
Dependently Typed Array Programs

Don’t Go Wrong

Kai Trojahner ∗, Clemens Grelck

Institute of Software Technology and Programming Languages,
University of Lübeck, Germany

Abstract

The array programming paradigm adopts multidimensional arrays as the fundamen-
tal data structures of computation. Array operations process entire arrays instead
of just single elements. This makes array programs highly expressive and intro-
duces data parallelism in a natural way. Array programming imposes non-trivial
structural constraints on ranks, shapes, and element values of arrays. A prominent
example of such violations are out-of-bound array accesses. Usually, such constraints
are enforced by means of run time checks. Both the run time overhead inflicted by
dynamic constraint checking and the uncertainty of proper program evaluation are
undesirable.

In this paper, we propose a novel type system for array programs based on de-
pendent types. Our type system makes dynamic constraint checks obsolete and
guarantees orderly evaluation of well-typed programs. We employ integer vectors
of statically unknown length to index array types. We also show how constraints
on these vectors are resolved using a suitable reduction to integer scalars. Our pre-
sentation is based on a functional array calculus that captures the essence of the
paradigm without the legacy and obfuscation of a fully-fledged array programming
language.

Key words: Array Programming, Dependent Types, Program Verification

1 Introduction

In the array programming paradigm multidimensional arrays serve as the fun-
damental data structures of computation. Such arrays can be vectors, matrices,

∗ Corresponding author.
Email addresses: trojahner@isp.uni-luebeck.de (Kai Trojahner),

grelck@isp.uni-luebeck.de (Clemens Grelck).

Preprint submitted to Journal of Logic and Algebraic Programming20 October 2008

tensors, or structures with an even higher number of axes. Scalar values, such
as integer numbers or characters, form the important special case of arrays
with zero axes. Array operations work on entire arrays rather than individual
elements. This makes array programs highly expressive and introduces data
parallelism in a natural way. Hence, functional array programs lend them-
selves well for parallel execution on parallel computers such as recent multi-
core processors [?,?]. Prominent examples of array languages are APL [?],
J [?], MatLab [?], and SaC [?].

A powerful concept found in array programming languages is shape-generic
programming: Individual operations and entire algorithms can be specified for
arrays of arbitrary size and even an arbitrary number of axes. For example,
element-wise arithmetic works for scalars as well as for vectors and matrices.
However, this flexibility introduces some non-trivial constraints between func-
tion arguments. Element-wise addition requires both arguments to have the
same number of axes and the same number of elements along each axis. The
constraints are more complicated for operations like array access: the selection
of an array element requires the length of the vector of indices to match the
number of axes of the array to select from. Moreover, all elements of the index
vector must range within the index bounds of the array.

Interpreted array languages like APL, J, and MatLab are dynamically typed.
They feature a large number of built-in operations that implicitly perform the
necessary consistency checks on the structural properties of their arguments on
each application. In contrast, SaC is a compiled language aimed at high run
time performance and automatic parallelization [?]. SaC has a static type sys-
tem that employs three layers of array types. While the array element type is
always monomorphic, structural array properties can be described at three dif-
ferent levels of accuracy: complete information on number of axes and extents,
partial information on number of axes but not their extents, and no structural
information at all. Using types with complete structural information allows the
compiler to statically resolve certain classes of structural constraints. However,
complete specification of all array types runs counter the software engineering
desire for generic and abstract specifications and code reuse. Code specializa-
tion [?] and partial evaluation techniques [?] address this problem, but their
success is program dependent. In general, dynamic consistency checks remain
prevalent in compiled code. For a language like SaC this is particularly un-
desirable because run time checks cause overhead both directly through their
mere execution and indirectly by hampering program optimization.

In either setting, interpreted or compiled, dynamic consistency checks have
a further disadvantage beyond performance considerations: a program may
abort with an error message at any given time. In particular, for long-running
or safety-critical applications such run time errors are undesirable.

2

In our current work, we aim at verifying array programs entirely statically. All
structural constraints are enforced at compile time by means of a novel type
system that combines subtyping with a variant of indexed types [?,?]. Terms
denoting integer vectors are used to index an array type of a particular shape
from the family of array types. As the length of a shape vector varies with
the number of array axes, the sort of the index vector itself is indexed from a
sort family using an integer. For example, the type of element-wise addition
of integer arrays concisely expresses the required equality on argument and
result shapes:

add : Πd :: nat. Πs :: natvec(d). [int|s]→ [int|s]→ [int|s]

Our type system rules out applications of the function add for which the ar-
guments cannot be proved to have equal shape. Thus, program execution can
take place without any run time checks. Furthermore, the structural infor-
mation provided by these array types allow a compiler to perform extensive
program optimization. For specific arrays, singleton types even capture the
value of an array’s elements. Similar to other approaches based on indexed
types such as dml [?], type checking proceeds by checking constraints on lin-
ear integer expressions. In the system presented in this paper, all well-typed
programs are guaranteed not to exhibit any undesired behavior at run time. A
particular challenge in our context is to efficiently resolve constraints between
integer vectors of statically unknown length.

Our approach is rather disruptive than incremental for any existing array pro-
gramming language. Hence, we first develop our type system for an abstract
functional array calculus that captures the essence of array programming with-
out the legacy problems of a fully-fledged programming language. We follow
the example of SaC, but leave out all aspects irrelevant to our work (e.g. the
module and state systems) and somewhat streamline the remaining parts.
Our calculus has some important features currently not supported by SaC,
e.g. higher-order functions and non-homogeneous nestings of multidimensional
arrays.

We make the following contributions:

• We specify a language with the essential features necessary for shape-generic
functional array programming with dependent types that allows for both
higher-order functions and complex nestings of multidimensional arrays.

• We define a type system for the static verification of dependently typed array
programs that combines subtyping with a novel variant of indexed types that
uses integer vectors of statically unknown length to index elements of type
families.

• We propose a scheme for mapping the resolution of constraints on integer
vectors of arbitrary length to linear integer constraints that may be pro-

3

Array Rank Shape vector
1 0 [][

1 2 3
]

1 [3](
1 2 3
4 5 6

)
2 [2 3]

4 5 6

1 2 3

10 11 12

7 8 9

3 [2 2 3]

Fig. 1. Ranks and shape vectors of the example arrays

cessed by standard SMT solvers.

