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Abstract. These notes present an introduction into array-based pro-
gramming from a functional, i.e., side-effect-free perspective.

The first part focuses on promoting arrays as predominant, stateless
data structure. This leads to a programming style that favors compo-
sitions of generic array operations that manipulate entire arrays over
specifications that are made in an element-wise fashion. An algebraicly
consistent set of such operations is defined and several examples are given
demonstrating the expressiveness of the proposed set of operations.

The second part shows how such a set of array operations can be
defined within the first-order functional array language SaC. It does
not only discuss the language design issues involved but it also tackles
implementation issues that are crucial for achieving acceptable runtimes
from such genericly specified array operations.

1 Introduction

Traditionally, binary lists and algebraic data types are the predominant data
structures in functional programming languages. They fit nicely into the frame-
work of recursive program specifications, lazy evaluation and demand driven
garbage collection. Support for arrays in most languages is confined to a very
resricted set of basic functionality similar to that found in imperative languages.
Even if some languages do support more advanced specificational means such as
array comprehensions, these usualy do not provide the same genericity as can
be found in array programming languages such as Apl, J, or Nial.

Besides these specificational issues, typically, there is also a performance issue.
Lazy evaluation and garbage collection pose a major challenge on an efficient
implementation for arrays. A large body of work went into dealing with the per-
formance issue [vG97, PW93, CK01]. Most of these approaches rely on explicit
single-threading, either by using monads or by using uniqueness typing, as this
allows all array modifications to be implemented destructively. The drawback of
this approach is that it requires programmers to be aware of the states of the
arrays they are dealing with. Arrays need to be allocated and copied whenever
more than one versin of an array is needed. Although this copying to some ex-
tend can be hidden behind libraries, it does come for the price of potentially
superfluous copying at the library interfaces [CK03].

In this paper, we present a radically different approach. We introduce a new
functional programming language called SaC which is designed around the
idea of runtime efficient support for high-level programming based on arrays
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as predominant data structure. This facilitates an array-oriented programming
style as it can be found in dedicated array programming languages such as
Apl [Int84], J [Bur96], or Nial [JJ93]. In contrast to these languages, the ab-
sense of side-effects in SaC provides the ground for several advanced optimiza-
tion techniques [Sch03] leading to runtimes competitive with those obtained from
hand-optimized imperative programs [GS00, SSH+06].

The paper consists of two major parts. In the first part, an introduction to
array-oriented programming is given. Starting from array essentials such as array
representation, inspection, and creation in Section 2, Section 3 provides the core
array operators. The set of high-level operators defined in this part are proto-
typical for the basic operations found in any other array programming language.
Nevertheless, they reflect part of the functionality provided by the standard li-
brary of SaC. Section 4 describes a SaC-specific language feature called Axis
Control Notation which, when used jointly with the basic operators, allows
many array algorithms to be specified in a combinator style. Several examples
to this effect round-off the first part of the paper.

The second part of this paper focuses on the language SaC itself. After a brief
introduction to the basic design issues of SaC in Section 5, Section 6 gives a
detailled desciption of the central language construct of SaC called with-loop.
Several examples and exercises are given to demonstrate how the generic aray
operations defined in the foirst part can be implemented in SaC itself. How
such program specifications can be compiled into efficiently executable code is
sketched in Section 7.

2 Array Basics

All arrays are represented by two vectors: a data vector which contains its
elements, and a shape vector which defines its structure. Fig. 1 shows a few
example arrays. As can be seen from the examples, the length of the shape
vector corresponds to the dimensionality (also referred to as rank) of the array
and the individual entities of it define the extent of the array with respect to the
individual axes. The data vector enumerates all elements with increasing indices.
For arrays with more than one axis, index increment proceeds with indices from
right to left. From this relation between data and shape vector we obtain:

Lemma 1. Let [d0, . . . , dq−1] denote the data vector of an array and let

[s0, . . . , sn−1] denote its shape vector. Then we have q =
n−1∏

i=0
si.

The bottom of Fig. 1 shows that scalar values can be considered 0-dimensional
arrays with empty shape vector. Note here, that Lemma 1 for scalars still holds.

2.1 Specifying Arrays

Given the representation of n-dimensional arrays by two vectors, we use the
following notation for arrays:
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shape vector: [ 3]
data vector: [ 1, 2, 3]
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54 6

1 2 3
shape vector: [ 2, 2, 3]
data vector: [ 1, 2, 3, ..., 11, 12]

42 shape vector: [ ]
data vector: [ 42 ]

Fig. 1. Array representations

reshape( [s0, ..., sn−1], [d0, ..., dq−1])

where q =
n−1∏

i=0
si. The special cases of scalars and vectors may be denoted as

s ≡ reshape([], [s]) , and
[v0, ..., vn−1] ≡ reshape([n], [v0, ..., vn−1]) .

This shortcut notation gives rise to considering reshape a built-in array operator
which holds the following property:

reshape( shp vec, reshape( shp vec 2, data vec))
== reshape( shp vec, data vec)

(1)

provided that Lemma 1 holds for the resulting array.

2.2 Inspecting Arrays

Alongside the array constructing operator reshape, functions for extracting
shape and data information are required. We introduce two operations for re-
trieving shape information:

shape returns an array’s shape vector, and
dim returns an array’s dimensionality

For example, we have:
shape( 42) == []
shape( [1, 2, 3]) == [3]
shape( reshape( [2, 3], [1, 2, 3, 4, 5, 6])) == [2, 3]

Formally, shape is defined by

shape(reshape(shp vec, data vec)) == shp vec (2)
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and dim is defined by

dim(reshape(shp vec, data vec)) == shape(shp vec)[0] (3)

where the square brackets denote element selection. Note here that the ele-
ment selection is well defined as shp vec denotes an n-element vector and, thus,
shape( shp vec) is a one element vector.

From these definitions, we can derive

∀a : dim(a) == shape(shape(a))[0] (4)

as
dim( reshape( shp vec, data vec))
(3)
==shape( shp vec)[0]
(2)
==shape( shape( reshape( shp vec, data vec)))[0]

So far, we have used square brackets to denote selection within vectors. How-
ever, we want to introduce a more versatile definition for array selections. It is
supposed to work for n-dimensional arrays in general. As one index per axis is
required, such a definition requires an n-element vector as index argument rather
than n separate scalar index arguments. Hence, we define an operation

sel( idx vect, array)
which selects that element of array that is located at the index position
index vect. For example:

sel( [1], [1, 2, 3]) == 2
sel( [1, 0], reshape( [2, 3], [1, 2, 3, 4, 5, 6])) == 4

As we can see from the examples, we always have shape( idx vect)[0] ==
dim(array). This leads to the formal definition

shape( sel( idx vec, reshape( shp vec, data vec))) == 0
provided that shape( idx vec) == shape( shp vec)

(5)

From it, we obtain for scalars s:
sel( [], s) == s

In order to extend this property to non-scalar arrays (5) is generalized into

shape( sel( idx vec, reshape( shp vec, data vec)))
== shape( shp vec) - shape( idx vec)

provided that shape( idx vec) <= shape( shp vec)
(6)

This extension enables the selection of entire subarrays whenever the index vec-
tor is shorter than the rank of the array to be selected from. For example, we
have

sel( [1, 0], reshape( [2, 3], [1, 2, 3, 4, 5, 6]))
== 4

sel( [1], reshape( [2, 3], [1, 2, 3, 4, 5, 6]))
== [4, 5, 6]

sel( [], reshape( [2, 3], [1, 2, 3, 4, 5, 6]))
== reshape( [2, 3], [1, 2, 3, 4, 5, 6]) .

