
HPF vs. SAC — A Case Study

Clemens Grelck and Sven-Bodo Scholz

University of Kiel
Dept. of Computer Science and Applied Mathematics

{cg,sbs}@informatik.uni-kiel.de

Abstract. This paper compares the functional programming language
Sac to Hpf with respect to specificational elegance and runtime perfor-
mance. A well-known benchmark, red-black SOR, serves as a case study.
After presenting the Hpf reference implementation alternative Sac im-
plementations are discussed. Eventually, performance figures show the
ability to compile highly generic Sac specifications into machine code
that outperforms the Hpf implementation on a shared memory multi-
processor by a factor of about 3.

1 Introduction

Programming language design basically is about finding the best possible tradeoff
between support for high-level program specifications and runtime efficiency. In
the context of array processing, data parallel languages are well-suited to meet
this goal. Replacing loop nestings by language constructs that operate on entire
arrays rather than on single elements, not only improves program specifications;
it also creates new optimization opportunities for compilers [3, 4, 1, 8, 7].

Fortran-90/Hpf introduce a large set of intrinsics, built-in operations that
manipulate entire arrays in a homogeneous way and that are applicable to arrays
of any dimensionality and size. While this allows for concise specifications of
many algorithms, code becomes less generic if operations have to be applied to
subsets of array elements only. Although regularly structured cases are addressed
by the triple notation, a step back to loops and scalar specifications often is
inevitable. In either case, the resulting code must be tailor-made for a concrete
dimensionality. Moreover, Fortran-90/Hpf also provide no means to build
abstractions upon intrinsics other than by sacrificing their general applicability
to arrays of any shape.

Sac is a functional C-variant with extended support for arrays [9]. It allows
for high-level array processing similar to Apl. The basic language construct for
specifying array operations is the so-called with-loop. With-loops define map-
or fold-like operations in a way that is invariant to the dimensionalities of argu-
ment arrays. As a consequence, almost all operations, typically found as built-in
functions in other array languages, can be defined through with-loops in Sac
without any loss of generality [6]. This concept allows for both: comprehensive
array support through easily maintainable libraries and far-reaching customiza-
tion opportunities for programmers.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 620–624, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

HPF vs. SAC — A Case Study 621

In Section 2 we investigate the specificational benefits of Sac in terms of
generic high-level programming compared to Hpf. In Section 3, we find out how
much of a performance penalty has actually to be paid for the increased level of
abstraction. Since the Sac-compiler allows to implicitly generate code for shared
memory multiprocessors [5], we focus on this architecture. Eventually, Section 4
concludes.

2 A Case Study: The PDE1-Benchmark

As reference implementation for the case study, we chose the PDE1-benchmark
as it is supplied by the distribution of the Adaptor Hpf compiler [2]. PDE1 is a
red-black SOR for approximating three-dimensional Poisson equations. The core
of the algorithm is a stencil operation on a three-dimensional array u: for each
inner element ui,j,k, the values of the 6 direct neighbor elements are summed up,
added to a fixed number h2fi,j,k, and subsequently multiplied with a constant
factor. Assuming NX, NY, and NZ to denote the extents of the three-dimensional
arrays U, U1, and F, this operation in the reference implementation is specified
as:

U1(2:NX-1,2:NY-1,2:NZ-1) = &

& FACTOR*(HSQ*F(2:NX-1,2:NY-1,2:NZ-1)+ &

& U(1:NX-2,2:NY-1,2:NZ-1)+U(3:NX,2:NY-1,2:NZ-1)+ &

& U(2:NX-1,1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &

& U(2:NX-1,2:NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

However, this operation has to be applied to two disjoint sets of elements (the
red elements and the black elements) in two successive steps. This is realized by
creating a three-dimensional array of booleans RED and embedding the array
assignment shown above into a WHERE construct.
The given Hpf solution can be carried over to Sac almost straightforwardly.

