
Generic Parallel Array Programming in SAC

Clemens Grelck1 and Sven-Bodo Scholz2

1 University of Lübeck, Germany
Institute of Software Technology and Programming Languages

grelck@isp.uni-luebeck.de
2 University of Hertfordshire, United Kingdom

Department of Computer Science
s.scholz@herts.ac.uk

Abstract. SaC is a purely functional array processing language for computationally inten-
sive numerical applications. Its design aims at combining efficiency in program construction
with efficiency in parallel program execution. We demonstrate the declarative, generic pro-
gramming style of SaC by means of a small case study: 3-dimensional complex fast-Fourier
transforms. The impact of abstraction on expressiveness, readability, and maintainability of
code as well as on clarity of underlying mathematical concepts is discussed and compared
with other approaches. We quantify the associated impact on runtime performance both in
uniprocessor and in multiprocessor environments.

1 Introduction

Writing correct and efficient parallel programs is substantially harder than writing correct and
efficient sequential programs. A given task must be decomposed into independent subtasks. Pro-
cesses or threads must exchange data by communication and must synchronize with each other to
ensure an orderly overall system behaviour. In addition to specifying what is to be computed, par-
allel programs are cluttered with instructions how to organize a computation on some execution
machinery. This makes parallel programming particularly time-consuming and error-prone. Con-
ventional software technology is of little help because the demand for runtime performance, which
motivates the use of parallel computing machinery, rules out standard approaches of abstraction
and modularization.
Nevertheless, it is highly desirable to raise the level of abstraction in parallel programming, as

well. The semantics of imperative languages like C or Fortran, which is based on the step-by-
step modification of a global state, limits opportunities for large-scale code transformations and,
hence, for coarse-grain parallelization. In contrast, Functional languages are generally considered
better suited for optimization and parallelization. Program execution is based on the principle
of context-free substitution of expressions. Programs are free of side-effects and adhere to the
Church-Rosser property, i.e., any two subexpressions without data dependencies can be executed
in parallel without any further analysis.
Unfortunately, classical domains of parallel computing like image processing or computational

sciences are characterized by large arrays of numerical data [1], whereas almost all functional
languages focus on lists and and trees rather than on arrays. Notational support for processing
multi-dimensional arrays hardly exceeds that of conventional languages. Even worse, sequential
runtime performance in terms of memory consumption and execution times often fails to meet the
requirements of numerical applications [2–4].

SaC (Single Assignment C) [5] is a purely functional array language. Its design aims at com-
bining generic, high-level array processing with a runtime performance that is competitive with
low-level machine-oriented programs both in uniprocessor and in multiprocessor environments. The
core syntax of SaC is a subset of C with a strict, purely functional semantics based on context-free
substitution of expressions. Nevertheless, the meaning of functional SaC code coincides with the
state-based semantics of literally identical C code. In other words: everything in a SaC program
that looks like C also behaves as expected. This design is meant to facilitate conversion to SaC

for programmers with a background in imperative languages.

The language kernel of SaC is extended by multi-dimensional, stateless arrays. In contrast to
other array languages, SaC provides only a very small set of built-in operations on arrays, mostly
primitives to retrieve data pertaining to the structure and contents of arrays. All aggregate array
operations are specified in SaC itself using a versatile and powerful array comprehension construct,
named with-loop. with-loops allow code to abstract not only from concrete shapes of argument
arrays, but even from concrete ranks (number of axes or number of dimensions). Moreover, such
rank-invariant specifications can be embedded within functions, which are applicable to arrays of
any rank and shape.
By these means, most built-in operations known from Fortran-95 or from interpreted array

languages like Apl, J, or Nial can be implemented in SaC itself mostly without loss of generality
[6]. SaC provides a comprehensive selection of array operations in the standard library. In contrast
to array support which is hard-wired into the compiler, our library-based solution is easier to
maintain, to extend, and to customize for varying requirements. Whenever a basic operation is
found to be missing during program development, it can easily be added to the repertoire and
reused in future projects.