��
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2.3 Modifying Arrays

Similar to the generalized form of array element selection, we introduce an ar-
ray modification operation which is not restricted to modifications of individual
elements but permits modifications of entire subarrays. It takes the general form

modarray( array, idx vect, val)
and results in an array which is identical to array but whose subarray at the
index position idx vect is changed into val. Hence, we have

shape( modarray( reshape( shp vec, data vec), idx, val))
== shp vec

(7)

and

modarray(array, idx, val)[idx2] ==
{
val iffidx2 == idx
sel(idx2, array) otherwise (8)

It should be noted here that this ”modification“ conceptually requires the cre-
ation of a copy of the array. This is a consequence of the functional setting which
requires the arguments of a function application to be unaffected by the eval-
uation of the application. However, static analysis often can determine that an
array provided as argument is not referred to anywhere else. In these situations,
modarray can be implemented in a destructive manner.

2.4 Generating Arrays

While an explicit specification of arrays is convenient for arrays with few ele-
ments only, large arrays require operator support. To this effect, we introduce
an operation

genarray( shape, val)
which creates an array of shape shape with elements val. Similar to the oper-
ations introduced in the previous sections, val is not restricted to scalar values
but can be an arbitrary array. For example, we have

genarray( [2], 42)
== reshape( [2], [42, 42])

genarray( [2], [1, 2, 3])
== reshape( [2, 3], [1, 2, 3, 1, 2, 3])

genarray( [2, 3], 1)
== reshape( [2, 3], [1, 1, 1, 1, 1, 1]) .

Formally, we obtain for genarray

shape( genarray( shp vec, reshape( shp vec2, data vec)))
== shp vec ++ shp vec2

(9)

where ++ denotes vector concatenation and

genarray( shp vec, a)[idx] == a
provided that shape( shp vec) == shape( idx)

(10)
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2.5 Exercises

Exercise 1. Given the language constructs introduced so far, can you define the
following array of shape [5,2,2]

[ [[ 0, 0 ], [ 0, 0 ]],
[[ 1, 0 ], [ 0, 0 ]],
[[ 0, 1 ], [ 0, 0 ]],
[[ 0, 0 ], [ 1, 0 ]],
[[ 0, 0 ], [ 0, 1 ]] ]

in a way so that the letter 1 is not used more than once?

Exercise 2. What are the results of the following expressions, if we assume a to
be defined as [1,2,3,4], and b to be defined as [a,a]?

– modarray( modarray( a, [0], 0), [1], 0)
– modarray( b, [0], [0,0,0])
– modarray( b, [0], modarray( a, [0], 0))

3 Array Operations

The operations introduced in the previous section pertain to very basic func-
tionality only: array creation, inspection, and element/subarray replacement.

In this section, we introduce operations that compute arrays from other arrays
in a more elaborate manner. The design of these operations is inspired by those
available in array languages such as Apl, j, or Nial. However, several aspects -
in particular wrt. special case treatment - have been adjusted to allow for a more
runtime favorable compilation. The operations can be divided into three different
categories: structural operations, that predominantly change the shapes of the ar-
gument arrays or the placement of the individual elements within them; element-
wise operations which are mappings of scalar operations such as +, -,<, etc. into
the domain of arrays; and so-called reductions whichby means of dyadic operations
successively fold all elements of an array into a scalar value.

3.1 Structural Operations

Concatenation of vectors, denoted by ++, has been used in Section 2. Here, we
provide a more generic definition of concatenation. The basic idea is to consider
n-dimensional arrays vectors of n − 1-dimensional subarrays. This leads to the
following definitions

shape( reshape( shp vec, data vec)
++ reshape( shp vec2, data vec2)

== modarray( shp vec, [0], shp vec[[0]] + shp vec2[[0]])
provided that shape( shp vec) == shape( shp vec2) otherwise

(11)
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and
reshape( shp vec, data vec)

++ reshape( shp vec2, data vec2)
== reshape( shp res, data vec ++ data vec2)

(12)

where shp res is defined as specified in (11). This definition realizes concatena-
tion wrt. the left-most axis. Thus, we have

reshape( [2,2], [1,2,3,4]) ++ reshape( [2,2], [5,6,7,8])
== reshape( [4,2], [1,2,3,4,5,6,7,8]) .

Besides concatenation, we introduce two operations for cutting off parts of an
array:

take that selects a prespecified portion of an array, and
drop that cuts off a prespecified portion of an array.

In their simplest form we have for example
take( 2, [1,2,3,4,5]) == [1,2]
drop( 2, [1,2,3,4,5]) == [3,4,5] .

Formally, we define take by

shape( take( n, reshape( shp vec, data vec)))
== modarray( shp vec, [0], n)

provided that n ≥ 0
(13)

and
take( n, reshape( shp vec, data vec))[idx]

== reshape( shp vec, data vec)[idx]
provided that n ≥ 0

(14)

The symmetry between take and drop can be captured by defining drop through

∀a : drop(n, a) == take(n− shape(a)[[0]], a) (15)

and by extending take for negative arguments:

shape( take( n, reshape( shp vec, data vec)))
== modarray( shp vec, [0], | n | )

(16)

and
take( n, reshape( shp vec, data vec))[idx]

==

{
reshape( shp vec, data vec)[idx] iff n ≥0
reshape( shp vec, data vec)[idx2] otherwise

where idx2 == modarray( idx, 0, idx[[0]] + offset )
where offset == shp vec[[0]] - | n |

(17)

Applying the above definitions of take, we obtain
take( -2, [1,2,3,4,5]) == [4,5]
take( -1, reshape( [3,2], [1,2,3,4,5,6]))

== reshape( [1,2], [5,6]) .
We also obtain
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take( 0, [1,2,3,4,5]) == reshape( [0], [])
take( 0, reshape( [3,2], [1,2,3,4,5,6]))

== reshape( [0,2], []) .
From these examples, we can observe that our array calculus requires us to
distinguish between infinitely many differently shaped empty arrays. As numbers
in square brackets are used as a shortcut notation for vectors, [] in fact denotes
the array reshape( [0], []).

To further extend the expressiveness of take, we use vectors instead of scalars
as first argument and map the vector’s components to the individual axes of the
second argument. For example, we have

take( [2,1], reshape( [3,2], [1,2,3,4,5,6]))
== reshape( [2,1], [1,3])

take( [2], reshape( [3,2], [1,2,3,4,5,6]))
== reshape( [2,2], [1,2,3,4])

take( [], reshape( [3,2], [1,2,3,4,5,6]))
== reshape( [3,2], [1,2,3,4,5,6]) .

A formal definition of this extended version of take is left as an exercise.
Two further structural operations are useful when it comes to operating on

arrays in a cyclic fashion: shift and rotate. Both move all array elements
towards increasing or decreasing indices. They only differ in the way they handle
the border elements. While shift ignores the element(s) that is(are) moved out
of the array and inserts a pre-specified one on the other end of the index range,
rotate reuses the moved-out elements. An extension to n-dimensional arrays
yields:

shift( [1], 0, [1,2,3]) == [0,1,2]

shift( [-1], 0, [1,2,3]) == [2,3,0]

shift( [1,1], 0, reshape( [3,3], [1,2,...,9]))
== shift( [1], reshape( [3,3], [0,1,2,0,4,5,0,7,8]))
== reshape( [3,3], [0,0,0,0,1,2,0,4,5])

rotate( [1], [1,2,3]) == [3,1,2]

rotate( [-1], [1,2,3]) == [2,3,1]

rotate( [1,1], reshape( [3,3], [1,2,...,9]))
== rotate( [1], reshape( [3,3], [3,1,2,6,4,5,9,7,8]))
== reshape( [3,3], [9,7,8,3,1,2,6,4,5]) .

Again, formal definitions are left as an exercise.