Our approach provides a solution for type-safe functional array programming:
any well-typed array program is guaranteed to yield a proper value. In short:
Dependently typed array programs don’t go wrong!

The paper is organized as follows: Section 2 gives a gentle introduction to
multidimensional arrays. In Section 3 we introduce our calculus for functional
array programming and present its small-step semantics. Section 4, illustrates
the kind of programs we are interested in and motivates our type system for
the static verification of array programs described in Section 5. We outline
our concept for vector constraint resolution in Section 6. Finally, we discuss
related work in Section 7 and draw conclusions in Section 8.

2 Multidimensional arrays

A characteristic feature of array programming languages is that only arrays are
values, i.e. legitimate results of computations. Arrays may be vectors, matri-
ces, tensors, or structures with an even higher number of axes. In particular,
arrays may also be scalar values (such as the integers) which form the im-
portant special case of arrays without any axes. The appropriate abstraction
which allows for treating different kinds of arrays in a uniform way are truely
multidimensional arrays.

Multidimensional arrays are characterized by two essential properties: a scalar
rank and a shape vector. The rank denotes an array’s number of axes. Its
shape vector contains the array’s extent along each axis. For a given array,
the length of its shape vector equals its rank. Fig. 1 shows a few examples of
multidimensional arrays and their basic properties. The scalar array 1 does
not have any axes and hence its shape vector is empty. Vectors have a single

4

Array Index vectors
1 [][

1 2 3
] [

[0] [1] [2]
](

1 2 3
4 5 6

) (
[0 0] [0 1] [0 2]
[1 0] [1 1] [1 2]

)

4 5 6

1 2 3

10 11 12

7 8 9

[0 1 0] [0 1 1] [0 1 2]

[0 0 0] [0 0 1] [0 0 2]

[1 1 0] [1 1 1] [1 1 2]

[1 0 0] [1 0 1] [1 0 2]

Fig. 2. Example arrays and the legal index vectors

axis, so the shape vector of [1 2 3] is [3]. The scheme extends to arrays with
an arbitrary number of axes.

The shape vector determines the number of elements in an array. Let A be
an array of rank r and shape vector s. Then the number of elements in A is
given by the equation

|A| = Πr
i=1 si.

Individual elements are selected from an array with n axes by means of an
index vector of length n. Both the index vector and the selected element are
arrays themselves. Fig. 2 gives an overview of the admissible index vectors into
the arrays from Fig. 1. The first row again shows the special case of scalar
arrays: as the array 1 does not have any axes, the empty vector is the only
legal index vector. Such a selection again yields the array 1. The other cases
are more straightforward. For example, we may index into a matrix using
appropriate index vectors of length two.

A more rigorous syntax for multidimensional arrays is shown in Fig. 3 along
with a suitable evaluation relation for evaluating array terms. We use the
notation an to represent comma separated lists a1, ..., an. In order to express
that a property holds for all elements of a sequence an we write ∀i. p(ai) instead
of ∀i. 1 ≤ i ≤ n ⇒ p(ai). Array values have the form [|qp|[sd]|]. In such an
array, the integer vector sd represents the shape vector; its length d encodes
the array’s rank. The data vector qp contains the array elements as a sequence
of quarks. For the moment, quarks may only be integers but we will introduce
other kinds of quarks in Section 3. Quarks owe their name to the fact that
array programs employ arrays as the atomic units of computation (all values in
the system are arrays). Hence, array elements must be a subatomic particles.

Fig. 4 shows the array values corresponding to the example arrays. We demand
that array values adhere to a data type invariant: [|qp|[sd]|] is valid iff no

5

Syntactic forms

t ::= [|qp|[sd]|] | rank t | shape t | sel(t,t) Terms

q ::= c Quarks

v ::= [|qp|[sd]|] Values

Evaluation rules
t −→ t′

rank t −→ rank t′
rank [|qp|[sd]|] −→ [|d|[]|]

t −→ t′

shape t −→ shape t′
shape [|qp|[sd]|] −→ [|sd|[d]|]

t1 −→ t′1
sel(t1,t2) −→ sel(t′1,t2)

t2 −→ t′2
sel(v1,t2) −→ sel(v1,t

′
2)

∀k. 0 ≤ ik < sk

sel([|qp|[sd]|],[|id|[d]|]) −→ [|qι(d,sd,id)|[]|]

Fig. 3. A core system for representing and accessing multidimensional arrays

axis has negative length and the number of quarks equals the product of the
elements of the shape vector:

(1) ∀i.si ≥ 0,
(2) p = Πd

i=1si.

Inside the data vector, the elements along the innermost array axis are stored
densely (row-major order). For multidimensional arrays, this means that the
order of elements is determined by the lexicographic order of the corresponding
index vectors. Let A be an array of rank r and shape s, and let v be a suitable
index vector for A. The function ι then determines the linear index of the
element at position v in the data vector of A:

ι(r, sr, vr) = Σr
i=1 (vi · Πr

j=i+1 sj) + 1.

Properties of arrays can be accessed using three primitives: rank, shape,
and sel. All operations first evaluate their arguments to array values and
then yield an array containing the desired properties themselves. For an ar-
ray A = [|qp|[sd]|], rank A evaluates to the integer scalar d, represented
as [|d|[]|]. The term shape A yields the shape vector of A in the form
[|sd|[d]|]. As an example, we apply both functions to a matrix of shape
2× 3:

rank [|1, 2, 3, 4, 5, 6|[2, 3]|] −→ [|2|[]|]

shape [|1, 2, 3, 4, 5, 6|[2, 3]|] −→ [|2, 3|[2]|]

6

Array Uniform array representation
1 [|1|[]|][

1 2 3
]

[|1, 2, 3|[3]|](
1 2 3
4 5 6

)
[|1, 2, 3, 4, 5, 6|[2, 3]|]

4 5 6

1 2 3

10 11 12

7 8 9

[|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12|[2, 2, 3]|]

Fig. 4. Uniform representations of the example arrays

Since the application of shape to an array results in a vector whose length
equals the given array’s rank, one may think that applying shape twice is
another way to obtain the rank, making the rank primitive obsolete. However,
the results are not the same because shape will always evaluate to a vector
whereas rank yields a scalar.

shape (shape [|qn|[sd]|]) −→∗ [|d|[1]|]

rank [|qn|[sd]|] −→ [|d|[]|]

A selection sel(A,[|ie|[e]|]) into a multidimensional array A = [|qp|[sd]|]

is evaluated if two constraints are met. Firstly, the length e of the index vector
must equal the rank d of A. Secondly, the index vector ie must actually denote
a valid position in A, i.e. the values of all quarks ik must range between 0 and
sk. The selection will then evaluate to a scalar array whose sole quark is taken
from the data vector of A at position ι(d, sd, id).