SaC propagates a programming methodology based on the principles of abstraction and com-
position. Like in Apl, complex array operations and entire application programs are constructed
by composition of simpler and more general operations in multiple layers of abstractions. Un-
like Apl, the most basic building blocks of this hierarchy of abstractions are implemented by
with-loops, not built-in.
Various case studies have shown that despite a generic style of programming SaC code is

able to achieve runtime performance figures that are competitive with low-level, machine-oriented
languages [7, 8, 5, 9]. We achieve this runtime behaviour by the consequent application of standard
compiler optimizations in conjunction with a number of tailor-made array optimizations. They
restructure code from a representation amenable to programmers and maintenance towards a
representation suitable for efficient execution by machines [10, 5, 9, 11]. Fully compiler-directed
parallelization techniques for shared memory architectures [12–14] further enhance performance.
Utilization of a few additional processing resources often allow SaC programs to outperform even
hand-optimized imperative codes without any additional programming effort.
The rest of the paper is organized as follows. Section 2 gives a short introduction to SaC, while

Section 3 further elaborates on programming methodology. Section 4 applies the techniques to a
well-known benchmark: 3-dimensional complex FFT. Section 5 provides a quantitative analysis,
while Section 6 draws conclusions and outlines directions of future work.

2 SAC — Single Assignment C

Essentially, SaC is a functional subset of C extended by multi-dimensional state-less arrays as
first class objects. In this context, stateless means that arrays are neither explicitly allocated nor
de-alloacated. They exist as long as the associated data is needed, just like scalars in conventional
languages. The term first class object refers to the fact that any expression in a SaC program may
evaluate to an array. In particular, arrays may be passed as arguments to functions, and functions
may yield arrays as results without any restrictions.
Arrays in SaC are represented by two vectors. The shape vector specifies an array’s rank and

the number of elements along each axis. The data vector contains all elements of an array in
row-major order. Array types include arrays of fixed shape, e.g. int[3,7], arrays of fixed rank,
e.g. int[.,.], arrays of any rank, e.g. int[+], and a most general type encompassing both arrays
of any rank and scalars: int[*]. The hierarchy of array types induces a subtype relationship. SaC

supports function overloading both with respect to this subtype relationship and with respect to
different base types.

SaC provides a small set of built-in array operations, basically primitives to retrieve data
pertaining to the structure and contents of arrays, e.g. an array’s rank (dim(array)), its shape
(shape(array)), or individual elements (array[index-vector]). Compound array operations are
specified using with-loop expressions. As defined in Fig. 1, a with-loop basically consists of three
parts: a generator, an associated expression and an operation.

WithLoopExpr ⇒ with Generator : Expr Operation

Generator ⇒ (Expr Relop Identifier Relop Expr [Filter])
Relop ⇒ <= | <

Operation ⇒ genarray (Expr [, Expr])

| fold (Id , Expr)

Fig. 1. Syntax of with-loop expressions.

The operation determines the overall meaning of the with-loop. There are two variants:
genarray and fold. With genarray(shp, default) the with-loop creates a new array. The
expression shp must evaluate to an integer vector, which defines the shape of the array to be
created. With fold(foldop, neutral) the with-loop specifies a reduction operation. In this
case, foldop must be the name of an appropriate associative and commutative binary operation
with neutral element specified by the expression neutral .
The generator defines a set of index vectors along with an index variable representing elements

of this set. Two expressions, which must evaluate to integer vectors of equal length, define lower
and upper bounds of a rectangular index vector range. An optional filter may be used to further
restrict generators to various kinds of grids; for simplification we omit this detail in the following.
For each element of the set of index vectors defined by the generator the associated expression is

evaluated. Depending on the variant of with-loop, the resulting value is either used to initialize the
corresponding element position of the array to be created (genarray), or it is given as an argument
to the fold operation (fold). In the case of a genarray-with-loop, elements of the result array
that are not covered by the generator are initialized by the (optional) default expression in the
operation part. For example, the with-loop
with ([1,1] <= iv < [3,4]) : iv[0] + iv[1]
genarray([3,5], 0)

yields the matrix

0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

 while the with-loop

with ([1,1] <= iv < [3,4]) : iv[0] + iv[1]
fold(+, 0)

evaluates to 21. The fact that for each element of the index vector set defined by the generator some
(potentially complex) expression is evaluated independently of all others makes with-loops par-
ticularly amenable to implicit parallelization following a data parallel approach. More information
on SaC is available at www.sac-home.org.