3.2 Element-Wise Operations

Most of the operations that in non-array languages are provided for scalars can be
easily extended for usage on entire arrays by mapping them on an element-wise
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basis. In the context of this lecture, we assume that all binary arithmetic, logic
and relational operations of C can be applied to n-dimensional arrays. The only
restriction we impose on these operations is shape conformity. More precisely,
we demand that the shapes of the two argument arrays are either identical or
at least one of them needs to be a scalar.
Here, a few examples:

[1,2,3] + [2,3,4] == [3,5,7]
reshape( [2,2], [1,2,3,4] ) * 2 == reshape( [2,2], [2,4,6,8] )

[1,2,3] < [0,4,5] == [false,true,true] .

3.3 Reductions

Reduction operations fold the scalar elements of an array into a single one by
folding the data vector according to a binary operation. Again, most of the
standard C operators can be used to that effect. In the context of this lecture,
we focus on the following 4:

sum derives from +;
prod derives from *;
all derives from &&;
any derives from ||;

A few example applications of the above reduction operations:
sum( [1,2,3]) == 6
prod( reshape( [2,2], [1,2,3,4] )) = 24
all( [1,2,3] < [0,4,5]) == all( [false,true,true]) == false
any( [1,2,3] < [0,4,5]) == any( [false,true,true]) == true .

3.4 Examples

The operations introduced so far suffice to conveniently express many operations
on arrays without being required to write explicit loops over index ranges. This
section provides a few examples as they typically occur when writing numerical
codes.

Our first example relates to situations where all boundary elements of an array
need to be cut off, i.e., we create an array that contains only those elements of
a given argument array a, whose indices are all neither zero nor maximal. This
can be achieved by a combination of the generic versions of take and drop:

take( shape( a)-2, drop( shape( a)*0+1 , a))

The most challenging aspect in this expression is the subexpression shape
(a)*0+1 which computes a vector of ones whose length matches the dimen-
sionality of the array a.

In numerical methods, approximations are usually applied repetitively until a
certain convergence criterion is met. Assuming approx to be an array that holds
the current approximation and solution to be an identically shaped array of the
solution to be approximated, the quality of the approximation can be computed by
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sum( abs(approx - solution))
This example shows how the array notation helps in denoting expressions in a
rather abstract style close to a mathematical notation.

Another example for the similarity to mathematical notation is the scalar
product of two vectors v1 and v2 which can be specified as

sum( v1 * v2)
Even more complex expressions lend themselves to a specification in terms

of generic array operations. As an example, consider the kernel of Danielson-
Lanczos’s FFT algorithm. Essentially, it computes a vector v’s fast furier trans-
form by recursively applying FFT to subvectors which consist of those elements
of v that are located at even or odd index positions, respectively. The results of
the recursive calls are then combined into a single vector which constitutes the
overall result. Assuming the availability of a function compress which allows us
to extract every second element from a vector, this kernel can be specified as

fft( compress( [2], v)) ++ fft( compress( [2], drop( [1], v)))

3.5 Exercises

Exercise 3. What results do you expect from the following expressions:

– reshape([3,0,5], [])[[]]?
– reshape([3,0,5], [])[[1]]?
– reshape([3,0,5], [])[[1,0]]?
– reshape([3,0,5], []) + reshape([3,0,5], [])?
– reshape([1,1], [1]) + reshape([1], [1])?

Exercise 4. Give a formal definition of the extended version of take. Derive the
dual definition for drop from your definition for take and equation (15).

Exercise 5. Give a formal definition of the structural operations shift and
rotate.

Exercise 6. Reformulate the following expressions in terms of take, ++, and the
basic operations defined in the previous section. Try to sketch a correctness proof
of your solution by using the formal definitions of the individual operations.

– drop( v, a)?
– shift( [n], e, a)?
– shift( [m,n], e, a)?
– rotate( [n], a)?
– rotate( [m,n], a)?

Can we define the general versions of shift and rotate as well?

Exercise 7. All operations introduced in this part apply to all elements of the
array they are applied to. Given the array operations introduced so far, can you
specify row-wise or column-wise summations for matrices? Try to specify these
operations for a 2 by 3 matrix first.
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3.6 Further Reading

There are several possible approaches for defining a consistent representation
for n-dimensional arrays and the basic operations on them. The representation
presented here, to a large extent, is based on that of Apl as suggested in [Ive62].
Several variants have been proposed such as the Mathematics of Arrays [Mul88],
Apl2 [Bro85], or SHARP Apl [Ass87]. An alternative approach is the Array
Theory of T. Moore [JF99]. It is based on the idea of nested arrays and serves as
basis for Nial [JG89]. In [MJ91], this approach is contrasted to the Mathematics
of Arrays. A more general discussion of the design space can be found in [JF99].

4 Axis Control Notation

As can be seen from the Exercise 7, without further language support, it is
rather difficult to apply an array operation to certain axes of an array only. This
section introduces two language constructs of SaC which, when taken together,
can be used to that effect. While Generalized Selections are convenient for
separating individual axes of an array, Set Notations allow to recombine such
axes into a result array after applying arbitrary operations to them. However,
as the two constructs in principle are orthogonal, we introduce them separately
before showing how they can be combined into an instrument for Axis Control.

4.1 Generalized Selections

The selection operation introduced in Section 2.2 does not only allow scalar
elements but entire subarrays of an array to be selected. However, the selection of
(non-scalar) subarrays always assumes the given indices to refer to the leftmost
axes, i.e., all elements wrt. the rightmost axes are actually selected. So far, a
selection of arbitrary axes is not possible. As an example consider the selection
of rows and columns of a matrix. While the former can be done easily, the latter
requires the array to be transposed first.

To avoid clumsy notations, we introduce special syntactical support for se-
lecting arbitrary subarrays called Generalized Selections. The basic idea is to
indicate the axes whose elements are to be selected entirely by using dot-symbols
instead of numerical values within the index vectors of a selection operation.

Note here, that vectors containing dot-symbols are not first class citizens of
the language, i.e., they can exclusively be specified within selection operations
directly!

There are two kinds of dot-symbols, single-dots which refer to a single axis
and triple-dots which refer to as many axes as they are left unspecified within
a selection. In order to avoid ambiguities, a maximum of one triple-dot symbol
per selection expression is allowed.

Fig. 2 shows a few examples of generalized selections. The examples in the
upper half demonstrate how arbitrary axes can be selected by using dot symbols
in the selection vector. The lower examples feature the triple-dot notation. While
in the left example the triple-dot refers to the two leftmost axes of the array A,
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A[[...,k]] i A[[...,i]]

Fig. 2. Generalized Selections

the right example shows that in fact the triple-dot notation may refer to zero
axes if the selection vector provides as many indices as the array to be selected
from has axes.

4.2 Set Notation

The means for composing arrays that have been described so far are rather
restricted. Apart from element-wise definitions all other operations treat all el-
ements uniformly. As a consequence, it is difficult to define arrays whose el-
ements differ depending on their position within the array. The so-called set
notation facilitates such position dependent array definitions. Essentially, it
consists of a mapping from index vectors to elements, taking the general form

{ idx vect -> expr }
where idx vect either is a variable or a vector of variables and expr is an expres-
sion that refers to the index vector or its components and defines the individual
array elements. The range of indices this mapping operation is applied to usually
can be determined by the expression given and, thus, it is not specified explicitly.
Fig. 3 provides a few examples. The first example constitutes an element-wise

{ idx vec -> a[idx vec] + 1 } == a + 1
{ [i,j] -> mat[[j,i]] }
{ [i,j] -> ( i == j ? mat[[i,j]] : 0) }

Fig. 3. Set Notation examples

increment of a matrix a, the second example implements the transposition of
a matrix mat, and the last example replaces all elements that are not located
on the main diagonal of a matrix mat by the value 0. In all these examples,
the ranges for idx vec, i, or j are inferred from the selection operations on the
right hand side, or, more precisely, from the shapes of the arrays the selections
are applied to. It should be mentioned here, that the requirement to be able to
infer the index ranges restricts the range of legal set notations. Examples for
non-legal set notations are
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{ idx vec -> 1 }
{ idx vec -> a[[ foo( idx vec)]] }

where foo may be any user defined function. This restriction may seem rather
prohibitive at first glance. However, in practice, it turns out that most examples
suffice this restriction and that the readability of the examples benefits vastly
from the implicit range inference.