Selections with index vectors of invalid length or index vectors denoting a
position outside the array boundaries cannot be evaluated and are thus pro-
gram errors. To illustrate array selection, we select the central element from
a matrix of shape [3, 3]:

0 ≤ 1 < 3 ∧ 0 ≤ 1 < 3
sel([|1, 2, 3, 4, 5, 6, 7, 8, 9|[3, 3]|],[|1, 1|[2]|]) −→ [|5|[]|]

The evaluation rules for both rank and shape are straightforward: Whenever
the argument reduces to value, a result will be provided. In contrast, suc-
cessful evaluation of selections depends on non-trivial constraints between the
arguments’ ranks, shape vectors, and the values of the array elements.

We have introduced the main ideas of multidimensional arrays with a custom
syntax for arrays and a semantics for the essential array operations. In the

7

next section, we will extend these ideas towards a core language for functional
array programming. To pinpoint potential program errors, we will provide a
detailed small-step semantics for our calculus.

3 A Core Functional Array Programming Language

In this section, we specify a core language that captures the essential fea-
tures necessary for functional array programming. The language allows for
the type-safe specification of shape-generic array programs. Such programs
operate on arrays with an arbitrary shape and even with an arbitrary number
of axes. We deliberately leave out several features of functional programming
languages that would unnecessarily complicate the presentation in this paper.
Among others, the core language does not support polymorphism, algebraic
data types, and general recursion. Nonetheless, since all these features are
largely orthogonal to our approach, we are confident they could be soundly
integrated.

To rule out program errors such as the invalid array selection the language
employs types for arrays that describe both the type of the quarks inside an
array as well as its shape. In particular, the shape component of a type is itself
an expression. This makes our array types a variant of dependent types. To
keep type checking decidable, we restrict the shape expressions to a dedicated
index language in which only predefined and well-behaved (i.e. linear) oper-
ations are permitted. Type checking then reduces to solving constraints over
these index terms.

The syntax of the language is shown in Fig. 5; its operational semantics is
shown in Figs. 6–8. The language description can be divided into three con-
ceptual sections: The top section defines the index language which is used to
index types from the type families. The next section describes the types used
in the system. The remainder of the figure defines the term language, namely
the quarks and array terms. The discussion in this section will follow the same
route.

3.1 Index language

As mentioned before, types may only depend on the terms of a specific index
language in order to keep type checking decidable. The index terms are solely
used for type checking; they are not subject to evaluation. All index terms
belong to an index sort. idx is the sort of integer scalars, idxvec(i) is the sort-
family of integer vectors. In this sort family, a sort for vectors of a particular

8

I ::= idx | idxvec(i) | {I in ir} Index sorts

i ::= c | x | [in] | ~f(i,i) | f2(i,i) Index terms

ir ::= i | i.. | ..i | i..i Index ranges

T ::= [Q|i] | S(i) Types

Q ::= ⊥Q | int | T → T | Πx :: I. T | {T n} | Σx :: I. T Quark types

S ::= num | numvec Singleton types

t ::= [|qp|[cn]|] | x | t t | t ′i Terms
| let x = t in t | {tn} | let {xn} = t in t
| {′i,t : Σx :: I. T} | let {′x, x} = t in t
| [tp|[cn]] | f t | gen x < t of t with t
| loop x < t, x = t with t | case t in m

q ::= c | λx :T. t | λ′x :: I. t | {vn} | {′i,v:Σx :: I. T} Quarks

m ::= r ⇒ t | m | else⇒ t Matches

r ::= t | t.. | ..t | t..t Ranges

f ::= ~f | f2 | rank | shape | length | sel Built-ins

~f ::= vec | ++ | take | drop Vector ops

f2 ::= + | - | min | max Dyadic ops

v ::= [|qp|[cn]|] Values
rv ::= v | v.. | ..v | v..v Value ranges

Fig. 5. Syntax of a core language for typed functional array programming

length is designated using a scalar index term i. We use index vectors to index
into the family of multidimensional array types.

Scalar index terms are integer constants c, variables of sort idx, and appli-
cations of linear dyadic functions such as addition and subtraction to scalar
index terms. Index vectors may also be variables of a vector sort, but can
be constructed from scalar index terms as well. For example, the index vec-
tor [0, 1, 2] belongs to the sort idxvec(3). We may also apply binary linear
functions to index vectors of equal length. This yields another index vector
of that sort by element-wise application of the given function. In particular,
we may form vectors whose length is given by a scalar index term. For a non-
negative scalar index l and another scalar index i, vec(l,i) yields an index
vector of length l whose elements all equal i. There are also index vector terms
that map between the index sorts. Vectors may be concatenated using a ++ b
which appends the vector b of length lb to the vector a of length la. Naturally,
the result is of sort idxvec(la + lb). Conversely, vectors can be split using the
operations take and drop. For a given vector v of length l and a scalar index
expression i with 0 ≤ i ≤ l, take(i,v) and drop(i,v) denote the prefix of v
with length i and the suffix of v with length l - i, respectively. Thus we have

9

take(i,v) ++ drop(i,v) = v.

Index sorts can be restricted to specific ranges using the subset notation
{I in ir}. Given two scalar index terms a and b, the sort {idx in a..b}
denotes all x of sort idx for which a ≤ x < b. Both boundaries may be
omitted, indicating ±∞ as the boundaries. A sort of the form {I in i} de-
notes a sort that contains i as its single element. In the following we will use
nat = {idx in 0..} and natvec(i) = {idxvec(i) in vec(i,0)..}.

