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Abstract. The specification and resolution of non-trivial domain con-
straints has become a well-recognised measure for improving the stability
of large software systems. In this paper we propose an approach based
on partial evaluation which tries to prove such constraints statically as
far as possible and inserts efficient dynamic checks otherwise.

1 Introduction

Resolving domain constraints for operations on arrays is known to be a challeng-
ing task. The central challenge is that one of the most frequently used operations,
array selection, has value constraints which are, in general, undecidable. In the
context of array languages, such as APL [1], J [2] or SaC [3], which support
generic operations on n-dimensional arrays, the challenge is even greater, because
these languages treat the rank and shape of an array, at least conceptually, as
part of the array value.

In APL, conformance checks are purely dynamic. This design decision has
a considerable run-time impact, as noted in [4]. In order to avoid the overhead
due to dynamic checks, several other approaches have been developed that try
to resolve these requirements statically. However, the undecidable nature of the
problem forces these approaches to restrict the expressiveness of the language
in one way or the other. Some approaches are based on restricted forms of
dependent types, such as the indexed types proposed by Zenger in [5] or the
type system of DML [6]. Other approaches rely on a strict separation of arrays
and indices and force all indices to be defined in a rather restricted manner only.
This enables languages such as Zpl [7] or Chapel [8] to in many cases avoid
run-time checks.

In this paper, we propose a hybrid approach. Rather than restricting ei-
ther the language or the compiler to programs whose constraints can be stati-
cally resolved, we make the compiler resolve and eliminate as many constraints
as possible and check the unresolved ones at run-time. For many straightfor-
ward programs this yields the same static safety as do strongly typed systems.
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Dynamic checks remain only for those computations that rely on more complex
index calculations.

The central idea of our approach is to use partial evaluation as a constraint
resolution mechanism. In a first step, all domain constraints are explicitly in-
serted into the program. At that stage, programs are very similar to programs
that contain contracts, as first proposed in the context of Eiffel [9,10]. In fact,
our proposed approach facilitates a seamless integration of arbitrary contracts,
as found in several modern languages from the object-oriented domain, e.g.,
Java [11,12] and Python [13].

Subsequently, partial evaluation is applied, with the intent of safely eliminat-
ing as many dynamic checks as possible. A detailed analysis of remaining checks
allows the programmer to decide if the level of static guarantees is sufficient for
the application given. If not, further partial evaluation can be applied, or the
program can be re-written in a way so that static resolution becomes feasible. As
a nice side-effect, those checks that remain until run-time have been minimised
with respect to the actual checks being performed.

We demonstrate this approach in the context of the functional array language
SaC. A prototype implementation is included in the current beta release of the
SaC compiler1. Since the existing compiler for SaC already supports powerful
mechanisms for partial evaluation as part of its type system and as part of its
optimisation cycle, this implementation required only moderate effort.

The main contributions of this paper are:

– a partial-evaluation-based approach towards static domain guarantees,
– a discussion of the implications of some of the design alternatives for a prac-

tical implementation of the proposed approach,
– an outline of a formal transformation scheme for the core language SaCλ

that introduces explicit domain constraints in a contract-like style, and
– an outline of a formal proof of the semantic soundness of this transformation.

The paper is structured as follows. Section 2 identifies some of the challenges of
the proposed approach. Section 3 gives a brief introduction to SaCλ, a stripped-
down functional array programming language which has similar syntax and se-
mantics to SaC but is better suited for formal reasoning. Using SaCλ, Section 4
explores the design space of representing constraints explicitly by contracts.
Section 5 discusses different means to insert contracts into the code. A formal
presentation of the chosen approach is given in Section 6. Section 7 gives a brief
discussion of how partial evaluation is used to resolve contracts. Related work is
discussed in Section 8 before Section 9 concludes.

2 Challenges of the Contract Approach

Although the approach to use explicit contracts and to eliminate these by means
of partial evaluation seems to be rather straightforward it turns out that a prac-
tical implementation of it poses several challenges which need to be addressed.
1 The compiler is available for download at http://www.sac-home.org/

http://www.sac-home.org/
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Our implementation as part of the SaC project (http://www.sac-home.org/)
revealed the following challenges.

Feedback of the verification process. As laid out in the introduction, one
of the primary motivations of this work is to obtain static guarantees about
the good behaviour of a program. Due to the hybrid nature of the proposed
approach, any residual program may be left with unresolved conformity checks.
If we still want the programmer to benefit from successfully inferred guarantees,
it is essential to provide the programmer with feedback which distinguishes those
parts of the program that could be checked statically from those where errors may
still occur at run-time. While the identification of potentially unsafe program
regions comes almost for free in approaches based on tailor-made inferences, in
the proposed approach this requirement poses a challenge. Since we start out
from a ”blind“ insertion of contracts which are, hopefully, optimised away later,
we need to make sure that remaining run-time checks can still be related to the
original program, even after program optimisation.

Efficient checking at run-time. As pointed out in [4], the elimination of
redundant run-time checks can have a vast impact on the overall run-time be-
haviour of generic array programs. Therefore, we need to make sure that the
amount of checking that happens at run-time is reduced as much as possible.
For example, a program that contains an element-wise addition of two arrays A
and B and an element-wise subtraction of these should not check more than once
that their shapes are identical. Apart from such reuses of entire constraints, we
also expect the system to partially evaluate constraints and minimise the actual
checking required. One example for such a situation is the selection operation: in
generic array programming, selections require that the length of the index vector
matches the rank of the array to be selected from and that each component of
the index vector is in the proper range of indices for the corresponding array
axis. While the former usually can be ensured statically, the latter sometimes
has to be postponed until run-time. In those cases, we expect only the value
checks to remain in the optimised program.