Rather than using the triple notation of Hpf, in Sac, the computation of the
inner elements is specified for a single element at index position iv, which by
means of a with-loop is mapped to all inner elements of an array u:

u1 = with (. < iv < .) {

st_sum = u[iv+[1,0,0]] + u[iv-[1,0,0]] + u[iv+[0,1,0]]

+ u[iv-[0,1,0]] + u[iv+[0,0,1]] + u[iv-[0,0,1]];

} modarray (u, iv, factor * (hsq * f[iv] + st_sum));

Note here, that the usage of < instead of <= on both sides of the generator part
restricts the elements to be computed to the inner elements of the array u.
The disadvantage of this solution is that it is tailor-made for the given sten-

cil. In the same way the access triples in the Hpf-solution have to be adjusted
whenever the stencil changes, the offset vectors have to be adjusted in the Sac
solution. These adjustments are very error-prone; in particular, if the size of the
stencil increases or the dimensionality of the problem has to be changed. To alle-
viate these problems, we abstract from the problem specific part by introducing
an array of weights W. In this particular example, W is an array of shape [3,3,3]
with all elements being 0 but the six direct neighbor elements of the center
element, which are set to 1. With such an array W, relaxation can be defined as:

622 Clemens Grelck and Sven-Bodo Scholz

u1 = with (. < iv < .) {

block = tile(shape(W), iv-1, u);

} modarray(u, iv, factor * (hsq * f[iv] + sum(W * block)));

In this specification, for each inner element of u1 a sub-array block is taken
from u which holds all the neighbor elements of u[iv]. This is done by apply-
ing the library function tile(shape, offset, array) which creates an array
of shape shape whose elements are taken from array starting at position off-
set. The computation of the weighted sum of neighbor elements thus turns into
sum(W * block), where (array * array) refers to an elementwise multi-
plication of arrays, and sum(array) sums up all elements of array.
Abstracting from the problem specific stencil data has another advantage:

the resulting program does not only support arbitrary stencils but can also be
applied to arrays and stencils of other dimensionalities without modifications.
Note here, that the usage of shape(W) rather than [3,3,3] as first argument
for tile is essential for achieving this.
Although the error-prone indexing operations have been eliminated by the

introduction of W, the specification still consists of a problem specific with-loop
which contains an elementwise specification of the relaxation step. It should be
mentioned here, that the elementwise specification can be “lifted” into a nesting
of operations on entire arrays leading to specifications as they can typically be
found in Apl programs [6].
After defining relaxation on the entire array, the operation has to be restricted

to subsets of the array elements, i.e. to the sets of red and black elements. In
the same way as in the Hpf program, an array of booleans can be defined which
masks the elements of the red set.
For avoiding computational redundancy, the restriction to red/black elements

in the Hpf solution is realized by integrating it into the relaxation algorithm
itself. In Sac, we want to keep these specifications separated in order to im-
prove program modularity as well as its potential for code reuse. Therefore, a
shape-invariant general purpose function CombineMasked(mask, a, b) is de-
fined, which according to a mask of booleans combines two arrays into a new
one:
inline double[] CombineMasked(bool[] mask, double[] a, double[] b)

{

c = with(. <= iv <= .)

genarray(shape(a), (mask[iv]? a[iv]: b[iv]));

return(c);

}

Provided that mask, a, and b are identically shaped, a new array c of the same
shape is created, whose elements are copied from those of the array a if the mask
is true, and from b otherwise. Using this function, red-black relaxation can be
defined as:
u = CombineMasked(red, relax(u, f, hsq), u);

u = CombineMasked(!red, relax(u, f, hsq), u);

Note here, that the black set is referred to by !red, i.e., by using the elementwise
extension of the negation operator (!).

HPF vs. SAC — A Case Study 623

3 Performance Comparison

This section presents the essence of thorough investigations on the performance
of the Hpf- and various alternative Sac-implementations of PDE1 on a 12-
processor SUN Ultra Enterprise 4000. The Adaptor Hpf-compiler v7.0 [2],
Sun f77 v5.0, and Pvm 3.4.2 for shared memory were used to evaluate the Hpf
code, the Sac compiler v0.9 and Sun cc v5.0 to compile the Sac code.

single node performance

runtime Hpf Sac

643 283ms 84ms
2563 22.2s 6.6s

memory Hpf Sac

643 10MB 8MB
2563 450MB 260MB

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

1 2 4 6 8 10

sp
ee

du
p

re
la

tiv
e

to
 H

P
F

 o
n

on
e

pr
oc

es
so

r

number of processors engaged

pde1.sac
pde1.hpf

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

1 2 4 6 8 10

sp
ee

du
p

re
la

tiv
e

to
 H

P
F

 o
n

on
e

pr
oc

es
so

r

number of processors engaged

pde1.sac
pde1.hpf

Fig. 1. Runtime performance of Sac and Hpf implementations of the PDE1
benchmark, problem sizes 643 (center) and 2563 (right).