3.2 Types for array programs

There are two major kinds of types for array programs: quark types for de-
scribing the quarks inside an array and array types for describing entire arrays
through its quark type and its shape. Quark types and array types follow the
mutually recursive structure of quarks and array values. The array type [Q|i]
describes all arrays whose elements have quark type Q and whose shape vec-
tor is characterized by the index vector i. For example, the type of an integer
vector [|1, 2, 3, 4|[4]|] is [int|[4]], while a scalar integer [|7|[]|] has type
[int|[]].

The integer quarks of type int are the only primitive values used in the
language. Clearly, other base types could be supported as well. In addition,
there are also structured quarks: abstractions λx :T1. t of type T1 → T2, index
abstractions λ′x :: I. t of type Πx :: I. T , tuples of arrays values {v1, .., vn} of
type {T1, .., Tn}, and dependent pairs {′i,v:Σx :: I. T} of type Σx :: I. T . The
bottom quark type ⊥Q is not associated with a particular quark. Instead, it
serves as a quark type for empty arrays such as the empty vector [||[0]|]
which has type [⊥Q|[0]]. To capture the intuition that an empty array may
have an arbitrary quark type, ⊥Q is a subtype of every quark type.

Due to the significance of integer scalars and vectors for array programs, we
provide singleton types for these arrays that do not only characterize their
shape, but also the values of the contained integer quarks. The type num(i)
characterizes all scalar integer arrays whose quark is identical to the index i.
By means of subtyping, each num(i) is also an [int|[]]. Similarly, an integer
vector of type numvec(i) is also an [int|[l]] provided that the index vector
i is of sort idxvec(l). Thus, the above arrays [|7|[]|] and [|1, 2, 3, 4|[4]|]
also have the more specific types num(7) and numvec([1, 2, 3, 4]), respectively.

10

t1 −→ t′1 (E-App1)
t1 t2 −→ t′1 t2

t2 −→ t′2 (E-App2)
v1 t2 −→ v1 t′2

[|λx :T. t|[]|] v2 −→ t[x 7→ v2] (E-AppAbs)

t −→ t′ (E-IApp)
t ′i −→ t′ ′i

[|λ′x :: I. t|[]|] ′i −→ t[x 7→i i] (E-IAppIAbs)

tj −→ t′j
(E-Tup1)

{vj−1, tj , t
n−j} −→ {vj−1, t′j , t

n−j}

{vn} −→ [|{vn}|[]|] (E-Tup2)

t −→ t′ (E-ITup1)
{′i,t : Σx :: I. T} −→ {′i,t′ : Σx :: I. T}

{′i,v : Σx :: I. T} −→ [|{′i,v:Σx :: I. T}|[]|] (E-ITup2)

t1 −→ t′1 (E-Let)
let p = t1 in t2 −→ let p = t′1 in t2

let x = v1 in t2 −→ t2[x 7→ v1] (E-LetVal)

let {xi} = [|{vi}|[]|] in t2 −→ t2[x1 7→ v1]..[xn 7→ vn] (E-LetTup)

let {′x1, x2} = [|{′i,v:Σx :: I. T}|[]|] in t2 −→
t2[x1 7→i i][x2 7→ v] (E-LetITup)

Fig. 6. Basic semantics of typed array programs

3.3 Syntax and semantics of array programs

We now explain the syntax and semantics of the terms of the array language.
The evaluation rules of the basic language elements is defined in Fig. 6.

3.3.1 Functions

The abstraction quark λx :T1. t allows to specify arrays of functions. Its type
is the function quark type T1 → T2. The application t1 t2 is explained by the
evaluation rules E-App1, E-App2, and E-AppAbs. Following a call-by-value
regime, the application first evaluates both the operator t1 and the operand t2.
Only if t1 evaluates to a scalar array with a single abstraction [|λx :T. t|[]|],
the entire application will take a β-reduction step by substituting all free
occurrences of x in t with the evaluated argument.

11

The index abstraction quark λ′x :: I. t allows us to abstract an index variable
from both terms and types. The type of the index abstraction is Πx :: I. T ,
where T may refer to the index identifier x. By abstracting an index vector
from the shape of a function argument, we can specify operations applicable
to arrays of arbitrary shape. Taking this idea further, we may abstract the
length from this index argument and obtain a rank-generic function.

Index abstractions are applied to index arguments with the index application
t ′i. As defined by the evaluation rules E-IApp and E-IAppIAbs, the index
application t ′i only evaluates the applied term t but not the index argument
i. Provided that t evaluates to a scalar array with a single index abstrac-
tion quark [|λ′x :: I. t|[]|], the index application takes an evaluation step by
substituting all index identifiers x in t with i.

3.3.2 Tuples

Besides constants and (dependent) functions, arrays may also contain n-ary
tuples of arrays and dependent pairs that couple index terms with arrays. The
tuple quark {v1, ..., vn} of type {T1, ..., Tn} encloses n array values into a single
quark, thus allowing for arrays containing (tuples of) arrays.

Since all quarks in an array must have a common type, tuples only allow for
uniform nestings in which all inner arrays have the same shape. This restriction
is overcome with the dependent pair quark {′i,v:Σx :: I. T} of type Σx :: I. T .
In a dependent pair, the type of the second component may depend on the
index that is the first component. The type annotation Σx :: I. T is necessary
because the typing of a dependent pair is ambiguous. For example, the depen-
dent pair {′2, [|2, 2|[2]|]} has type Σx :: nat. [int|[x]], but also the types
Σx :: nat. [int|[2]], Σx :: nat. numvec([x, x]), and Σx :: nat. numvec([2, x]),
among others. Vice versa, several dependent pairs have the same type: both
dependent tuples {′2, [|2, 2|[2]|]} and {′3, [|1, 2, 3|[3]|]} have the type
Σx :: nat. [int|[x]]. Thus, by abstracting a variable from the shapes of the
arrays in a dependent pair, we may form nestings of heterogeneous arrays.

Tuple quarks and dependent pair quarks only contain fully evaluated array
values. The tuple constructor {t1, ..., tn} is a term that allows to form tuples
from arbitrary expressions. It first evaluates all terms ti to values vi from left
to right (E-Tup1) and then reduces to a scalar array with a single tuple quark
{v1, .., vn} according to rule E-Tup2. Analogously, there is also constructor
term for dependent pairs {′i,t : Σx :: I. T} which is explained by the rules E-
ITup1 and E-ITup2.