As the following examples demonstrate, range inference is not limited to single
occurences of the index variables.

{ idx vec -> a[[ foo( idx vec)]] + b[[ idx vec]]}
{ [i,j] -> a[[i]] + a[[j]] }
{ [i,j] -> a[[i]] + a[[j]] + [1][[j]] }

In case of more than one use within a selection operation, the element-wise
minimum of all selection shapes is used. Furthermore, the index variables may
occur in non-selection related contexts as well. Wrt. the range inference, these
occurences are ignored.

It should be noted here, that explicit indices on the left hand side do not
necessarily have to match the rank of the array they select from. For example,
we have

{ [i] -> reshape( [2,2], [1,2,3,4])[[i]] }
== reshape( [2,2], [1,2,3,4]) .

From the definition (6) we obtain that reshape( [2,2], [1,2,3,4])[[i]]
yields either [1,2] or [3,4] depending on i being 0 or 1, respectively. The
set notation combines these subarrays in a way that ensures that non-scalar
right hand side expressions per default constitute the inner axes of the result
array. This can be changed by using .-symbols for indicating those axes that
should constitute the result axis. Applying this to our last example, we obtain

{ [.,i] -> reshape( [2,2], [1,2,3,4])[[i]] }
== reshape( [2,2], [1,3,2,4]) .

4.3 Axis Control

Although generalized selections and the set notation per se can be useful their
real potential shows when they are used in combination. Together, they consti-
tute means to control the axes a given operation is applied to.

The basic idea is to use generalized selections to extract the axes of interest,
apply the desired operation to the extracted subarrays and then recombine the
results to the overall array.

Fig. 4 shows how axis control can be used to sum up different hyperplanes of
a rank 3 array. The first example shows how the sum operation is mapped on all
vectors within the rightmost axis of the rank 3 array which results in a matrix
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{ [i] -> sum( a[[i,.,.]]) }

Fig. 4. Axis Control for summation of hyperplanes

of sums as indicated on the right hand side of the figure. The second example
demonstrates how the summation can by applied to submatrices which results
in a vector of sums.

Reduction operations, in general, are prone to axis control as they often need
to be applied to one or several particular axes rather than an entire array. Other
popular examples are the maximum (max) and minimum (min) operations which
can now be used to compute local maxima or minima within selected hyper-
planes.

Further demand for axis control arises in the context of array operations that
are dedicated to one fixed axis (usually the outermost one) and that need to
be applied to another one. An example for this situation is the concatenation
operation (++). Fig. 5 shows how axis control can be used to drive the concate-
nation into non-leftmost axes. Essentially, the idea is to first split the matrices
into vectors. Pairs of these vectors are then concatenated before the results of
that operation are combined into the final result.

4.4 Examples

The array operations presented so far constitute a substantial subset of the func-
tionality that is provided by array programming languages such as APL. When
orchestrated properly, these suffice to express rather complex array operations
very concisely. In the sequel, we present two examples that make use of this
combined expressive power: matrix product and relaxation.

Matrix Product. The matrix product of two matrices A and B (denoted by
AB) is defined as follows:

Provided A has as many columns as B has rows, the result of AB has as
many rows as A and as many columns as B. Each element (AB)i,j is defined as
the scalar product of the i-th row of A and the j-th column of B, i.e., we have
(AB)i,j =

∑

k

Ai,k ∗ Bk,j .



76 S.-B. Scholz

j

i

j

i j

i

++

a ++ b

j

i

j

j

j

j

j

i

j

j

j

j j

j

j

j

j

i
++
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Fig. 5. Axis Control for concatenation on inner axes
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{ [i,j] -> sum( A[[i,.]] * B[[.,j]]) }

Fig. 6. Matrix product

Fig 6 shows how the matrix product can be defined in terms of axis control.
The expression A[[i,.]] selects the i-th row of A, and B[[.,j]] refers to the
j-th column of B. The index ranges for i and j are deduced from the accesses
into A and B, respectively. A variable k as used in the mathematical specification
is not required as we can make use of the array operations * and sum.

Relaxation. Numerical approximations to the solution of partial differential
equations are often made by applying so-called relaxation methods. These
require large arrays to be iteratively modified by so-called stencil operations
until a certain convergence criterion is met. Fig. 7 illustrates such a stencil
operation. A stencil operation re-computes all elements of an array by computing
a weighted sum of all neighbor elements. The weights that are used solely depend
on the positions relative to the element to be computed rather than the position
in the result array. Therefore, we can conveniently specify these weights by a
single matrix of weights as shown on the left side in the top of Fig. 7.
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weights = [ [0d, 1d, 0d], [1d, 4d, 1d], [ 0d, 1d, 0d]] / 8d;
mat = ...
res = { [i,j] -> sum(

{ iv -> weights[iv] * rotate( iv-1, mat)}
[[...,i,j]] ) };

Fig. 7. A 5-point-stencil relaxation with cyclic boundaries

In this example, only 4 direct neighbor elements and the old value itself are
taken into account for computing a new value. (Hence its name: 5-point-stencil
operation). As can be seen from the weights, a new value is computed from old
ones by adding an eight-th each of the values of the upper, lower, left, and right
neighbors to half of the old value.

As demonstrated on the right side in the top of Fig. 7 our example assumes
so-called cyclic boundary conditions. This means that the missing neighbor
elements at the boundaries of the matrix are taken from the opposite sides as
indicated by the elliptic curves.

The code shown in the bottom of Fig. 7 shows the relevant part for computing
a single relaxation step, i.e., the code for one re-computation of the entire array.
At its core, all elements are re-computed by operations on the entire array rather
than individual elements. This is achieved by applying rotate for each legal
index position iv into the array of weights weights. Since the expression { iv ->
weights[iv] * rotate( iv-1, mat)} computes a 3 by 3 array of matrices (!)
the reduction operation sum needs to be directed towards the leftmost two axes
of that expression only. This is achieved through axis control using a selection
index [...,i,j] within a set notation over i and j.

4.5 Exercises

Exercise 8. How can a selection of all elements of a rank 3 array mat be specified
using generalized selections? Try to find all 9 possible solutions!

Exercise 9. Referring to Exercise 3, can generalized selections be used for select-
ing ”over“ empty axis? For example, can you specify a selection vector < vec >,
so that reshape([3,0,5], [])[< vec >] == reshape( [3,0], []) holds?

Exercise 10. Which of the examples in Fig. 3 can be expressed in terms of the
array operations defined in the previous sections?
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Exercise 11. What results do you expect from the expressions in Fig. 3 if a or
mat turn out to be empty matrices, e.g., the turn out to be identical to reshape(
[10,0], [])?

Exercise 12. The .-symbol in the set notation allows us to direct a computation
to any axes of the result. This is identical to first putting the result into the
innermost axes and then transposing the result. Can you come up with a general
scheme that translates set notations containing .-symbols into set notations that
do without?

Exercise 13. The operation take is defined in a way that ensures inner axes to
be taken completely in case the take vector does not provide enough entities
for all axes. How can take be applied to an array so that the outermost axis
remains untouched and the selections are applied to inner axes, starting at the
second one? (You may assume, that the take vector has fewer elements than the
array axes!) Can you specify a term that - according to a take vector of length
1 - takes from the innermost axis only?