3 Programming methodology

As pointed out in the introduction, SaC propagates a programming methodology based on the
principles of abstraction and composition. The usage of vectors in with-loop generators as well as
in the selection of array elements along with the ability to define functions which are applicable to
arrays of any rank and size allows us to implement generic array operations in SaC itself. Rather
than building entire application programs by means of with-loops, we use with-loops merely to
realize small functions, abstractions with a well defined and easily comprehandable meaning. They
represent the basic building blocks for the composition of full application programs.
Fig. 2 illustrates the principle of abstraction by rank-invariant definitions of three standard

aggregate array operations. The overloaded definitions of the function abs and the infix operator
<= extend the corresponding scalar functions to arrays of any rank and shape. The function any

is a standard reduction operation, which yields true if any of the argument array elements is
true, otherwise it yields false. Some of the generators in Fig. 2 use the dot notation for lower
or upper bounds. The dot represents the smallest or the greatest legal index vector depending on
the individual context. The dot notation facilitates specification of frequent operations on all or
on all inner elements of arrays.
In analogy to the examples in Fig. 2 most built-in operations known from other array languages

can be implemented in SaC itself. The array module of the SaC standard library includes element-

double[+] abs(double[+] a)
{
res = with (. <= iv < shape(a)) : abs(a[iv])

genarray(shape(a));

return(res)
}

bool[+] (>=) (double[+] a, double[+] b)
{
res = with (. <= iv <= .) : a[iv] >= b[iv]

genarray(min(shape(a), shape(b)));

return(res)
}

bool any(bool[+] a)
{
res = with (. <= iv < shape(a)) : a[iv]

fold(||, false);

return(res)
}

Fig. 2. Defining rank-invariant aggregate array operations in SaC.

wise extensions of the usual arithmetic and relational operators, typical reduction operations like
sum and product, various subarray selection facilities, as well as shift and rotate operations.

Basic array operations defined by with-loops lay the foundation to constructing more complex
operations by means of composition, as illustrated in Fig. 3. We define a generic convergence crite-
rion for iterative algorithms of any kind purely by composition of basic array operations. Following
this compositional style of programming, more and more complex operations and, eventually, entire
application programs are built.

bool cont(double[*] new, double[*] old, double eps)
{
return(any(abs(new - old) >= eps))

}

Fig. 3. Defining array operations by composition.

One strength of this generic rank-invariant programming style is the ability to specify array
operations that are universally applicable to arrays of any shape, a property that is usually limited
to built-in primitives in other languages. The other strength is the resulting omnipresence of
with-loops in intermediate SaC code. This allows us to focus all efforts for optimization and
parallelization on this single language construct.

4 Case study: NAS benchmark FT

In this section, we apply the generic programming techniques of SaC to a small but representative
case study: 3-dimensional complex FFT. As part of the NAS benchmark suite [15] this numerical
kernel has previously been used to assess the suitability of languages and compilers. Formal bench-
marking rules and existing implementations in many languages ensure comparability of results.
The NAS benchmark FT implements a solver for a class of partial differential equations by means
of repeated 3-dimensional forward and inverse complex fast-Fourier transforms. They are imple-
mented by consecutive collections of 1-dimensional FFTs on vectors along the three dimensions,
i.e., an array of shape [X,Y,Z] is consecutively interpreted as a ZY matrix of vectors of length X,
as a ZX matrix of vectors of length Y, and as a XY matrix of vectors of length Z.

complex[.,.,.] FFT(complex[.,.,.] a, complex[.] rofu)
{
b = { [.,y,z] -> FFT(a[.,y,z], rofu) };
c = { [x,.,z] -> FFT(b[x,.,z], rofu) };
d = { [x,y,.] -> FFT(c[x,y,.], rofu) };

return(d);
}

Fig. 4. SaC implementation of 3-dimensional FFT.