12

t −→ t′ (E-PrfApp)
f t −→ f t′

rank [|qp|[sd]|] −→ [|d|[]|] (E-Rank)

shape [|qp|[sd]|] −→ [|sd|[d]|] (E-Shape)

length [|ql|[l]|] −→ [|l|[]|] (E-Length)

f2 [|{[|qp|[sd]|], [|rp|[sd]|]}|[]|] −→
[|f̃2(q1, r1), .., f̃2(qp, rp)|[sd]|] (E-Bin)

∀k. 0 ≤ ik < si (E-Sel)
sel[|{[|qp|[sd]|], [|id|[d]|]}|[]|] −→ [|qι(d,sd,id)|[]|]

l ≥ 0
(E-Vec)

vec[|{[|l|[]|], [|q|[]|]}|[]|] −→ [| q, .., q︸ ︷︷ ︸
l

|[l]|]

++[|{[|qm|[m]|], [|q′n|[n]|]}|[]|] −→ [|qm, q′n|[m+̃n]|] (E-Cat)

0 ≤ n ≤ l
(E-Take)

take[|{[|n|[]|], [|ql|[l]|]}|[]|] −→ [|q1, .., qn|[n]|]

0 ≤ n ≤ l
(E-Drop)

drop[|{[|n|[]|], [|ql|[l]|]}|[]|] −→ [|qn+1, .., ql|[l−̃n]|]

tj −→ t′j
(E-Arr1)

[tj−1, tj , t
n−j|[fd]] −→ [tj−1, t′j , t

n−j|[fd]]

[[|qp
i |[c

e]|]n|[fd]] −→ [|qp
1 , .., q

p
n|[fd, ce]|] (E-Arr2)

t1 −→ t′1 (E-GenF)
gen x < t1 of t2 with t3 −→ gen x < t′1 of t2 with t3

t2 −→ t′2 (E-GenC)
gen x < v1 of t2 with t3 −→ gen x < v1 of t′2 with t3

∀k. fk ≥ 0 ∃j. fj = 0
(E-GenE)

gen x < [|fd|[d]|] of [|ce|[e]|] with t −→ [||[fd, ce]|]

∀k. fk > 0 ∀yd ∈ ~0..fd. cι(d,fd,yd) = t[x 7→i [yd]][x 7→ [|yd|[d]|]]
(E-Gen)

gen x < [|fd|[d]|] of v with t −→ [cp|[fd]]

t1 −→ t′1 (E-Loop1)
loop x1 < t1, x2 = t2 with t3 −→ loop x1 < t′1, x2 = t2 with t3

∀k. 0 ≤ sk

∀vd ∈ ~0..sd. fι(d,sd,vd) = [|λy. t3[x 7→i [vd]][x 7→ [|vd|[d]|]]|[]|]
(E-Loop2)

loop x < [|sd|[d]|], y = t2 with t3 −→ fp ...(f1 t2)

Fig. 7. Semantics of the array specific built-in operations

13

3.3.3 Let binding

The let binding allows to give names to the values of complex subterms. As
outlined by the evaluation rules E-Let and E-LetVal, let x = t1 in t2 first
evaluates t1 to a value and then replaces all free identifiers x in t2 with the
result. Moreover, the let binding serves to unpack tuples and dependent pairs
(E-LetTup, E-LetITup). Provided that t1 evaluates to a scalar array with
a single tuple quark {v1, .., vn}, the binding let {x1, .., xn} = t1 in t2 will
evaluate to t2 in which each identifier xi has been replaced with the ith tuple
component vi from left to right. Similarly, when t1 yields a dependent pair
{′i,v:Σx :: I. T}, let {′x1, x2} = t1 in t2 will first substitute x1 with the index
term i in t2 and then replace x2 with the value v in the body.

3.3.4 Built-in operations

The operational semantics of the more array specific language elements is
shown in Fig. 7. The primitives rank and shape are already known from
Section 2. An additional primitive length determines the length of a given
vector. The operations +, -, max, and min can be applied to pairs of shape-
conforming integer arrays. Their evaluation is defined by the rule E-Bin as
per-element applications of the respective operation. The selection sel {a, x},
also written a.[x], selects for any valid selection vector x an element from a.
For any non negative integer l and scalar array b, vec {l, b} yields a vector of
length l whose elements are all b. For a vector v of length l and an integer n
with 0 ≤ n ≤ l, take {l, v} and drop {l, v} yield the prefix of v with length l
and the suffix of v with length n− l, respectively.

3.3.5 Array construction

The array constructor [tn|[fd]] with ∀i. fi > 0 and n = Πd
i=1fi creates an

array by evaluating the cell terms tj, which must all evaluate to array values
of the same shape. The shape of the newly formed array is prefixed with
the frame shape fd. Its suffix is the common shape vector of the evaluated
cells. As shown in the evaluation rules E-Arr1, the cells are evaluated in no
specific order, thus introducing a data parallel flavor of concurrency. The data
vector of the new array is obtained by concatenating the cells’ individual data
vectors, e.g.

[[|1, 2, 3|[3]|], [|4, 5, 6|[3]|]|[2]] −→∗ [|1, 2, 3, 4, 5, 6|[2, 3]|].

Whereas array constructors statically fix the frame shape, with-loops allow
for shape-generic array definitions. The concept of the with-loop originates
from SaC. We have simplified its syntax and semantics for the context of this

14

work. An expression gen x < t1 of t2 with t3 defines an array with a frame
of shape t1 that contains cells of the cell shape t2. Each cell is computed by
evaluating the cell term t3 in which x is assigned the cell’s position inside the
frame.

Using a with-loop, we can for example apply a function f to each element of
an array a, yielding an array of results:

gen x < shape a of [||[0]|] with (f a.[x])

Both the frame shape and the cell shape are evaluated before the actual eval-
uation of the with-loop takes place (E-GenF, E-GenD). Provided that t1
evaluates to a strictly positive integer vector [|sd|[d]|], the cell shape may
be ignored and the entire expression is evaluated according to rule E-Gen.
The with-loop evaluates in one step to an array constructor [tpc|[s

d]], that
in turn will evaluate to the result array by the rules E-Arr1 and E-Arr2.
Each cell expression tpc is obtained by first substituting the index identifier x
in t3 with an index vector denoting the cell’s position inside the frame and
subsequently replacing the regular identifier x in t3 with an array of the same
content. If t1 specifies an empty frame shape, the whole with-loop will evalu-
ate to an empty array of shape t1 ++ t2 as stated by rule E-GenE. Having no
quarks, the empty array has quark type ⊥Q and is thus compatible with any
other quark type.