Exercise 14. Can you merge two vectors of identical length element-wise? Ex-
tend your solution in a way that permits merging n-dimensional arrays on the
leftmost axis.

Exercise 15. Another variant of relaxation problems requires the boundary ele-
ments to have a fixed value. Can you modify the above solution in a way that
causes all boundary elements to be 0? [Hint: You may consider the boundary
elements to actualy be located outside the matrix]

4.6 Further Reading

A more detailled definition of Axis Control Notation can be found in [GS03].
Apl [Int84] does provide the notion of explicit array nesting as alternative means
for controlling the function applications wrt. certain axes. The notion of nesting
is introduced in [Ben91, Ben92]. Yet another alternative to the same effect is
the rank operator as proposed in [Ber88, Hui95]. It is implemented as part of
J [Ive91, Ive95].

5 SaC Basics

SaC (for Single Assignment C) is a functional language whose design targets
array-intensive applications as they for example can be found in the areas of
scientific applications or image processing.

5.1 Overall Design

The fundamental idea in the design of the language is to keep the language as
close as possible to C but to nevertheless base the language on the principle
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of context free substitutions. While the former may attract application pro-
grammers with an imperative background, the latter ensures the Church-Rosser
property which is crucial for extensive compile-time optimizations as well as
for non-sequential executions. Another key objective in the design of SaC is to
provide support for high-level array programming as introduced in the previous
sections.

Fig. 8 sketches the overall design of SaC. As can be seen in the middle of
the figure, a large part of standard C such as basic types and the fundamental
language constructs is adopted in SaC. Only a few language constructs of C
such as pointers and global variables need to be excluded in order to be able
to guarantee a side-effect-free setting. Instead, some new language constructs
are added pertaining to array programming. Besides a basic integration of n-
dimensional arrays as first-class citizens, the most important addition are the
so-called with-loops. They are versatile language constructs that allow all the
array operations as introduced in the previous sections to be defined within the
language itself.1

pointers
global vars
side−effects

double

int
char

...
function declarations

assignments
conditionals

loops
...

arrays

with−loops

  n−dimensional
  first class citizens

C SAC

Fig. 8. The overall design of SaC

5.2 To Be and Not to Be Functional

The incorporation of most of the fundamental language constructs of C such as
loops, conditionals, and assignments into the functional setting of SaC allows
the programmer to stick to his preferred model of computation. To illustrate
this effect, let us consider the following function foo:

1 In fact, all examples from the previous sections can be used in SaC without modi-
fication. They are implemented within the standard library of SaC.
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int foo( int v, int w) {
int r;

r = v + w;
r = r + 1;
return(r);

}

It takes two arguments v and w, adds them up, and increments the result by one
which yields the return value of foo.

An imperative interpretation of foo is shown in Fig. 9. In the imperative

int foo( int v, int w) {
int r;

r = v + w;
r = r + 1;
return(r);

}

v: 10
w: 10
r:

v: 10
w: 10
r: 20

v: 10
w: 10
r: 21

Fig. 9. An imperative look on foo

world, v, w, and r constitute names for box variables. During the execution of
the body of foo, the content of these box variables is successively changed as
indicated on the right hand side of Fig. 9 assuming an application to arguments
10 ans 10. After the final ”modification“ of r the last value it contains, i.e., 21,
is returned as overall result of the function call of foo.

However, the definition of the function foo equally well can be interpreted as
syntactic sugar for a let-based function definition as shown on the left-hand-side
of Fig. 10. With this interpretation, v, w, and r become variables in a λ-calculus

foo v w = let
r = v + w;

in let
r = r + 1;

in r

λ r.r (r+1)( )λ r.( (v+w))λ v.λ w.

λ r.r (r+1)( )λ r.( (10+10)) λ v.λ w.((v+w)+1)(( 10)10)

λ r.r( (20+1))

(( 10)10)

21

Fig. 10. A functional look on foo

sense. As we can see, the assignment to r has turned into two nested let-
expression which effectively leads to two distinct variables r which are assigned
to only once. A further transformation into an applied λ-calculus as shown on the
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right-hand-side of Fig. 10 identifies the potential for independent evaluations of
subexpressions. The arrows on top of the λ-expressions indicate the static scoping
of the individual variables. The lines under the expressions indicate the β-redices
that are present. As indicated by the different reduction sequences the λ-calculus
representation thus eases the identification of legal program transformations part
of which may be performed at compile-time.

This duality in program interpretation is achieved by the choice of a subset of
C which can easily be mapped into an applied λ-calculus whose semantics reflects
that of the corresponding C program. A formal definition of the semantics of SaC

is beyond the scope of this lecture. In the sequel, it suffices to expect all language
constructs adopted from C to adhere to their operational behaviour in C.

5.3 The Type System of SaC

As mentioned in Section 5.1, the elementary types of C are available in SaC

too. However, they constitute only a small subset of the types of SaC. For each
elementary type in C there exists an entire hierarchy of array types in SaC. As an
example, Fig 11 shows the hierarchy for integer arrays. It consists of three layers

...int[3,7]...int[0,0]int[0] ... int[42] ...

int[*]

int[.,.] ...int[.]int = int[]

Fig. 11. A hierarchy of shapely types

of array types which differ wrt. the level of shape restrictions that is imposed on
their constituents. On the top layer, we find int[*] which comprises all possible
integer arrays. The second layer of types differentiates between arrays of different
dimensionality. This layer comprises the standard type int which still denotes
scalar integers only. All other types on this level are denoted by the elementary
type followed by a vector of .-symbols. The number of .-symbols determines the
rank of the arrays contained. On the bottom layer, the types are shape-specific.
They are denoted by the elementary type followed by the shape. For example,
int[3,2] denotes all integer matrices of shape [3,2].

Although a generic array programming style suggests a predominant use of
the top layer types, the availability of the type hierarchy provides the program-
mer with additional expressiveness. Domain restrictions wrt. rank or shape of
the arguments can be made explicit and support for function overloading eases
rank/shape-specific implementations. Fig. 12 shows an example for such an over-
loading. Let us consider an implementation of a general solver for a set of linear
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double[.] solve( double[.,.] A, double[.] b) {
/* general solver */ ...

}

double[3] solve( double[3,3] A, double[3] b) {
/* direct solver */ ...

}

Fig. 12. Overloading and function dispatch

equations Ax = b as indicated in the top of Fig. 12. For arrays of a certain shape
it may be desirable to apply a different algorithm which has different runtime
properties. The bottom of Fig. 12 shows how this functionality can be added in
SaC by specifying a further instance of the function solve which is defined on
a more restricted domain.

Besides the hierarchy of array types and function overloading it should be
mentioned here that SaCin contrast to C does not require the programmer to
declare array types for variables. Type specifications are only mandatory for
argument and return types of all function instances.

5.4 Exercises

Exercise 16. Familiarize yourself with the SaC programming environment. Start
your editor and type the following program:

Listing 1.1. Hello World

use StdIO: all;
use Array: all;

int main ()
{

printf( "Hello World!\n");
return (0);

}

As you can see, it has a strong resemblance to C. The major difference are
the module use declarations at the beginning of the program. Their exact be-
haviour is beyond the scope of this lecture. For now, it suffices to keep in mind,
that these two declarations for most experiments will do the job. Details on
the module system as well as further introductory material can be found at
<http://www.sac-home.org/>.

5.5 Further Reading

A more extended introduction into the language constructs of SaC can be found
in [Sch03]. Formal definitions are contained in [Sch96]. More elaboration on the
type system of SaC is provided in [Sch01] and details of the module system can
be found in [HS04].