Stepwise improvements for separately compiled code. Static verification
of contracts is often rendered impossible if separate compilation is required.
Being based on partial evaluation, we expect our approach to be well-suited for
separate compilation without a loss of checking efficiency. Rather than starting
out from scratch, it should be possible to take a pre-compiled library version
of any program and to further eliminate potentially remaining run-time checks
whenever enough information of the calling context becomes available.

Constraint unaware optimisation. One of the main problems of high-level
program optimisation is that most optimisations need to carefully observe all
domain constraints involved. If these cannot be statically proved, a conservative
approach must be taken; this often inhibits application of such optimisations. In
the intended setting it should nevertheless be possible to apply such optimisa-
tions. For this to be possible, we have to ensure that any outstanding dynamic
checks are properly preserved.

http://www.sac-home.org/
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The solution we develop throughout the remainder of this paper tries to tackle
all these challenges. Discussions of individual design decisions try to relate their
impact on the challenges identified here.

3 SaCλ

SaCλ is a functional language inspired by SaC, comprising only the bare essen-
tials of SaC that are needed for a functional array language; its syntax closely
resembles that of SaC. However, we have modified it to a λ-calculus style, in
order to ease comprehension by a functional-programming audience.

Program ⇒ [ FunId = λ Id[ , Id ]* .Expr ; ]*
main = Expr ;

Expr ⇒ [ [ Id [ , Id ]* ] ]

| FunId ( Id [ , Id ]* )

| Prf ( Id [ , Id ]* )

| if Id then Expr else Expr

| let Id [ , Id ]* = Expr in Expr

| Const

| Id

Prf ⇒ shape | dim | sel | modarray

| add SxS | add SxA | add AxS | add AxA

| eq SxS | eq SxA | eq AxS | eq AxA

| ...

Fig. 1. The syntax of SaCλ

Note that the version of SaCλ used in this paper differs from versions pre-
sented in earlier papers: We focus on built-in primitive functions rather than
higher-level constructs like the with-loop [3]. Figure 1 shows the syntax of SaCλ.
A program consists of a set of mutually recursive function definitions and a desig-
nated main expression. Essentially, expressions are either constants, variables or
function applications. Since SaC, at present, neither supports higher-order func-
tions nor nameless functions, all abstractions (function definitions) are explicitly
user-defined. Function applications are written in C-style, i.e., with parenthe-
ses around arguments, rather than around entire applications of functions. To
simplify the formal presentation in later sections of this paper, we restrict the
arguments to be identifiers rather than arbitrary expressions. However, a trans-
formation of unrestricted programs into this restricted form is straight-forward.

SaCλ provides a few built-in array operations, referred to as primitive func-
tions (Prf). Among these are shape and dim for computing an array’s shape and
dimensionality (rank), respectively. A selection operation, sel, is also provided;
it takes two arguments: an index vector, specifying the element to be selected,



258 S. Herhut et al.

and an array from which to select. As its dual, SaCλ provides a modarray
operation which computes a new array from an existing one by altering a single
element only; it takes three arguments: a template array, the index position at
which the result array is supposed to be different from the template array and
the value to which the referenced element of the array is to be set. These basic
array operations are complemented by element-wise extensions of arithmetic and
relational operations, such as addition (add) and equality (eq), respectively, with
similar semantics to those of APL and J. We differentiate between two different
kinds of arguments to these binary operations: Array arguments, denoted by the
letter A, and scalar arguments, represented by the letter S. This leads to a total
of four versions of each binary operation, one for each combination of argument
classes. To differentiate between these, we use the suffices SxS, SxA, AxS and AxA.

The versions defined on arguments of the same kind, i.e., SxS and AxA, com-
pute by applying the operation element wise to each pair of corresponding el-
ements of the two arguments. Binary operations with non-matching argument
classes, i.e., SxA and AxS, compute by applying the operation to each element of
the array argument and the single scalar argument.

We can formalize the semantics of SaCλ by a standard big-step operational
semantics for λ-calculus-based applicative languages as defined in several text-
books, e.g., [14]. As a unified representation for n-dimensional arrays, we use
pairs of vectors < [ s1, . . . , sn], [ d1, . . . , dm] > where the vector [ s1, . . . , sn]
denotes the shape of the array, i.e., its extent with respect to the n individ-
ual axes, and the vector [ d1, . . . , dm] contains all elements of the array in a
row-major linearized form.

The first two evaluation rules of Figure 2 show how scalars as well as vectors
are transformed into the internal representation. The rule Vect requires that all
elements have the same shape to ensure shape consistency in the overall result.

The semantics of let expressions is formalized by the third rule. We use the
standard substitution function e[v/α] which substitutes all free occurrences of
variable α within the expression e by an expression v.

The next two rules describe the semantics of function definition and appli-
cation. To allow for recursive function definitions, we use an explicit fix-point
operator fix in conjunction with the substitution function described above. For
each function definition, rule LetRec substitutes all applied occurences within
the remainder of the program by an application of fix to the function name
and definition. The corresponding definition of function application is given by
rule Ap. It differs from the standard rule for applicative languages only by the
additional substitution of recursive function applications within the function
body by an explicit fix operator. We use e[vi/αi]ni=1 to denote the sequence of
substitutions e[v1/α1] · · · [vn/αn].