3.3.6 Reduction

The loop expression traverses an index space in lexicographic order with a
single loop-carried dependency. It is possible to define loops with both scalar
and vector boundaries. We restrict our presentation to the latter. In a term
of the form loop x1 < t1, x2 = t2 with t3, the non-negative integer vector t1
defines the index space. t2 serves as the initial value of the accumulator x2.
The loop body t3 is evaluated for all non-negative vectors up to t1 in ascending
lexicographic order. Thereby, the current position is bound to the identifier x1,
The accumulator x2 represents the intermediate loop result. As an example,
we provide a loop that computes the sum of integers from an array a of any
shape:

loop x < shape a, s = [|0|[]|] with s + a.[x]

3.3.7 Conditional

Finally, the language provides support for a generalized form of a conditional.
Its semantics is shown in Fig. 8. The expression case t in m evaluates to

15

t −→ t′ (E-Case)
case t in m −→ case t′ in m

case v in else⇒ t −→ t (E-Else)

r −→ r′ (E-Range)
case v in r ⇒ t | m −→ case v in r′ ⇒ t | m

M(v, rv)
(E-Match)

case v in rv ⇒ t | m −→ t

¬M(v, rv)
(E-Next)

case v in rv ⇒ t | m −→ case v in m

Fig. 8. Semantics for conditional expressions

one of multiple branches in m depending on the value of the integer (vector)
t. The branching condition is first evaluated to a value. This value is then
successively compared with the ranges specified in the branches of the form
r ⇒ tb | mn. If the value of t lies in the range r, the conditional evaluates
to tb. Otherwise, the next branch in mn is tried. In case there is no matching
branch, the terminal else⇒ te branch will be evaluated.

Using the case construct, we may for example define a dynamic check to verify
that a selection vector x points to a valid position in an array a. In particular,
the type checker will make use of this knowledge when it checks the selection
a.[x]:

case x in vec {length x, 0}..shape a ⇒ a.[x] | else⇒ 0

In this section, we have presented a core language for type-safe functional
array programming. The emphasis lies on the combination of shape-generic
programming and dependent types.

4 Shape-generic array programming with dependent types

We now illustrate shape-generic array programming with dependent types
with a series of practical examples. To improve legibility, we will employ some
notational simplifications. The type of a scalar array is denoted by its quark
type Q instead of its full array type [Q|[]]. Similarly, we abbreviate a scalar
array value [|q|[]|] with its sole quark q. To aid the definition of more com-
plex functions, we will use a notation similar to Haskell programs in which
the type declaration and the definition of a function appear on separate lines.
The transformation of the notational extensions into the core language should
be straightforward.

16

4.1 Shape-generic array operations

Using the with-loop, shape-generic algorithms may be specified. As a first
example, we develop a shape-generic map operation that applies a function to
each element of an array. map is a uniform array operation, i.e. an operation
whose result shape depends solely on the shapes of its arguments. We start
with a shape-specific implementation for 2× 2 matrices:

map : (int→ int) → [int|[2, 2]]→ [int|[2, 2]]

map f a = gen x < [|2, 2|[2]|] of [||[0]|] with f a.[x]

Using dependent types, we can generalize map such that it becomes applicable
to arbitrary matrices. We abstract the index variable s from the shape compo-
nent of the array type. In the definition, we replace the concrete frame shape
with shape a that gives us the appropriate value. Despite the function’s gen-
erality, the type states precisely the necessary conformance of the argument
and the result shape:

map : Πs :: natvec(2).
(int→ int) → [int|s]→ [int|s]

map ′s f a = gen x < shape a of [||[0]|] with f a.[x]

Even more general, by abstracting from the length of the index vector s, we
obtain a variant of map that is applicable to any integer array, no matter
whether it is a scalar, a vector, a matrix, or anything else. It is noteworthy
that this generalization does not require to change the definition of map any
further.

map : Πr :: nat. Πs :: natvec(r).
(int→ int) → [int|s]→ [int|s]

map ′r ′s f a = gen x < shape a of [||[0]|] with f a.[x]

To provide an example that uses of non-scalar array cells, we define multi-
plication for arrays of complex numbers. We represent complex numbers as
two-element vectors of doubles, stored in the cells of a double array. Thus, a
complex array of shape s is represented by a double array of shape s ++ [2].
For each complex product, the program cpxmul selects the real and imaginary
parts of the corresponding numbers from the argument arrays. The resulting

17

complex number becomes a cell in the result array.

cpxmul : Πr :: nat. Πs :: natvec(r).
[double|s ++[2]]→ [double|s ++[2]]→ [double|s ++[2]]

cpxmul ′r ′s a b =

gen x < take {rank a - 1, shape a} of [|2|[1]|] with

let ar = a.[x ++ [0]] in let ai = a.[x ++ [1]] in

let br = b.[x ++ [0]] in let bi = b.[x ++ [1]] in

[ar*br - ai*bi, ar*bi + ai*br|[2]]

An example for a non-uniform array operation is the generalized selection
gsel. It overcomes the restriction that the length of a selection vector must
match the rank of the array selected into. Given a shorter selection vector x
and an array a, it selects an array slice of those elements whose position in A
is prefixed with x. The shape of the result is thus drop {length x, shape a}.
We use a singleton type for the selection vector to enforce that its value must
range between ~0 and a prefix of the array shape.

gsel : Πr :: nat. Πs :: natvec(r).
Πl :: {nat in ..r + 1}. Πv :: {natvec(l) in ..take(l,s)}.
[int|s]→ numvec(v)→ [int|drop(l,s)]

gsel ′r ′s ′l ′v a x = gen y < drop {length x, shape a} of [||[0]|]

with a.[x ++ y]

Another interesting example is iota, a function that combines the power of
singleton types with dependent pairs. Given a non-negative integer vector v,
iota yields an array that contains all valid index vectors into an array of shape
v. The Σ-type indicates precisely that the values of the vectors range between
~0 and v.

