the choice of these can
be automated remains unclear and requires further research.

7 Conclusions

The results of a study of application programming in Single Assignment C has
been presented. We have discussed the various design issues, principles and
lessons arising from a programming exercise with a fairly mainstream equation,
using several component methods: a linear solver, a Simpson space integrator and
a Runge-Kutta time integrator. We have found Single Assignment C well-suited
as a tool for developing numerical applications, especially when extensibility is
required for future-proofness. We also found that the resulting code, although
more flexible and easier to write than conventional Fortran, was not dramati-
cally different in appearance, from which we conclude that SaC should present
a low learning barrier to a busy computational scientist.

Finally we have contrasted the SaC code performance with that of an equiv-
alent Fortran code using more than one compiler of commercial strength. We
did that in order to establish whether the computational scientist might be
discouraged from using the proposed methodology by unsatisfactory run-time
efficiency, which could result from a liberal use of the functional programming
method. The performance data we have obtained dispel this concern. In most
cases they show SaC advantage in both speed and space utilisation thanks to a
deeper level of optimisation that the SaC compiler is capable of.

Future work will focus on diversifying the benchmark code base by includ-
ing component methods such as Monte-Carlo, sparse matrix algebra, etc. while
continuing to provide whole application examples and supporting performance
studies. The ultimate goal is to create a body of evidence for the advocacy of
the functional method for computational science as well as the advocacy of the
specific array manipulation methodology developed within the SaC project. Our
hope is that this will help to convince the computation sector to adopt those
methods and techniques in large-scale numerical modelling.
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