Rule Main gives the semantics of the main expression of a program. A formal
definition of conditionals in SaCλis given by the rules IfTrue and IfFalse.

The next four rules formalize the semantics of the main primitive operations
on arrays: dim, shape, sel and modarray. There are two aspects of the Sel rule
to be observed: first, we require the selection index to be of the same length as
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the shape of the array to be selected from. This ensures scalar values as results.
Second, the selection index must be within the bounds of the array argument,
i.e., each element ij of the index vector needs to be non-negative and less than
the corresponding element sj of the shape vector of the array argument. Finally,
the selection requires a transformation of the index vector into a scalar offset l
into the linearized form of the array. The sum of products used here reflects the
row-major linearization we have chosen.

The rule Modarray imposes the same restrictions on the index vector and
the array argument of the modarray operation. Additionally, we require that
the third argument to modarray is a scalar value. This is to ensure that the

Const :
n → < [], [n] >

Vect :
∀i ∈ {1, . . . , n} : ei → < [ s1, . . . , sm], [ di

1, . . . , di
p] >

[ e1, . . . , en] → < [ n, s1, . . . , sm], [ d1
1, . . . , d1

p, . . . , dn
1 , . . . , dn

p ] >

Let :

e → < [ s1, . . . , sn], [ d1, . . . , dm] >
eb[< [ s1, . . . , sn], [ d1, . . . , dm] >/α] → < [ s′1, . . . , s′k], [ d′

1, . . . , d′
l] >

let α = e in eb → < [ s′1, . . . , s′k], [ d′
1, . . . , d′

l] >

LetRec :
p[fix f λα1, . . ., αn.e/f ] → < [ s1, . . . , sn], [ d1, . . . , dm] >

f = λα1, . . ., αn.e
p → < [ s1, . . . , sn], [ d1, . . . , dm] >

Ap :

∀i ∈ {1, . . . , n} : ei → < [ si
1, . . . , si

ni
], [ di

1, . . . , di
mi

] >
e[< [ si

1, . . . , si
ni

], [ di
1, . . . , di

mi
] >/αi]

n
i=1[fix f λα1, . . ., αn.e/f ]

→ < [ s1, . . . , sn], [ d1, . . . , dm] >

fix f λα1, . . ., αn.e( e1, . . ., en)

→ < [ s1, . . . , sn], [ d1, . . . , dm] >

Main :
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

main = e → < [ s1, . . . , sn], [ d1, . . . , dm] >

IfTrue :
ep → < [], [ true] > et → < [ s1, . . . , sn], [ d1, . . . , dm] >

if ep then et else ee → < [ s1, . . . , sn], [ d1, . . . , dm] >

IfFalse :
ep → < [], [ false] > ee → < [ s1, . . . , sn], [ d1, . . . , dm] >

if ep then et else ee → < [ s1, . . . , sn], [ d1, . . . , dm] >

Dim :
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

dim( e) → < [], [n] >

Shape :
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

shape( e) → < [ n], [ s1, . . . , sn] >

Fig. 2. An operational semantics for SaCλ
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Sel :

iv → < [ n], [ i1, . . . , in] >
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

sel( iv, e) → < [], [ dl] >

where l =
nP

j=1

(ij ∗
nQ

k=j+1

sk) + 1

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

ModArray :

iv → < [ n], [ i1, . . . , in] >
ed → < [ s1, . . . , sn], [ d1, . . . , dm] >

ev → < [], v >

modarray( iv, ed, ev) → < [ s1, . . . , sn], [ d′
1, . . . , d′

m] >

where d′
l =

8<
:

v if l =
nP

j=1

(ij ∗
nQ

k=j+1

sk) + 1,

dl otherwise.

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

Add SxS :

e1 → < [], d1 >
e2 → < [], d2 >

add SxS( e1, e2) → < [], [ d1 + d2] >

Add AxS :

e1 → < [ s1, . . . , sn], [ d1
1, . . . , d1

m] >
e2 → < [], d >

add AxS( e1, e2) → < [ s1, . . . , sn], [ d1
1 + d, . . . , d1

m + d] >

Add AxA :

e1 → < [ s1, . . . , sn], [ d1
1, . . . , d1

m] >
e2 → < [ s1, . . . , sn], [ d2

1, . . . , d2
m] >

add AxA( e1, e2) → < [ s1, . . . , sn], [ d1
1 + d2

1, . . . , d1
m + d2

m] >

Fig. 2. (continued)

modarray operation results in a homogeneous array, i.e., that the replaced value
and replacing value are of the same shape.

Element-wise extensions of standard operations, such as the arithmetic and
relational operations, are demonstrated by the example of the rules for addition
(add SxS, add AxS and add AxV). We have left out the rule for the SxA variant,
as it is symmetrical to the AxS variant.

Whereas add SxS and add AxS can be applied to any pair of scalar values or
an array of arbitrary shape as first argument and any scalar value as second argu-
ment, respectively, we require the arguments of add AxA to be of the same shape.