iota : Πr :: nat. Πs :: natvec(r).
numvec(s)→ [Σy :: {natvec(r) in ..s}. numvec(y)|s]

iota ′r ′s v = gen x < v of [||[0]|]
with {′x,x : Σy :: {natvec(r) in ..s}. numvec(y)}

The result of iota can for example be used with the multiple selection msel.
It takes an array a and another array i of (legal) selection vectors into a. msel
then performs a selection into a for every vector in i and yields the array of
all results.

msel : Πr :: nat. Πs :: natvec(r).
Πt :: nat. Πu :: natvec(t).
[int|s]→ [Σy :: {natvec(r) in ..s}. numvec(y)|u]→
[int|u]

msel ′r ′s ′t ′u a i = gen x < shape i of [||[0]|]

with let {′j, y} = i.[x] in a.[y]

18

Using loops, we can define shape-generic variants of the well-known higher-
order functions fold. While foldl traverses the array elements in lexico-
graphic order, foldr starts with the greatest array index and progresses in
descending order.

foldl : Πr :: nat. Πs :: natvec(r).
(int→ int→ int) → int→ [int|s]→ int

foldl ′r ′s f n a =
loop x < shape a, acc = n with (f acc a.[x])

foldr : Πr :: nat. Πs :: natvec(r).
(int→ int→ int) → int→ [int|s]→ int

foldr ′r ′s f n a =
let as = shape a in

let b = as - (vec {length as, 1}) in
loop x < shape a, acc = n with (f a.[b - x] acc)

4.2 Case study: Inner product

As a more elaborate example for the expressive power of shape-generic func-
tional array programming, we now present a program for computing matrix
products. We will then generalize this program with little effort such that it
can also be used to compute matrix-vector products, vector-vector products
and similar operations.

Matrix multiplication is a shape-generic function with complex constraints on
the shapes of its arguments. Only if the number of columns of the first matrix
equals the number of rows of the second matrix, the result matrix will have
as many rows as the first argument and as many columns as the second.

matmul : Πp :: natvec(1). Πq :: natvec(1). Πr :: natvec(1).
[int|p ++ q]→ [int|q ++ r]→ [int|p ++ r]

We implement matrix multiplication by means of a with-loop that for each
element of the result array fetches the corresponding row from the first ar-
gument and the column from the second argument. It then combines both
vectors into a scalar by element-wise multiplication and subsequent reduction

19

by summation.

matmul ′p ′q ′r a b =
let pp = take {1, shape a} in

let rr = drop {1, shape b} in

gen x < pp ++ rr of [||[0]|] with

let arow = gsel ′2 ′(p ++ q) ′1 ′(take(1,x)) a (take {1, x}) in
let bcol = fsel ′2 ′(q ++ r) ′1 ′(drop(1,x)) b (drop {1, x}) in
sum ′1 ′q (mul ′1 ′q arow bcol)

In addition to the generalized selection gsel for selecting rows, the program
uses a similar function called fsel for selecting columns. The function sum is
defined in terms of foldl. In the definition of mul we assume we have an infix
operator ∗ for computing the integer product.

fsel : Πr :: nat. Πs :: natvec(r).
Πl :: {nat in ..r + 1}. Πv :: {natvec(l) in ..drop(r - l,s)}.
[int|s]→ numvec(v)→ [int|take(r - l,s)]

fsel ′r ′s ′l ′v a x =
gen y < take {(rank a) - (length x), shape a} of [||[0]|]
with a.[y ++ x]

sum : Πr :: nat. Πs :: natvec(r). [int|s]→ int

sum ′r ′s a = foldl ′r ′s (λx : int. λy : int. (x + y)) 0 a

mul : Πr :: nat. Πs :: natvec(r). [int|s]→ [int|s]→ [int|s]

mul ′r ′s a b = gen x < shape a of [||[]|] with a.[x] ∗ b.[x]

An interesting generalization of the matrix multiplication scheme is the inner
product ip. Instead of restricting its arguments to (suitable) matrices, ip

allows the arguments to have arbitrary shapes and an arbitrary number of axes
as long as the last axis of the first argument is as long as the first axis of the
second argument. The inner product then combines all the vectors along the
last axis (rows) of the first array with all vectors along the first axis (columns)
of the second array in the same style as matrix multiplication. The algorithm
for the inner product can be obtained from the matrix multiplication with
minimal effort by simply adding index parameters for the array ranks and

20

slight modification of the code.

ip : Πd :: nat. Πe :: nat.
Πp :: natvec(d). Πq :: natvec(1). Πr :: natvec(e).
[int|p ++ q]→ [int|q ++ r]→ [int|p ++ r]

ip ′d ′e ′p ′q ′r a b =
let dd = (rank a) - 1 in

let pp = take {dd, shape a} in

let rr = drop {1, shape b} in

gen x < pp ++ rr of [||[0]|] with

let arow = gsel ′(d + 1) ′(p ++ q) ′d ′(take(d,x)) a (take {dd, x}) in
let bcol = fsel ′(e + 1) ′(q ++ r) ′e ′(drop(d,x)) b (drop {dd, x}) in
sum ′1 ′q (mul ′1 ′q arow bcol)

Having defined the algorithm for the shape-generic inner product, we may de-
rive rank-specific algorithms for matrix multiplication of matrix-vector prod-
ucts by partial application:

matmul = ip ′1 ′1

matvecmul = ip ′1 ′0

sprod = ip ′0 ′0

5 Type checking

The evaluation rules will only evaluate array terms under certain constraints
between ranks, shape vectors, and even array elements. To rule out programs
that won’t evaluate to a value, we now present a type system for static verifica-
tion of array programs. Besides the terms, array programs also contain index
terms as well as sort and type declarations. Thus, in addition to type checking
the terms, we must sort check the index terms and verify the declarations’
well-formedness.

We specify the typing rules in a declarative style. Although this style makes the
rules short and clear, it also allows rules to be applied in non-deterministic or-
der and may result in potentially infinite typing derivations. We briefly sketch
out how the rules may be adapted for obtaining a type checking algorithm at
the end of the chapter.