Functional Array Programming in SaC 83

6 with-loops

Besides basic support for n-dimensional arrays as described in Section 2 all array
operations in SaC are defined in terms of a language construct called with-loop.
There are three variants of with-loops: the genarray-with-loop, the modarray-
with-loop, and the fold-with-loop.

6.1 Genarray-with-loop

In essence, the genarray-with-loop can be considered an advanced version of
the set notation as introduced in Section 4. Apart from the syntax, there are
two major differences: the result shape is specified explicitly, and besides the
expression that is associated with the index vector there is a second expression,
called default expression, which does not depend on the index vector. Which
of these expressions actually is used for a given index position depends on a
so called generator which denotes a subset of the index range. For all indices
within the generator range the associated expression is chosen, and for all others
the default expression is taken.

Fig. 13 shows an example with-loop and the array it represents. A genarray-
with-loop starts with the keyword with followed by the index variable (iv in the
example) followed by two parts: the so-called generator part (here: second line)
and the operator part (here: last line). The operator part contains the result
shape (here: [4,5]) and the default expression def. The generator part consists
of a range specification followed by the expression e(iv) that is associated to
it. As shown in the lower part of Fig. 13, the result array has shape [4,5],
all elements specified by the generator range i.e., those elements with indices
between [1,1] and [2,3], are computed from the associated expression with
the index variable iv being replaced with the respective index, and all remaining
elements are identical to the default expression.

A = with (iv)
([1,1] <= iv < [3,4]) : e(iv);

genarray( [4,5], def );

A =

⎛

⎜
⎜
⎝

def def def def def
def e( [1,1]) e( [1,2]) e( [1,3]) def
def e( [2,1]) e( [2,2]) e( [2,3]) def
def def def def def

⎞

⎟
⎟
⎠

Fig. 13. A genarray-with-loop
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Range specifications always take the form
lower bound rel op variable rel op upper bound

where lower bound and upper bound are expressions that evaluate to vectors of
the same length and rel op is one of < and <=. This deviation from C-style
was made in order to stress the fact that more general range restrictions are
not supported. Although more general predicates do not cause any conceptual
problems, they can have a substantial effect on the level of code optimization that
can be achieved. In order to prevent from ”spurious“ performance degradations
due to unfavourable generator specifications we rule out more general predicates
here.

The generator variable can be replaced by a vector of variables which implic-
itly fixes the result shape. For example, we have:

with([i])
( [0] <= [i] < [n]) : i;

genarray( [n], 0);

which computes an n-element vector containing the values 0 up to n-1, i.e.,

reshape( [n], [0, 1, 2, ...., n-1]) .

Similarily, we can compute a 10 by 10 element unit matrix by

with([i,j])
( [0,0] <= [i,j] <= [9,9]) : ( i==j ? 1 : 0);

genarray( [10,10], 0);

Note here that an expression of the form

( predicate ? then expr : else expr )

as in C denotes a conditional expression.

6.2 Modarray-with-loop

The difference between the modarray-with-loop and the genarray-with-loop
lies in the way the result shape as well as the default expression are derived.
Fig. 14 shows a prototypical example. As we can see, the only difference to a
genarray-with-loop is the operator part. Rather than giving the result shape
and the default expression explicitly, these are derived from an array B.

As a more concrete example, consider the following with-loop:

maxidx0 = shape( a)[[0]] - 1;
res = with([i])

( [0] <= [i] <= [maxidx0]): a[[maxidx0 - i]]
modarray( a);
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A = with (iv)
([1,1] <= iv < [3,4]) : e(iv)

modarray( B );

A =

⎛

⎜
⎜
⎝

B [[0,0]] B [[0,1]] B [[0,2]] B [[0,3]] B [[0,4]]
B [[1,0]] e( [1,1]) e( [1,2]) e( [1,3]) B [[1,4]]
B [[2,0]] e( [2,1]) e( [2,2]) e( [2,3]) B [[2,4]]
B [[3,0]] B [[3,1]] B [[3,2]] B [[3,3]] B [[3,4]]

⎞

⎟
⎟
⎠

Fig. 14. A modarray-with-loop

It computes an array res whose shape is identical to that of a. The generator
specifies that all subarrays of the result wrt. the leftmost axis are reversed.
Asuming a to be a 2 by 3 matrix of the form:

(
1 2 3
4 5 6

)

we obtain maxidx0 == 1 and, thus, [a[[1]], a[[0]]] == [ [4, 5, 6], [1,
2, 3]] as a result.

6.3 Fold-with-loop

The fold-with-loop, again, is a variant in the operator part. As can be seen
in Fig. 15, it denotes a binary folding operation ⊕ alongside with the neutral
element neutr of that operation. The overall result of such a fold-with-loop
stems from folding all the expressions associated with the generator. However,
the order in which the folding eventually is done is intentionally left unspecified.
To guarantee predictable results, the operation ⊕ needs to be associative and
commutative.

With this construct, all reduction operations can be conveniently specified.
For example, the sum operation as defined in Section 3 can be specified as

res = with(iv)
( 0*shape(a) <= iv < shape(a)): a[iv]

fold( +, 0);

Assuming a to be of the form (
1 2 3
4 5 6

)

we obtain for the lower bound of the genrator 0*shape(a) == [0, 0] and for
the overall result:
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A = with (iv)
([1,1] <= iv < [3,4]) : e(iv)

fold( ⊕, neutr );

A = neutr ⊕ e( [1,1]) ⊕ e( [1,2]) ⊕ e( [1,3])
⊕ e( [2,1]) ⊕ e( [2,2]) ⊕ e( [2,3])

( ⊕ denotes associative, commutative binary function. )

Fig. 15. A fold-with-loop

0 + a[[0,0]] + a[[0,1]] + a[[0,2]] + a[[1,0]] + a[[1,1]] + a[[1,2]]

which reduces to 0 + 1 + 2 + 3 + 4 + 5 + 6 == 21.

6.4 Extensions

So far, the generator specification is rather limited. Only one dense range of
indices can be specified. To provide more specificational flexibility, SaC provides
a few optional extensions for the generator parts of with-loops.

Fig. 16 shows the first extension the so-called step vectors. They allow to
specify grids of indices rather than dense index ranges. Each of the components
of the step vector specified the stride wrt. one individual axis. As shown in the

A = with (iv)
([2,1] <= iv < [8,11] step [2,3]) : e(iv);

genarray( [10,13], def );

e(iv)

def

Fig. 16. Introducing step vectors
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lower part of Fig. 16, in the example, this leads to a stride of 2 for the first axis
and a stride 3 in the second.

These steps can be refined further by using so-called width vectors. Fig. 17
illustrates the use of width vectors. They allow the chosen grid elements not to

A = with (iv)
([2,1] <= iv < [8,11] ) step [3,4] width [2,3]) : e(iv);

genarray( [10,13], def );

e(iv)

def

Fig. 17. Introducing width vectors

consist of one array element only but to consist of several adjacent elements.
Again, the number of elements to be chosen can be specified on a per-axis basis.

Besides these potential extensions of individual generators, with-loops in SaC

can contain more than just one generator part. In this case, the generators are
subsequently executed in the order the are specified. Fig. 18 provides an example
with two generators. The lower diagram shows how two separate generator ranges
are computed according to the two (different) expressions e1(iv) and e2(iv).
All those elements not covered by any of the two generator ranges are copies of
the default element.

6.5 Axis Control Revisited

As mentioned in Section 6.1, with-loops in SaC can be considered extended set
notations. In fact, not only set notations but generalized selections as well can
be defined in terms of with-loop.