4 Representing Constraints as Contracts

In this Section, we will discuss different approaches to representing constraints
as explicit contracts in SaCλ. As a first step, we have to identify the implicit
constraints of the primitive functions built into SaCλ. To begin with, consider
the following application of the binary primitive function add_AxS:
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...��� R = ������	( A, v)


�...

where A and v are defined in the surrounding context. From rule add AxS in
Figure 2, we can deduce that the second argument needs to evaluate to a scalar
value. Thus, the above application of add_AxS has the following constraint:

1. v is required to evaluate to a scalar value

This constraint is an example for a constraint on the dimensionality of an array,
i.e., static knowledge of the dimensionality of the second argument to add_AxS
suffices to evaluate this constraint statically.

For an application of add_AxA like
...��� R = �������( A, B)


�...

where A and B are given by the surrounding context, we get a different class of
constraints. As rule add AxA in Figure 2 shows, the following constraint needs
to hold in order for the application to be evaluated:

2. A and B evaluate to values of the same shape

In contrast to constraint 1 above, constraint 2 requires static shape knowledge
of both arguments, more precisely, static knowledge of shape equalities.

Similarly, constraints for add_SxS, add_SxA and the remaining binary op-
erations can be derived. Finally, we need to derive constraints for sel and
modarray operations. As an example, consider the following applications of sel
and modarray:
...��� B = ������� ( A, iv, v)


� ��� w = ���( B, iv)


�...

where A, iv and v are defined in the surrounding context.
As for the previous examples, by looking at the semantic rules defined in

Figure 2, we can deduce the following implicit constraints for the application of
modarray:

3. the length of iv needs to match the dimensionality of A
4. iv is required to be non-negative
5. each element of iv needs to be smaller than the corresponding value of the

shape vector of A
6. v should be a scalar value

For the application of sel we get:

7. the length of iv is required to match the dimensionality of B
8. iv needs to be non-negative
9. each element of iv is required to be smaller than the corresponding value of

the shape vector of B
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Constraints 3 and 7 are constraints on the shape of arguments of a primitive
function, similar to constraint 2 shown in the previous example. However, con-
straints 4 and 8, and 5 and 9 are constraints that depend on the value of an
argument, i.e., these can only be statically decided if the value of the corre-
sponding arguments are known at compile time.

Having identified the constraints for the built-in functions of SaCλ, as a next
step we need to encode these as SaCλ expressions. In the following, we will
explore the design space and discuss three different means to express contracts
in SaCλ.

Reusing Existing Primitive Functions. A straightforward approach would
be to directly encode the constraints using existing SaCλ built-in functions. For
example, constraint 1 can be encoded by the following expression:

���	�	( �
�( v), 0)

However, although a direct encoding complies with our goal to only require
minimal implementation work, it has its drawbacks. Firstly, using existing built-
in functions requires potentially multiple nested expressions. As an example,
consider an implementation of constraint 2:
all( ������( �����( A), �����(B)))

where all is the element-wise logical and operation on arrays. Here, express-
ing one constraint as an explicit contract requires four primitive operations. If
performed for each primitive function in a program, this leads to a major code
explosion.

Secondly, using existing primitive functions may lead to a non-terminating
code transformation. In the example above, eq_AxA requires its two arguments
to be of the same shape. Thus, inserting a contract to ensure that two expressions
evaluate to arrays of the same shape yields the same constraint again.

Finally, as discussed in Section 2, it is essential to be able to give suitable
feedback about which constraints remain to be checked at run-time to the pro-
grammer. However, by reusing existing primitive functions to express contracts,
the latter become indistinguishable from user written code.

Tailor-Made Functions. To circumvent code explosion and to make contracts
easily distinguishable from user-written expressions, we chose to express the con-
straints of each primitive function via dedicated built-in functions. These func-
tions are tailor-made to express contracts, so they can be designed in such a way
that they do not have any constraints apart from those they assert. This resolves
the potential termination problem of a corresponding code transformation.

As an example, we could define a new primitive function ensure_add_AxA
which ensures that all constraints for an application of add_AxA hold. The con-
tract for constraint 2 can then be encoded as:
ensure_add_AxA ( A, B)

where A and B are the arguments to the corresponding application of add_AxA.
However, using a single function to encode a set of constraints might hinder par-
tial evaluation. As an example, consider using a single primitive function, e.g.,
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ensure_modarray, for applications of the modarray operation. Here, different
constraints require different levels of static knowledge. For example, constraint
3 requires only static knowledge of the dimensionality of one argument, whereas
constraint 6 requires static knowledge of the shape and even value of one argu-
ment. Thus, although in principal some constraints could be statically decided,
using this coarse grained approach, a partially static decision cannot be expressed
in the code. The partial evaluator can only either evaluate all constraints stati-
cally, or leave all checks for evaluation at run-time.

Fine-Grained Tailor-Made Functions. To combine the strengths of both
approaches presented so far, without adopting their weaknesses, we propose a
third approach. To limit code explosion and ease the extraction of suitable feed-
back, we use dedicated primitive functions to express contracts. As we noted,
this ensures the termination of a corresponding code transformation. In contrast
to the second approach, we define one primitive function for each constraint in-
stead of defining one function per set of constraints. This allows us to statically
evaluate parts of the constraints of a primitive function.

To put the third approach into action, we need to add the following five
additional primitive functions. For constraints 1 and 3, we add:

is scalar, which evaluates to true if its argument is a scalar value and to false
otherwise.

The shape-dependent constraint 2 can be expressed using:

same shape, which evaluates to true if its two arguments have the same shape
and to false otherwise.