As shown in Fig. 4, the algorithm can be carried over into a SaC specification almost literally.
The function FFT takes a 3-dimensional array of complex numbers (complex[.,.,.]) and consec-
utively applies 1-dimensional FFTs to all subvectors along the x-axis, the y-axis, and the z-axis.
The SaC code takes advantage of the axis control notation. This notation facilitates specification
of operations along one or multiple whole axes of argument arrays. Applications of this notation
are transformed into with-loops in a pre-processing step. A detailed introduction to both usage
and compilation can be found in [16]. The additional parameter rofu provides a pre-computed
vector of complex roots of unity, which is used for 1-dimensional FFTs.

complex[.] FFT(complex[.] v, complex[.] rofu)
{
even = condense(2, v);
odd = condense(2, rotate([-1], v));
rofu_even = condense(2, rofu);

fft_even = FFT(even, rofu_even);
fft_odd = FFT(odd, rofu_even);

left = fft_even + fft_odd * rofu;
right = fft_even - fft_odd * rofu;

return(left ++ right);
}

complex[2] FFT(complex[2] v, complex[1] rofu)
{
return([v[[0]] + v[[1]] , v[[0]] - v[[1]]]);

}

Fig. 5. SaC implementation of 1-dimensional FFT.

The overloaded function FFT on vectors of complex numbers (complex[.]) almost literally
implements the Danielson-Lanczos algorithm [17]. It is based on the recursive decomposition of
the argument vector v into elements at even and at odd index positions. The vector even can be
created by means of the library function condense(n,v), which selects every n-th element of v.

typedef double[2] complex;

complex (*) (complex a, complex b)
{
return([a[0] * b[0] - a[1] * b[1],

a[0] * b[1] + a[1] * b[0]]);
}

complex[+] (*) (complex[+] a, complex[+] b)
{
res = with (. <= iv <= .) : a[iv] * b[iv]

genarray(min(shape(a), shape(b)));

return(res);
}

Fig. 6. Complex numbers in SaC.

The vector odd is generated in the same way after first rotating v by one index position to the
left. FFT is then recursively applied to even and to odd elements, and the results are combined
by a sequence of element-wise arithmetic operations on vectors of complex numbers and a final
vector concatenation (++). A direct implementation of FFT on 2-element vectors (complex[2])
terminates the recursion.

Unlike Fortran neither the data type complex nor any of the operations used to define
FFT are built-in in SaC. Fig.6 shows an excerpt from the complex numbers module of the SaC

standard library. We introduce the data type complex as a 2-element vector of double-precision
floating point numbers. The infix operator * is overloaded twice: first for the multiplication of two
complex numbers and then for the element-wise multiplication of two arrays of complex numbers.

subroutine cffts1 (is,d,x,xout,y)

include ’global.h’
integer is, d(3), logd(3)
double complex x(d(1),d(2),d(3))
double complex xout(d(1),d(2),d(3))
double complex y(fftblockpad, d(1), 2)
integer i, j, k, jj

do i = 1, 3
logd(i) = ilog2(d(i))

end do

do k = 1, d(3)
do jj = 0, d(2)-fftblock, fftblock
do j = 1, fftblock
do i = 1, d(1)
y(j,i,1) = x(i,j+jj,k)

enddo
enddo

call cfftz (is, logd(1),
d(1), y, y(1,1,2))

do j = 1, fftblock
do i = 1, d(1)
xout(i,j+jj,k) = y(j,i,1)

enddo
enddo
enddo

enddo

return
end

subroutine cffts2 (is,d,x,xout,y)

include ’global.h’
integer is, d(3), logd(3)
double complex x(d(1),d(2),d(3))
double complex xout(d(1),d(2),d(3))
double complex y(fftblockpad, d(2), 2)
integer i, j, k, ii

do i = 1, 3
logd(i) = ilog2(d(i))

end do

do k = 1, d(3)
do ii = 0, d(1)-fftblock, fftblock
do j = 1, d(2)
do i = 1, fftblock
y(i,j,1) = x(i+ii,j,k)

enddo
enddo

call cfftz (is, logd(2),
d(2), y, y(1,1,2))

do j = 1, d(2)
do i = 1, fftblock
xout(i+ii,j,k) = y(i,j,1)

enddo
enddo
enddo

enddo

return
end

subroutine cffts3 (is,d,x,xout,y)

include ’global.h’
integer is, d(3), logd(3)
double complex x(d(1),d(2),d(3))
double complex xout(d(1),d(2),d(3))
double complex y(fftblockpad, d(3), 2)
integer i, j, k, ii