For example, the generalized selection a[[.,1]] can be translated into

with( iv)
( 0 * shape( a)[[0]] <= iv < shape( a)[[0]])
: a[ iv ++ [1]];

genarray( shape( a)[[0]], default);

which selects a vector of elements/subarrays of a as they are obtained when
selecting with the second index being fixed to 1. The challenge of this with-
loop is a correct specification of the default expression default. It needs to be
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A = with (iv)
([1,1] <= iv < [6,4]) : e1(iv)
([3,4] <= iv < [8,9]) : e2(iv)

genarray( [10,13], def );

def

e1(iv)

e2(iv)

Fig. 18. A multi-generator with-loop

of the same shape as the subarrays of a are when selecting with two fixed indices.
This can be specified by yet another with-loop as

with( iv)
( 0 * drop( [2], shape( a)) <= iv < drop( [2], shape( a))
: zero( a);

genarray( drop( [2], shape( a)), zero( a));

where zero( a) denotes the scalar 0.
Similarily, set notations can be translated into with-loops. Let us consider

the increment operation { [iv] -> a[iv] + 1 } . The range inference yields
the shape of the result, which, in this example is identical to that of the array a:

with( iv)
( 0 * shape( a) <= iv < shape( a))
: a[ iv ]

genarray( shape( a), default);

Again, the definition of the default expression, due to the lack of further infor-
mation on the shape of a, requires another with-loop:

with( iv)
( 0 * drop( [dim(a)], shape( a)) <= iv

< drop( [dim(a)], shape( a))
: zero( a);

genarray( drop( [dim(a)], shape( a)), zero( a)); .
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6.6 Exercises

Exercise 17. Implement addition for arrays of arbitrary but identical shape as
introduced in Section 3.2. Since this operation is already contained in the stan-
dard library you need to restrict the use of the modules from the standard library.
You should import the scalar version of + by stating import ScalarArith:{+}
and restrict the use of the library Array by excluding the array version for + con-
tained in it. This can be achieved by a use statement of the form use Array:all
except{+}. This will allow you to overload the scalar version of + by your own
version of + for arrays.

Exercise 18. Implement a function spread that spreads an argument array a
wrt. its first axis. It should insert elements / subarrays of value 0 between each
two adjacent elements.

Modify your solution so that the ”interim” values constitute the arithmetic
mean of the formerly adjacent values.

Exercise 19. Extend your addition from Exercise 17 so that arrays of different
shape but same dimensionality can be added. Find a consistent way in dealing
with non-identical shapes!

Exercise 20. Extend the addition from Exercise 17 and Exercise 19 further so
that mismatches in dimensionality can be handled as well. Do this by replicating
the elements of the array that has fewer axes.

Exercise 21. Define an extended version of selection called over sel. It should
allow the selection vector to be an array of more than one axis. This index array
should be considered an array of index vectors and the result should be an array
of selected subarrays.

Examples:

over sel(

⎛

⎝
1 0
1 1
1 1

⎞

⎠ ,

(
1 2 3
4 5 6

)

) ==

⎛

⎝
4
5
5

⎞

⎠

over sel(

⎛

⎝
1
1
0

⎞

⎠ ,

(
1 2 3
4 5 6

)

) ==

⎛

⎝
4 5 6
4 5 6
1 2 3

⎞

⎠

6.7 Further Reading

Formal definitions of the with-loops as presented here can be found in [Gre01]
and on the SaC home page <http:://www.sac-home.org/>. A formal translation
scheme for generalized selections and the set notation is contained in [GS03].

7 Compilation Issues

The natural choice of a target language for the compilation of SaC is C. Com-
pilation to C can be liberated from all hardware-specific low-level optimizations
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such as delay-slot utilization or register allocation, as this is taken care of by the
C compiler for the target machine. Last not least, the strong syntactical similar-
ity between the two languages allows the compilation efforts to be concentrated
on adequate array representations and on optimizing the code for array opera-
tions. Other basic language constructs can be translated more or less one to one
to their C counterparts.

The major phases of the actual SaC compiler are shown in Fig. 19. After scan-

Scanner / Parser

Type Inference / Type Specialization

LaC2Fun

Reference Counting Inference

Fun2LaC

C−Code Generation

Dead Code Removal

Inlining
Array Elimination

Constant Propagation

Loop Unrolling
Loop Unswitching
Loop Invariant Removal

Constant Folding

Common Subexpression Elimination
Copy Propagation

Algebraic Simplification

With Loop Scalarisation
With Loop Folding

With Loop Fusion

Index Vector Elimination

High−Level Optimizations

Fig. 19. Compiling SaC programs into C programs

ning and parsing the SaC-program to be compiled, its internal representation
is simplified by a transformation called LaC2Fun which eliminates syntactical
sugar such as loop constructs and (non-top-level) conditionals.

The next compilation phase implements a type inference algorithm based on
the hierarchy of array types described in Section 5.3. To achieve utmost code
optimizations, the actual implementation tries to specialize all array types to
specific shapes. Starting from the designated main function, it traverses func-
tion bodies from outermost to innermost, propagating exact shapes as far as
possible. In order to avoid non-termination, the number of potential function
specializations is limited by a pre-specified number of instances. If this number
is exceeded, the generic version is used instead.

The fourth compilation phase implements all the optimizations that can
be done on the level of SaC itself. Of particular interest in this context are
three SaC-specific optimizations which try to combine with-loops for avoiding
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the creation of arrays that hold intermediate results of the overall computation.
These are

– with-loop-folding eliminates intermediate arrays by folding consecutive
with-loops into single ones. It constitutes the key optimization for achieving
competitive runtimes.

– with-loop-fusion enables sharing of loop overhead between otherwise inde-
pendent with-loops.

– with-loop-scalarization transform nested with-loops into non-nested ones
which significantly improves the memory demands.

To improve the applicability of these optimizations, constants have to be prop-
agated / inferred as far as possible, i.e., several standard optimizations have
to be included in this compilation phase as well. It also turns out that on the
SaC level these standard optimizations, due to the absence of side-effects, can
be applied much more rigorously than in state-of-the-art C compilers. The stan-
dard optimizations implemented in the actual compiler include Function Inlining,
Constant Folding, Constant Propagation, Dead Code Removal, etc. (cf. Fig. 19.).

Many of these optimizations interact with each other, e.g., constant fold-
ing may enable with-loop-folding by inferring exact generator boundaries of
with-loops which, in turn, may enable further constant folding within the body
of the resulting with-loop. Therefore, the optimizations are applied in a cyclic
fashion, as shown on the right hand side of Fig. 19. This cycle terminates if
either there are no more code changes or if a pre-specified number of cycles has
been performed.

The three final compilation phases transform the optimized SaC code step
by step into a C program. The first phase, called Reference Counting Inference,
adds for all non-scalar arr ays operations that handle the reference counters at
runtime. The techniques used here are similar to those developed for Sisal.

The next phase, called Fun2LaC, is dual to LaC2Fun; it reverts tail-end re-
cursive functions into loops and inlines functions that were created from non-
top-level conditionals during LaC2Fun.

Finally, the SaC-specific language constructs are compiled into ANSI C code.

7.1 with-loop-folding

Our first optimization technique, with-loop-folding, addresses the composition
of with-loops that are used in a pipelined fashion. Consider, for example, a
definition

res = (a + b) + c;
where a, b, and c are all matrices of shape [ 10, 10]. Inlining the definition of
+ leads to two subsequent with-loops of the form

tmp = with(iv)
( [0,0] <= iv < [10,10]) : a[iv] + b[iv];

genarray( [10,10], 0.0);
res = with(iv)
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( [0,0] <= iv < [10,10]) : tmp[iv] + c[iv];
genarray( [10,10], 0.0);

which can be combined into a single one

res = with(iv)
( [0,0] <= iv < [10,10]) : a[iv] + b[iv] + c[iv];

genarray( [10,10], 0.0); .