To express constraints 3 and 7, 4 and 8, and 5 and 9, respectively, we add the
following primitive functions:

shape matches dim, which evaluates to true if the length of its first argument,
i.e., the shape at position 0, matches the dimensionality of the second, oth-
erwise it evaluates to false.

non neg val which evaluates to true if all elements of its first argument are
non-negative, otherwise to false.

val lt shape, which evaluates to true if each element of the first argument is
smaller than the corresponding element of the shape of the second argument,
otherwise it evaluates to false.

Using the above functions, we can now insert explicit contracts for implicit con-
straints of primitive functions into the code.

5 Inserting Contracts for Primitive Functions

So far, we have discussed different means to express the contracts resulting from
constraints of primitive functions in SaCλ. However, to make use of these con-
tracts, we furthermore need to insert them into the code. A viable solution with
respect to the challenges laid out in Section 2 thereby needs to meet the following
criteria:
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1. The contracts need to safeguard the corresponding primitive functions such
that the primitive function is only evaluated if the contracts hold. Otherwise,
the program should terminate with an error.

2. Contracts should be accessible to the existing partial evaluator and optimi-
sations. In particular, knowledge gained by evaluating contracts should be
propagated as far as possible.

3. Optimisations should profit from knowledge gained by contracts, i.e., optimi-
sations should not need to be aware of the constraints of primitive functions.

In the following, we will present three different approaches to insert contracts
into the code and discuss their suitability with respect to the above criteria.

Contracts by Conditionals. As a first approach, we consider wrapping ap-
plications of primitive functions into conditionals. For example, the following
SaCλ expression:
...��� R = ������	( A, v)


�...

where A and v are defined in the surrounding context, can be transformed into:
...��� R = 
� ( 
�������� ( v)) ���� ������	( A, v)

���� ⊥

�...

We use the symbol ⊥, denoted bottom, to represent an explicit program termi-
nation. In the above example, the application of add_AxS is only evaluated if the
application of is_scalar to v evaluates to true, i.e., if v evaluates to a scalar
value. Otherwise, the program terminates. Thus, using conditionals clearly fulfils
the first criterion.

However, with respect to the second criterion, the above solution is not opti-
mal. The result of evaluating the predicate of the conditional, is_scalar(v), is
only available within the scope of the conditional, i.e., its then and else branch.
Optimisations on, or partial evaluation of, expressions containing v within the
body of the surrounding let expression cannot exploit this additional knowl-
edge. Although this situation could be mitigated by wrapping the entire let
expression instead of the application of add_AxS inside the conditional, such a
transformation is not straightforward.

Weaving Contracts into the Dataflow. Another way to introduce contracts
into the code is to weave them into the dataflow. That is, instead of using the
tailor-made contract functions as predicates, redefine those functions so that, if
the constraint holds, they return the argument for which they assert the con-
straint; otherwise, they terminate the evaluation. Thus, if all constraints hold,
the program evaluates as expected. If one of the constraints is violated, the
evaluation terminates with an error.

As an example, reconsider the application of add_AxS given above. Using the
dataflow approach, the code can be extended by contracts as follows:
...��� v’ = 
�������� ( v)


� ��� R = ������	( A, v’)


�...
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In the above example, the application of is_scalar guards the consecutive ap-
plication of add_AxS. Therefore, like the previous approach, weaving constraints
into the dataflow fulfils the first criterion. Moreover, other than the first ap-
proach, it fulfils the second criterion, as well. As the result of evaluating v and
asserting the constraint is bound to a new identifier v’, we now have an explicit
handle to the additional knowledge gained by evaluating the contract. To make
this knowledge available within the body of the surrounding let expression, it
suffices to substitute all occurrences of v in the body by v’, a well understood
and simple transformation.

Finally, we have to assess criterion three. Consider the following excerpt from
a SaCλ expression:
...��� B = ������� ( A, iv, v)


� ��� w = ���( iv, B)


�...

where A, iv and v are defined in the surrounding context. In the above code, we
first compute a new array B by replacing the value at position iv with v. In the
consecutive application of sel, we then select this value again and bind the result
to the identifier w. Under the assumption that the applications of modarray and
sel are safe, we know statically that w equals v and therefore can simplify the
above code to the following expression:
...��� B = ������� ( A, iv, v)

...��� w = v


�...

If B is not referenced in the body of the surrounding let expression, we can
furthermore remove the application of modarray, as its result is not needed
anymore.

The above example might look artificial but in the setting of SaC, i.e., a
language with a high level of abstraction and the presence of sophisticated opti-
misations, expressions like the one presented here are surprisingly common.

For the above transformation to be semantic preserving, we have to ensure
that the constraints of the applications of modarray and sel hold. For example,
if iv is an invalid index into array A, the non-optimised version will fail, whereas
the fully optimised version would succeed, thereby computing the wrong result.