do i = 1, 3
logd(i) = ilog2(d(i))

end do

do j = 1, d(2)
do ii = 0, d(1)-fftblock, fftblock
do k = 1, d(3)
do i = 1, fftblock
y(i,k,1) = x(i+ii,j,k)

enddo
enddo

call cfftz (is, logd(3),
d(3), y, y(1,1,2))

do k = 1, d(3)
do i = 1, fftblock
xout(i+ii,j,k) = y(i,k,1)

enddo
enddo
enddo

enddo

return
end

subroutine fftz2 (is,l,m,n,ny,ny1,u,x,y)

integer is,k,l,m,n,ny,ny1,n1,li,lj
integer lk,ku,i,j,i11,i12,i21,i22
double complex u,x,y,u1,x11,x21
dimension u(n), x(ny1,n), y(ny1,n)

n1 = n / 2
lk = 2 ** (l - 1)
li = 2 ** (m - l)
lj = 2 * lk
ku = li + 1

do i = 0, li - 1
i11 = i * lk + 1
i12 = i11 + n1
i21 = i * lj + 1
i22 = i21 + lk
if (is .ge. 1) then
u1 = u(ku+i)
else
u1 = dconjg (u(ku+i))
endif
do k = 0, lk - 1
do j = 1, ny
x11 = x(j,i11+k)
x21 = x(j,i12+k)
y(j,i21+k) = x11 + x21
y(j,i22+k) = u1 * (x11 - x21)

enddo
enddo

enddo

return
end

Fig. 7. Excerpts from the Fortran-77 implementation of NAS-FT.

In order to help assessing the differences in programming style and abstraction, Fig. 7 shows
excerpts from about 150 lines of corresponding Fortran-77 code. Three slightly different func-
tions, cffts1, cffts2, and cffts3, intertwine the three transposition operations with a block-wise
realization of a 1-dimensional FFT. The iteration is blocked along the middle dimension to im-
prove cache performance. Extents of arrays are specified indirectly to allow reuse of the same set
of buffers for all orientations of the problem. Function fftz2 is part of the 1-dimensional FFT.
It must not be forgotten that this excerpt represents high quality code, which is well organized

and carefully structured. It was written by expert programmers in the field and has undergone
several revisions. Nevertheless, it is hardly obvious that the code in fact implements a correct
3-dimensional fast-Fourier transform. In particular numerical codes often yield results whose cor-
rectness cannot be validated easily or at all.

5 Experimental evaluation

This section investigates the runtime performance achieved by code compiled from the SaC spec-
ification of NAS-FT, as outlined in the previous section. It is compared with that of the serial
Fortran-77 reference implementation coming with the NAS benchmark suite 2.31, with a C im-
plementation derived from the Fortran-77 code and extended by OpenMP directives2 by Real
World Computing Partnership (RWCP), and last but not least with the fastest Haskell imple-
mentation proposed in [4]. All experiments were made on a 12-processor SUN Ultra Enterprise
4000 shared memory multiprocessor using SUN Workshop compilers.

Size Class W Size Class A

1.50

0.50

1.00

12
.4

3s

2.00

2.50

10
.5

9s

23
2.

7s

19
7.

37
s

46
7.

4s
SA

C

SA
C

C
 /

O
pe

nM
P

24
.6

3s

Fo
rt

ra
n−

77

C
 /

O
pe

nM
P

Fo
rt

ra
n−

77

Fig. 8. Single processor performance of NAS-FT.

Fig. 8 shows sequential execution times for Fortran, C, and SaC. For both size classes
investigated, Fortran-77 outperforms SaC by less than a factor of 2.4 while C outperforms SaC

by less than a factor of 2.0. We see that the runtime performance delivered by a few lines of highly
generic SaC code is in reach of hand-optimized imperative implementations of the benchmark.
The remaining performance gap must to a large extent be attributed to dynamic memory

management overhead caused by the recursive decomposition of argument vectors when computing
1-dimensional FFTs. Unlike SaC, both imperative implementations use a static memory layout.
Haskell runtimes are omitted in Fig. 8 because with more than 27 minutes runtime for size class
WHaskell is more than 2 orders of magnitude slower than the other candidates. Furthermore, the
Haskell implementation fails altogether to compute benchmark size class A in a 32-bit address
space. Therefore, we have excluded Haskell from further experiments.
Fig. 9 shows the scalability achieved by the 3 remaining candidates, i.e. parallel execution

times divided by each candidate’s best serial runtime. Whereas hardly any performance gain can
be observed for automatic parallelization of the Fortran-77 code, SaC achieves speedups of up

1 The source code is available at http://www.nas.nasa.gov/Software/NPB/ .
2 The source code is available at http://phase.etl.go.jp/Omni/ .