Technically spoken, with-loop-folding aims at identifying array references
within the generator-associated expressions in with-loops. If the index expres-
sion is an affine function of the with-loop’s index variable and if the referenced
array is itself defined by another with-loop, the array reference is replaced by
the corresponding element computation. Instead of storing an intermediate re-
sult in a temporary data structure and taking the data from there when needed,
we forward-substitute the computation of the intermediate value to the place
where it is actually needed.

The challenge of with-loop-folding lies in the identification of the correct
expression which is to be forward-substituted. Usually, the referenced with-loop
has multiple generators each being associated with a different expression. Hence,
we must decide which of the index sets defined by the generators is actually
referenced. To make this decision we must take into account the entire generator
sequence of the referenced with-loop, the generator of the referencing with-loop
that is associated with the expression which contains the array reference under
consideration, and the affine function defining the index. The top of Fig. 20
shows an example for a more general situation. The generator ranges of both
with-loops do not cover the entire array. Instead, they overlap without one
being included within the other. As a consequence, the result of the folding step
requires the computation of the intersection of the generators. In order to be able
to do this in a uniform way, we first introduce further generators that make the
default expressions explicit. The result of this extension is shown in the middle
part of Fig. 20. In case of the first with-loop, we obtain 4 further generators
with 0 being the associated expression. Similarily, the second with-loop has to
be extended by 4 generators as well. However, since the second with-loop is
a modarray-with-loop, the associated expression needs to be a selection into
the array A. After this transformation, the generators within the with-loops
constitute partitions of the result arrays. This facilitates the computation of
generator intersections which then can be folded naively leading to the overall
result shown in the bottom of Fig. 20.

7.2 with-Loop-Fusion

With-loop-fusion is similar to conventional loop fusion. It is characterized by
two a more with-loops without data dependences that iterate over the same
index space. Consider for example a function body where both, the maximum
element as well as the minimum element of a given array A is needed. This can
be specified as
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A = with (iv)
([2,2] <= iv < [6,6]) : 2

genarray( [10,12], 0);
B = with (iv)

([4,4] <= iv < [9,9]) : A[iv] + 1
modarray( A);

A = with (iv)
([0,0] <= iv < [ 2, 6]) : 0
([2,0] <= iv < [ 6, 2]) : 0
([2,2] <= iv < [ 6, 6]) : 2
([2,6] <= iv < [ 6,12]) : 0
([6,0] <= iv < [10,12]) : 0
genarray( [10,12]);

B = with (iv)
([0,0] <= iv < [ 4,12]) : A[iv]
([4,0] <= iv < [ 9, 4]) : A[iv]
([4,4] <= iv < [ 9, 9]) : A[iv] + 1
([4,9] <= iv < [ 9,12]) : A[iv]
([9,0] <= iv < [10,12]) : A[iv]
modarray( A);

B = with (iv)
([0,0] <= iv < [ 2, 6]) : 0
([2,0] <= iv < [ 6, 2]) : 0...
([2,2] <= iv < [ 4, 6]) : 2
([4,2] <= iv < [ 6, 4]) : 2
([4,4] <= iv < [ 6, 6]) : 2 + 1
([4,6] <= iv < [ 6, 9]) : 1
([6,4] <= iv < [ 9, 9]) : 1...
([4,9] <= iv < [ 9,12]) : 0
([9,0] <= iv < [10,12]) : 0
genarray( [10,12], 0);

Fig. 20. with-loop-folding in the general case

minv = minval(A);
maxv = maxval(A);
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Inlining the with-loop definitions for minval and maxval leads to

minv = with(iv)
( [0,0] <= iv < shape(A)): A[iv]

fold( min, MaxInt());
maxv = with(iv)

( [0,0] <= iv < shape(A)): A[iv]
fold( max, MinInt())

The idea of with-loop-fusion is to combine such with-loops into a more versa-
tile internal representation named multi-operator with-loop. The major char-
acteristic of multi-operator with-loops is their ability to define multiple array
comprehensions and multiple reduction operations as well as mixtures thereof.
For the example, we obtain:

minv, maxv = with(iv)
( [0,0] <= iv < shape(A)): A[iv], A[iv]

fold( min, MaxInt())
fold( max, MinInt())

As a consequence of the code transformation both values minv and maxv are
computed in a single sweep. This allows us to share the overhead inflicted by
the multi-dimensional loop nest. Furthermore, we change the order of array ref-
erences at runtime. The intermediate code as shown above accesses large parts
of array A in both with-loops. Assuming array sizes typical for numerical com-
puting, elements of A are extremely likely not to reside in cache memory any
more when they are needed for execution of the second with-loop. With the
fused code both array references A[iv] occur in the same with-loop iteration
and, hence, the second one always results in a cache hit.

Technically, with-loop-fusion requires systematically computing intersections
of generators in a way similar to with-loop-folding. After identification of suit-
able with-loops, we compute the intersections of all pairs of generators. Whereas
this leads to a quadratic increase in the number of generators for the worst case,
many of the new generators turn out to be empty in practice.

7.3 with-Loop-Scalarization

So far, we have not paid any attention to the element types of the arrays involved.
In SaC, complex numbers are not built-in, but they are defined as vectors of
two elements of type double. As a consequence, an addition of two vectors of
complex numbers such as

cv = [ Cplx(1.0,1.0), Cplx(-1.0,-1.0), Cplx(-1.0,0.0)];
res = cv + cv;
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in fact is an addition of two matrices of doubles. However, since addition for
complex arrays is defined in terms of a with-loop as is the scalar addition of
complex numbers, after inlining we obtain

res = with(iv)
( [0] <= iv < [3]) :
with(jv)
( [0] <= jv < [2]) :(cv[iv])[jv]+(cv[iv])[jv];

genarray( [2], 0.0);
genarray( [3], [ 0.0, 0.0]);

The idea of with-loop-scalarization is to get rid of these nestings of withloops
and to transform them into with-loops that operate on scalar values. This is
achieved by concatenating the bound and shape expressions of the with-loops
involved and by adjusting the generator variables accordingly. For our example
we obtain

res = with(iv)
( [0,0] <= iv < [3,2]) : cv[iv] + cv[iv]

genarray( [3,2], [[ 0.0, 0.0], ...]);

When comparing this code against the non-scalarized version above we can
observe several benefits. There are no more two-element vectors which results in
less memory allocations and deallocations at runtime. Furthermore, the individ-
ual values are directly written into the result arrays without any copying from
temporary vectors.

7.4 Further Reading

Material on the basic compilation scheme can be found in [Sch96, Sch03]. Cache
related aspects of the compilation of with-loops are covered in [GKS00]. Elab-
oration on how to make use of various levels of shape information for gener-
ating efficient code is provided in [Kre03]. Issues around the heap manage-
ment as well as compilation into concurrently executable code are presented
in [Gre01]. Formal descriptions of the individual optimizations can be found in
[Sch98, GST04, Sch03]. Several further papers on performance comparisons can
be found on the SaC home page <http:://www.sac-home.org/>.

Besides the SaC-specific publications, there is a large body of literature on
optimizing array computations in general. Good starting points are books such
as [ZC91, Wol95, AK01]. In the context of functional languages, papers on op-
timizations towards high-performance array computations can also be found in
the context of the programming language Sisal [Feo91, Can92, Can93, Can89].
Optimizations for n-dimensional array operations similar to with-loop-fusion in
SaC can be found in the context of Zpl [Lin96, LLS98].
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with-loop-folding and with-loop-fusion are based on principles that can be
found in optimization techniques for algebraic data types as well. The corre-
sponding optimization techniques are referred to as fusion and as tupling, respec-
tively. Papers such as [Chi93, Chi94, Chi95, Gil96, HI97, NP98, Chi99, vAvGS03]
contain work on these optimizations.
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