As demanded by the third criterion, inserting explicit contracts should allow
us to blindly apply this optimisation, without checking any constraints. Consider
the following transformation:
...��� v1 = 
�������� ( v)


� ��� iv1 = ���������� ( iv)


� ��� iv2 = ���������������
�( iv1 , A)


� ��� iv3 = ������������( iv2 , A)


� ��� B = ������� ( A, iv3 , v1)


� ��� iv4 = ���������� ( iv3)


� ��� iv5 = ���������������
�( iv4 , B)


� ��� iv6 = ������������( iv5 , B)


� ��� w = ���( iv6 , B)


�...
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In this setting, our primitive optimisation cannot be applied, as the sel oper-
ation uses an index vector different from the one used in the modarray opera-
tion. However, many of the above contracts can be statically evaluated. Firstly,
we statically know that iv1 is non-negative. Therefore, iv2 and iv3 are non-
negative, as well. Thus, we can deduce that the application of non_neg_val to
iv3 is the identity function. Secondly, we know that the shape of B is equal to the
shape of A, as B is computed from A using a shape-preserving modarray operation.
Therefore, the second application of shape_matches_dim and val_lt_shape, re-
spectively, return the identity of their first argument. By combining this static
knowledge, we can deduce that iv6 equals iv3 and simplify the above code as
follows:

...��� v1 = 
�������� ( v)


� ��� iv1 = ���������� ( iv)


� ��� iv2 = ���������������
�( iv1 , A)


� ��� iv3 = ������������( iv2 , A)


� ��� B = ������� ( A, iv3 , v1)


� ��� w = ���( iv3 , B)


� ...

Now, our simple optimisation can be applied again. On first glance this is safe,
as the explicit contracts guard the consecutive applications of modarray and
sel. However, by replacing the application of sel by v1, we might remove the
last reference to B, which will, should iv3 not be used anywhere else, turn the
modarray operation and the corresponding contracts into dead code. With these
contracts being eliminated the optimised program will produce the wrong result
if the definition of B becomes dead code.

As the above example shows, just weaving the contracts into the dataflow
does not suffice to meet the third criterion.

Using Explicit Evidence. To allow for a naive application of optimisations
like the one shown above without sacrificing semantic soundness, we have to
ensure that inserted contracts cannot be removed as a result of an optimisation,
as long as the result of a corresponding application of a primitive function con-
tributes to the overall result. For the above example, this means that we have
to ensure that the contracts for the application sel stay intact. More precisely,
we have to ensure that the contracts of sel are not removed, even if no further
use of B exists.

To achieve this, we propose the use of explicit evidence that a contract is
fulfilled. We then explicitly check this evidence before using the result of an
application of a primitive function. Thereby, the contracts will remain intact,
even if the computation as such has been removed, as long as the computation’s
result is used.

We implement this by extending the primitive functions used for expressing
contracts with a further Boolean return value. If a contract holds, the primitive
function additionally returns true. Otherwise the evaluation terminates. To tie
the evidence to the result of an application of a primitive function, we introduce
a further primitive function:
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after guard, which takes two or more arguments, is the identity in its first
argument, if all consecutive arguments evaluate to true; otherwise, it termi-
nates evaluation.

As an example of its use, consider the extended version of the above example:
...��� v1, e1 = 
�������� ( v)


� ��� iv1 , e2 = ���������� ( iv)


� ��� iv2 , e3 = ���������������
�( iv1 , A)


� ��� iv3 , e4 = ������������( iv2 , A)


� ��� B = ������� ( A, iv3 , v1)


� ��� B1 = ����������� ( B, e1, e2, e3, e4)


� ��� iv4 , e5 = ���������� ( iv3)


� ��� iv5 , e6 = ���������������
�( iv4 , A)


� ��� iv6 , e7 = ������������( iv5 , A)


� ��� w = ���( iv6 , B1)


� ��� w1 = ����������� ( w, e5, e6, e7)


�...

Here, the result of the application of modarray is tied to the corresponding
contracts using the evidence returned by the contracts and an application of
after_guard. Similarly, the result of the application of sel is guarded. Applying
the same reasoning as in the previous approach, we can reduce the number of
contracts as follows:
...��� v1, e1 = 
�������� ( v)


� ��� iv1 , e2 = ���������� ( iv)


� ��� iv2 , e3 = ���������������
�( iv1 , A)


� ��� iv3 , e4 = ������������( iv2 , A)


� ��� B = ������� ( A, iv3 , v1)


� ��� B1 = ����������� ( B, e1, e2, e3, e4)


� ��� w = ���( iv3 , B1)


� ��� w1 = w


�...

Note that the second application of after_guard has been replaced by its
first argument, as we statically know that the corresponding evidence evaluates
to true.

In the above setting, our simple optimisation cannot be applied as long as
the evidence of the application of modarray cannot be statically evaluated to
true. However, if the remaining after_guard vanishes, thereby enabling our
optimisation, we can be sure that the optimisation can safely be applied as all
contracts have been statically evaluated. Thus, this extended dataflow represen-
tation fulfils all three critera.

6 A Formal Definition

In the following, we describe the approach developed in the previous sections
more formally. We first give the semantics of the added primitive functions. As
a second step, we formalise the transformation scheme that inserts contracts



268 S. Herhut et al.

same shape :

e1 → < [ s1, . . . , si], [ d1
1, . . . , d1

k] >
e2 → < [ s1, . . . , si], [ d2

1, . . . , d2
l ] >

same shape( e1, e2) →
< [ s1, . . . , si], [ d1

1, . . . , d1
k] >,

< [ s1, . . . , si], [ d2
1, . . . , d2

l ] >,
< [], true >

after guard :
e → v ∀i ∈ {1, . . . , n} : ei → < [], true >

after guard( e, e1, . . ., en) → v

Fig. 3. Semantic rules for the additional built-in functions same shape and after guard

into the code. Using these definitions, we finally sketch out a proof that the
transformation is semantic-preserving.