0

1

2

3

4

5

6

1 2 4 6 8 10

S
pe

ed
up

 r
el

at
iv

e
to

 s
eq

ue
nt

ia
l e

xe
cu

tio
n.

Number of processors involved.

Class W:
SAC
C/OpenMP
Fortran-77

0

1

2

3

4

5

6

1 2 4 6 8 10

S
pe

ed
up

 r
el

at
iv

e
to

 s
eq

ue
nt

ia
l e

xe
cu

tio
n.

Number of processors involved.

Class A:
SAC
C/OpenMP
Fortran-77

Fig. 9. Speedups achieved by multithreaded execution.

to 5.5 and up to 6.0 for size classes W and A, respectively. With these figures SaC even slightly
outperforms OpenMP in terms of scalability.
Fig. 10 shows absolute runtimes using ten processors. Due to its superior sequential performance

the C/OpenMP combination achieves the best absolute runtimes. However, this comes at the
expense of 25 compiler directives for guiding parallelization. Whereas parallelization of the SaC

code is completely implicit like a compiler optimization, the resulting performance is still in reach
of explicit approaches. It clearly outperforms automatic parallelization of the original Fortran-77

code.

Size Class ASize Class W

10
.9

2s

18
2.

8s

46
.5

s

2.
54

s

Fo
rt

ra
n−

77

4.
48

s
SA

C

C
 /

O
pe

nM
P

Fo
rt

ra
n−

77

SA
C

C
 /

O
pe

nM
P

77
.9

s

0.75

0.25

1.00

0.25

0.50

0.75

1.00

0.50

Fig. 10. 10-processor performance of NAS-FT.

6 Conclusions and future work

SaC aims at combining high-level, generic array programming with competitive runtime perfor-
mance. The paper evaluates this approach based on the NAS benchmark FT. It is shown how
3-dimensional FFTs can be assembled by about 15 lines of SaC code as opposed to about 150
lines of fine-tuned Fortran-77 or C code. Due to its conciseness and high level of abstraction the
SaC code clearly exhibits underlying mathematical algorithms, which are completely disguised
by performance-related coding tricks when using imperative languages. Development and main-
tenance of these codes require deep knowledge about computer architecture and corresponding
optimization techniques, e.g. padding, tiling, buffering, or iteration ordering. Still, confidence in
the correctness of results often remains low.
Despite the substantial difference in coding style and code length, the SaC runtime is within

a factor of 2.4 of the Fortran-77 code and within a factor of 2.0 of the C code. In contrast,
using the general-purpose functional language Haskell leads to a performance degradation by

more than two orders of magnitude and prohibitive memory demands for non-trivial problem sizes.
Furthermore, SaC by simple recompilation outperforms both low-level imperative implementations
with only 4 processors of an SMP system. In contrast, only annotation with 25OpenMP directives
succeeded in exploiting multiple processors, whereas implicit parallelization of the Fortran-77

code failed to achieve any performance improvements.
Future work is basically twofold. First, some inefficiencies in the intermediate SaC code should

be overcome by additional symbolic program transformations, which may allow us to further
close the performance gap between SaC and low-level solutions. Second, we would like to extend
the comparative study to other benchmark implementations, e.g. Mpi-based parallelization of
Fortran-77 and C codes, a data parallel Hpf implementation, or a presumably faster Haskell

implementation based on strict and unboxed arrays.