One interesting result is that with respect to the accuracy of the timing fa-
cility all different Sac specifications — among them those presented in Section
2 — achieve the same runtimes. Having a look into the compiled code reveals
that the Sac compiler manages to transform all of them into almost identical
intermediate representations. This is mostly due to a Sac-specific optimization
technique called with-loop-folding [10] that aggressively eliminates interme-
diate arrays. Fig. 1 shows performance results for the problem sizes 643 and
2563. Upon sequential execution, Sac outperforms Hpf by a factor of 3.4 for
both problem sizes; Sac also needs much less memory: 260MB instead of 450MB
in the 2563 case. This decrease in memory consumption can also be attributed
to with-loop-folding.
Multiprocessor runtimes of the Hpf- and Sac-code are shown as speedups

relative to Hpf single node runtimes. For 643 elements, Hpf scales well up to 6
processors; any additional processor leads to absolute performance degradation.
In contrast, the Sac runtimes scale linearly up to 8 processors and even achieve
an additional speedup with 10 processors engaged. The Hpf performance scales
much better for the problem size 2563. So, the usage of Pvm as low-level commu-
nication layer is no principle hindrance to achieve good performance on a shared
memory architecture. Nevertheless, even with 10 processors Sac outperforms
Hpf by a factor of 2.5.

624 Clemens Grelck and Sven-Bodo Scholz

4 Conclusion

The major design goal of Sac is to combine highly generic specifications of ar-
ray operations with compilation techniques for generating efficiently executable
code. By means of a case study, this paper investigates different opportunities
for the specification of the PDE1 benchmark in Sac and compares them to the
Hpf reference implementation in terms of specificational elegance and reusabil-
ity. Despite their increasingly higher levels of abstraction the various Sac im-
plementations clearly outperform the given Hpf program on a shared memory
multiprocessor. This shows that high-level generic program specifications and
good runtime performance not necessarily exclude each other.

References

[1] G.E. Blelloch, S.Chatterjee, J.C. Hardwick, J. Sipelstein, and M.Zagha. Imple-
mentation of a Portable Nested Data-Parallel Language. In Proceedings 4th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, San
Diego, California, pages 102–111, 1993.

[2] T. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF
Programs. In Programming Environments for Massively Parallel Distributed Sys-
tems, pages 91–96. Birkhäuser Verlag, 1994.

[3] D.C. Cann. Compilation Techniques for High Performance Applicative Compu-
tation. Technical Report CS-89-108, Lawrence Livermore National Laboratory,
LLNL, Livermore, California, 1989.

[4] D.C. Cann. Retire Fortran? A Debate Rekindled. Communications of the ACM,
35(8):81–89, 1992.

[5] C. Grelck. Shared Memory Multiprocessor Support for SAC. In K. Hammond,
T. Davie, and C. Clack, editors, Proc. of Implementing Functional Languages (IFL
’98), London, Selected Papers, volume 1595 of LNCS, pages 38–54. Springer, 1999.

[6] C. Grelck and S.-B. Scholz. Accelerating APL Programs with SAC. In O. Lefevre,
editor, Proceedings of the Array Processing Language Conference (APL’99),
Scranton, Pa., volume 29(1) of APL Quote Quad, pages 50–57. ACM Press, 1999.

[7] E.C. Lewis, C. Lin, and L. Snyder. The Implementation and Evaluation of Fusion
and Contraction in Array Languages. In Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Implementation. ACM, 1998.

[8] G. Roth and K. Kennedy. Dependence Analysis of Fortran90 Array Syntax. In
Proc. PDPTA’96, 1996.

[9] S.-B. Scholz. Single Assignment C – Entwurf und Implementierung einer
funktionalen C-Variante mit spezieller Unterstützung shape-invarianter Array-
Operationen. PhD thesis, University of Kiel, 1996.

[10] S.-B. Scholz. With-loop-folding in SAC–Condensing Consecutive Array Opera-
tions. In Implementation of Functional Languages, 9th International Workshop,
IFL’97, St. Andrews, Scotland, UK, September 1997, Selected Papers, volume 1467
of LNCS, pages 72–92. Springer, 1998.

	Introduction
	A Case Study: The PDE1-Benchmark
	Performance Comparison
	Conclusion