Due to space limitations, we concentrate in our presentation on the function
add_AxA and the corresponding contracts. However, an extension to all primitive
functions is straightforward.

Figure 3 shows the semantic rules for the primitive functions same_shape and
after_guard. As described informally in Section 5, same_shape is the identity
on its first two arguments and returns true as its third result only if the shapes of
its arguments match. Otherwise, the evaluation gets stuck and ultimately fails.
Similarly, after_guard is the identity on its first argument only if all other
arguments evaluate to true.

To formally describe the insertion of contracts discusses in Section 5, we use
the code transformation scheme C sketched out in Figure 4. Basically, it replaces
all occurrences of add_AxA with the corresponding guarded expression. Note that
Id′A, Id′B, IdE , Id′R denote fresh variables that have no free occurrences within
the body expression e.

In order to propagate knowledge gained from evaluating contracts, we fur-
thermore substitute the arguments of same_shape by its results within the body
expression. This substitution is performed using the environment E. Whenever
we need to substitute an identifier, we add a pair (Id, Id′) to the environment,
where Id is the identifier to be substituted and Id′ denotes the substitute. Rule
Id performs this substitution. The lookup function is defined in the usual way:

(add AxA) C

�
let IdR = add AxA( IdA, IdB)

in e
, E

�

�

let Id′
A, Id′

B, IdE = same shape( C�IdA, E�, C�IdB , E�)
in let Id′

R = add AxA( Id′
A, Id′

B)

in let IdR = after guard( Id′
R, IdE)

in C�e, E ++ < (IdA, Id′
A), (IdB , Id′

B) >�
(Id) C�Id, E� � lookup( Id, E)

Fig. 4. Transformation scheme for inserting explicit contracts for applications of the
primitive function add AxA
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lookup(Id, E) returns the most recent substitute for Id in E, if one exists. Oth-
erwise, it returns Id.

Using these definitions, we can now sketch out a proof that the code trans-
formation C is semantic-preserving.
Theorem 1. C is sound with respect to the semantics of SaCλ

Proof. From the semantics definition in Figures 2 and 3 we can see that it suffices
to show that

e1 → < s, d1 > e2 → < s, d2 >

let a, b, e = same shape( e1, e2)
in let r = add AxA( a, b)
in after guard( r, e)

→ < s, d1 + d2 >

For the application of after_guard we know that

< s, d1 + d2 > → < s, d1 + d2 > < [], true > → < [], true >

after guard( < s, d1 + d2 >, < [], true >) → < s, d1 + d2 >

Similarly, for add_AxA we can deduce

< s, d1 > → < s, d1 > < s, d2 > → < s, d2 >

add AxA( < s, d1 >, < s, d2 >) → < s, d1 + d2 >

Finally, we can deduce from rule same shape that:

e1 → < s, d1 > e2 → < s, d2 >

same shape( e1, e2) → < s, d1 >, < s, d2 >, < [], true >

By applying the standard semantics of let, we yield the required deduction. q.e.d.

7 Constraint Resolution by Partial Evaluation

We have implemented the transformation sketched out in Figure 4 as part of our re-
search compiler sac2c. First evaluations have shown that the presented representa-
tion integrates well with our existing optimisations. In essence, only few extensions
to some of our standard optimisations, e.g., Constant Folding, were required in
order to be able to statically resolve a large proportion of the contracts. Most of the
other optimisations integrated in our compiler, such as CommonSubexpression

Elimination and Dead Code Removal (for an overview see [3]), contribute to
the constraint resolution without any modification.

The key drivers behind these optimisations appear to be our existing shape
and dimensionality inference mechanisms. To gather static shape knowledge,
we use the shape inference that is part of the SaC type-system [3]. In short,
the SaC type-system statically infers array shapes where possible but resorts
to subtyping-based type-weakening where a fully static approach would be un-
decidable. We enrich this information with shape and dimensionality equalities
inferred by further symbolic analyses [15,16].
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Table 1. Quantitative results of inserting explicit contracts into the Livermore For-

tran kernels

lo
o
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1

lo
o
p
2

lo
o
p
3

lo
o
p
4

lo
o
p
5

lo
o
p
6

lo
o
p
7

lo
o
p
9

lo
o
p
1
0

lo
o
p
1
1

lo
o
p
1
2

lo
o
p
1
3

lo
o
p
1
4

lo
o
p
1
6

no-opt
all 985 274 125 655 224 217 890 310 377 184 299 472 885 695
val.-dep. 596 174 84 412 144 140 546 196 236 120 188 296 536 430

opt
all 125 103 95 123 98 95 200 194 202 89 101 136 166 146
val.-dep. 87 72 67 86 69 67 137 133 138 63 71 94 114 101

resolved all 87.3 62.4 24.0 81.2 56.3 56.2 77.5 37.4 46.4 51.6 66.2 71.2 81.2 79.0
in % val.-dep. 85.4 58.6 20.2 79.1 52.1 52.1 75.0 32.1 41.5 47.5 62.2 68.2 78.7 76.5

Due to the tight integration of these techniques, it is difficult to attribute the
effects to individual optimisations. Even a quantification of the overall effect is
intricate for our current prototype, as the constraint insertion is not implemented
näıvely but utilises the inferred type information already.

Keeping these limitations in mind, we have performed a quantitative analysis
of the number of inserted and resolved explicit contracts using the Livermore
Loops [17] to gain preliminary insights into the effectiveness of our approach.