References

1. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R., Frederickson,
P., Lasinski, T., Schreiber, T., Simon, R., Venkatakrishnam, V., Weeratunga, S.: The NAS Parallel
Benchmarks. International Journal of Supercomputer Applications 5 (1991) 63–73

2. Hartel, P., Langendoen, K.: Benchmarking Implementations of Lazy Functional Languages. In:
Proceedings of the Conference on Functional Programming Languages and Computer Architecture
(FPCA’93), Copenhagen, Denmark, ACM Press (1993) 341–349

3. Hartel, P., et al.: Benchmarking Implementations of Functional Languages with “Pseudoknot”, a
Float-Intensive Benchmark. Journal of Functional Programming 6 (1996)

4. Hammes, J., Sur, S., Böhm, W.: On the Effectiveness of Functional Language Features: NAS Bench-
mark FT. Journal of Functional Programming 7 (1997) 103–123

5. Scholz, S.B.: Single Assignment C— Efficient Support for High-Level Array Operations in a Functional
Setting. Journal of Functional Programming 13 (2003) 1005–1059

6. Grelck, C., Scholz, S.B.: Accelerating APL Programs with SAC. In Lefèvre, O., ed.: Proceedings
of the International Conference on Array Processing Languages (APL’99), Scranton, Pennsylvania,
USA. Volume 29 of APL Quote Quad. ACM Press (1999) 50–57

7. Grelck, C., Scholz, S.B.: HPF vs. SAC— A Case Study. In Bode, A., Ludwig, T., Karl, W., Wismüller,
R., eds.: Proceedings of the 6th European Conference on Parallel Processing (Euro-Par’00), Munich,
Germany. Volume 1900 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany
(2000) 620–624

8. Grelck, C.: Implementing the NAS Benchmark MG in SAC. In Prasanna, V.K., Westrom, G., eds.:
Proceedings of the 16th International Parallel and Distributed Processing Symposium (IPDPS’02),
Fort Lauderdale, Florida, USA, IEEE Computer Society Press (2002)

9. Grelck, C., Scholz, S.B.: SAC — From High-level Programming with Arrays to Efficient Parallel
Execution. Parallel Processing Letters 13 (2003) 401–412

10. Scholz, S.B.: With-loop-folding in SAC — Condensing Consecutive Array Operations. In Clack, C.,
Davie, T., Hammond, K., eds.: Proceedings of the 9th International Workshop on Implementation of
Functional Languages (IFL’97), St. Andrews, Scotland, UK, Selected Papers. Volume 1467 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany (1998) 72–92

11. Grelck, C., Scholz, S.B., Trojahner, K.: With-Loop Scalarization: Merging Nested Array Operations. In
Trinder, P., Michaelson, G., eds.: Proceedings of the 15th International Workshop on Implementation
of Functional Languages (IFL’03), Edinburgh, Scotland, UK, Revised Selected Papers. Volume 3145
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany (2004)

12. Grelck, C.: Shared Memory Multiprocessor Support for SAC. In Hammond, K., Davie, T., Clack,
C., eds.: Proceedings of the 10th International Workshop on Implementation of Functional Languages
(IFL’98), London, UK, Selected Papers. Volume 1595 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany (1999) 38–54

13. Grelck, C.: Implicit Shared Memory Multiprocessor Support for the Functional Programming Lan-
guage SAC — Single Assignment C. PhD thesis, Institute of Computer Science and Applied Mathe-
matics, University of Kiel, Germany (2001). Logos Verlag, Berlin, 2001.

14. Grelck, C.: A Multithreaded Compiler Backend for High-Level Array Programming. In Hamza, M.,
ed.: Proceedings of the 21st International Multi-Conference on Applied Informatics (AI’03), Part II: In-
ternational Conference on Parallel and Distributed Computing and Networks (PDCN’03), Innsbruck,
Austria, ACTA Press, Anaheim, California, USA (2003) 478–484

15. Bailey, D., Harris, T., Saphir, W., van der Wijngaart, R., Woo, A., Yarrow, M.: The NAS Parallel
Benchmarks 2.0. NAS 95-020, NASA Ames Research Center, Moffet Field, California, USA (1995)

16. Grelck, C., Scholz, S.B.: Axis Control in SAC. In Peña, R., Arts, T., eds.: Proceedings of the
14th International Workshop on Implementation of Functional Languages (IFL’02), Madrid, Spain,
Revised Selected Papers. Volume 2670 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany (2003) 182–198

17. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C. Cambridge University
Press, Cambridge, UK (1993)