The Livermore Loops are a collection of Fortran kernels from real-world
numerical applications which have been used in a performance comparison be-
tween Sisal and Fortran [18]. For our experiments, we have used the SaC

implementation that is available as part of the compiler distribution. For all
measurements, we have used revision 15670 of the developer version of sac2c.
To measure the number of inserted contracts, we have compiled the different
kernels using the compiler options -noOPT -doDCR -doINL -doDFR -maxspec
0 -check c. These disable all but the bare essential optimisations, i.e., dead

code removal, function inlining and dead function removal. Further-
more, we have disabled function specialisation to minimize the static shape
knowledge available to the type system. The last option enables the insertion of
constraints as explicit contracts as described in this paper. To measure the num-
ber of primitive functions used for explicit contracts in the intermediate code
after optimisations, we have used the built-in optimisation statistics of sac2c.
The results are given in Table 1, aggregated over all primitive functions (first
row) and only those that depend on values (second row).

In a second run, we have compiled the same programs using the compiler
options -maxlur 3 -check c. The first option limits the loop unrolling op-
timisation built into sac2c to ensure that the loops contained in the source code
are not eliminated. The number of primitive functions remaining in the code
after all optimisations is shown in the third and fourth row of Table 1.

As an indicator for the effectiveness of our approach, we have computed the
difference between the first and second run in percent (cf. row five and six of
Table 1). As can be seen, we were able to resolve an average of 62.7% of the
inserted contracts statically. Taking only the value-dependent contracts into ac-
count, we are still able to resolve an average of 59.2% statically.
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Currently, our symbolic optimisations are focused on shape and dimension-
ality information. We therefore would have expected the difference between the
overall resolution ratio and that for value-dependent contracts to be more pro-
nounced. However, as our non-näıve insertion process eliminates many shape-
and dimensionality-dependent contracts before inserting them, the results are
biased. An in-depth quantitative analysis of our approach remains future work.

8 Related Work

Our work is similar to dependent type systems like indexed types [5] or the
approaches used in Zpl [7] and Chapel [8], in that we try to prove shape and
value dependent constraints statically. However, instead of using a sophisticated
type system and imposing restrictions on the use of indices, we utilise explicit
constraints and partial evaluation. Furthermore, our approach allows dynamic
checks to remain in the generated code when static analysis does not permit all
constraints to be satisfied statically.

Hybrid type checking [19] also facilitates static constraint satisfaction, while
supporting dynamic checks when those cannot be satisfied. In contrast to the
work presented here, the author proposes to drive type inference as far as possi-
ble, and only introduce dynamic checks when it gets stuck. Our approach starts
out with blindly inserted dynamic checks and then tries to evaluate these stat-
ically. This allows us to use existing partial evaluation techniques instead of
enriching our type inference system.

A similar approach has been proposed by Xu for the lazy functional lan-
guage Haskell [20]. ESC/Haskell uses symbolic evaluation combined with
counter-example guided unrolling to statically prove user-defined pre- and post-
conditions. In contrast to the approach presented here, ESC/Haskell mainly
focusses on debugging whereas we additionally aim at enhancing program run-
times and simplifying the implementation of optimisations.

The idea of explicit evidence as used by our dataflow representation is used
in [21] as well. However, the authors deal with a low-level byte-code that has al-
ready been verified and enriched with dynamic checks by a compiler. In their pa-
per, they focus on retaining these checks across program optimisations, whereas
we furthermore exploit contracts for static guarantees and try to minimise the
number of runtime checks.

9 Conclusions

This paper demonstrates how compiler-inserted contracts, in conjunction with
partial evaluation and other optimisation techniques, can be used to obtain static
conformity guarantees similar to those that can be expressed by dependent types
or variants thereof.

The effectiveness of our approach arises from insertion of carefully designed
evidence-gaining predicates into the data flow and from use of evidence guards
on the function results. Due to the explicit encoding as part of the program



272 S. Herhut et al.

code, this evidence is accessible to the existing partial evaluator and further
optimisations. In particular, we can use the existing optimisations to remove
many redundant conformity checks and are able to substantially simplify the
implementation of several symbolic optimisations within the compiler itself.

As the experience from our prototypical implementation shows, the proposed
approach can be implemented with minimal effort. The presented transforma-
tion to insert contracts is straight-forward and contract resolution comes nearby
for free. Only minor extensions to the Constant Folding implementation
are required. Apart from minimising the implementation effort, reusing existing
optimisations comes with a further benefit: Future enhancements to existing op-
timisations as well as the addition of further optimisations automatically benefit
contract checking.

In this paper, we focus our presentation on checking domain constraints for
built-in functions. However, we believe the approach is far more versatile. The
concept of explicit evidence-carrying variables equally well applies to contracts
for user-defined functions. This brings the properties of our system close to that
of more strongly typed systems based on various forms of dependent types: for
many programs, we can give static soundness guarantees with respect to certain
domain requirements. In those cases where we cannot give these guarantees,
we can clearly identify the program parts where unresolved constraints remain.
Then, it is up to the user to decide whether further program optimisation should
be applied or the dynamic contract checks should remain.

It remains as future research to investigate whether such a general purpose
optimisation mechanism is capable of resolving more complex constraints in an
effective way. In particular, it would be interesting to compare its effectiveness
with that obtained by dedicated resolution systems such as Epigram [22].
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