5.1 Typing context

All relations necessary for verifying array programs employ a common typing
context Γ. It includes type declarations x : T , sort declarations x :: I, and

21

Γ ` idx :: ∗I (WFS-Idx)

Γ ` i :: {idx in 0..}
(WFS-Vec)

Γ ` idxvec(i) :: ∗I

Γ ` I :: ∗I Γ ` ir :: Ir Γ, x :: I ` x :: Ir (WFS-Subset)
Γ ` {I in ir} :: ∗I

Fig. 9. Well-formedness of sorts

additional constraints for confining index terms to specific index ranges, e.g.
x + 1 in 0..10. We assume that all variable names are pairwise distinct and
that all types, sorts, and index terms used in the context are well-formed. In
particular, all index variables used in a specific context element must have
been declared earlier.

Γ ::= · | Γ, x : T | Γ, x :: I | Γ, i in ir

5.2 Semantic judgments

During type checking, it is often necessary to verify that the value denoted
by an index term only ranges within specific bounds. We employ the two

judgments Γ |= i in ir and Γ ~|= i in ir to prove such propositions for scalar
indices and for index vectors, respectively: Both judgments are decided outside
of the type system with decision procedures working on the interpretation
of the sorts idx and idxvec(i) as integers and vectors of integers. We will
describe these procedures in Section 6. Using the index judgment for vectors,
we may, for example, verify that a vector of positive numbers is also non-
negative:

r :: {idx in 0..}, s :: {idxvec(r) in vec(r,1)..} ~|= s in vec(r,0)..

5.3 Well-formedness of sorts

Fig. 9 shows the relation Γ ` I :: ∗I for checking well-formedness of index
sorts. Using the sorting relation Γ ` i :: I, WFS-Vec ensures that, for every
vector sort idxvec(i), i is a non-negative integer. WFS-Subsort accepts
only those subset sorts {I in ir} whose bounds in ir have a sort compatible
with the base sort I, i.e. they have a common root sort Ir.

22

Γ ` i :: {I in ir}
(S-Superset)

Γ ` i :: I

Γ ` i :: idx Γ ` i :: I Γ |= i in ir
(S-SSubset)

Γ ` i :: {I in ir}

Γ ` i :: idxvec(il) Γ ` i :: I Γ ~|= i in ir
(S-VSubset)

Γ ` i :: {I in ir}

Γ ` i :: idxvec(i1) Γ ` i2 :: {idx in i1}
(S-VLen)

Γ ` i :: idxvec(i2)

x :: I ∈ Γ (S-Ctx)
Γ ` x :: I

Γ ` c :: idx (S-Idx)

∀j. Γ ` ij :: idx
(S-Vect)

Γ ` [i1, .., in] :: idxvec(n)

Γ ` i1 :: {idx in 0..} Γ ` i2 :: idx
(S-Vec)

Γ ` vec(i1,i2) :: idxvec(i1)

Γ ` i1 :: idxvec(m) Γ ` i2 :: idxvec(n)
(S-Cat)

Γ ` i1 ++ i2 :: idxvec(m +n)

Γ ` i1 :: {idx in 0..n + 1} Γ ` i2 :: idxvec(n)
(S-Take)

Γ ` take(i1,i2) :: idxvec(i1)

Γ ` i1 :: {idx in 0..n + 1} Γ ` i2 :: idxvec(n)
(S-Drop)

Γ ` drop(i1,i2) :: idxvec(n - i1)

Γ ` i1 :: idx Γ ` i2 :: idx
(S-SBin)

Γ ` f2(i1,i2) :: idx

Γ ` i1 :: idxvec(i) Γ ` i2 :: idxvec(i)
(S-VBin)

Γ ` f2(i1,i2) :: idxvec(i)

Γ ` i :: idx (RS-SFrom)
Γ ` i.. :: idx

Γ ` i :: idx (RS-STo)
Γ ` ..i :: idx

Γ ` i1 :: idx Γ ` i2 :: idx
(RS-SFromTo)

Γ ` i1..i2 :: idx

Γ ` i :: idxvec(il) (RS-VFrom)
Γ ` i.. :: idxvec(il)

Γ ` i :: idxvec(il) (RS-VTo)
Γ ` ..i :: idxvec(il)

Γ ` i1 :: idxvec(il) Γ ` i2 :: idxvec(il) (RS-VFromTo)
Γ ` i1..i2 :: idxvec(il)

Fig. 10. The sorting relation

23

Γ ` int : ∗Q (QWF-Int)

Γ ` T1 : ∗ Γ ` T2 : ∗
(QWF-Fun)

Γ ` T1 → T2 : ∗Q

Γ ` I :: ∗I Γ, x :: I ` T : ∗
(QWF-Pi)

Γ ` Πx :: I. T : ∗Q

∀j. Γ ` Tj : ∗
(QWF-Tup)

Γ ` {Tn} : ∗Q

Γ ` I :: ∗I Γ, x :: I ` T : ∗
(QWF-Sigma)

Γ ` Σx :: I. T : ∗Q

Γ ` Q : ∗Q Γ ` i :: {idxvec(n) in vec(n,0)..}
(WF-Array)

Γ ` [Q|i] : ∗
Γ ` i :: idx (WF-Num)

Γ ` num(i) : ∗
Γ ` i :: idxvec(n)

(WF-Numvec)
Γ ` numvec(i) : ∗

Fig. 11. Well-formedness of types and quark types

5.4 Sort checking

Every index term has an infinite number of sorts. For example, the index
term 1 + 1 may, as any scalar index, have the sort idx. But it is also a natural
number {idx in 0..}, a number between 0 and 10 {idx in 0..10}, and an
integer equal to 2 {idx in 2}.

The rules at the top of the sorting relation shown in Fig. 10 formalize this
intuition. The rule S-Superset states that every index of sort {I in ir} is
also of sort I. Conversely, if we can prove that an index term i of sort I is
constrained by a range ir then it is also of sort {I in ir}. Depending on
whether i is a scalar or a vector, the rules S-SSubset and S-VSubset will
prove the constraint using the scalar or the vector judgment, respectively. It is
noteworthy that there are no other rules employing the constraint provers.The
rule S-VLen uses this machinery to identify vector sorts of equal lengths, e.g.
a vector of sort idxvec(1 + 2) also has sort idxvec(3).

The rules for checking index terms determine for each term a general sort
according to the term’s meaning as described in Section 3 while requiring only
the necessary preconditions. The last rules in the figure define an auxiliary
sorting relation Γ ` ir :: I for checking the well-formedness of index ranges.

24

5.5 Well-formedness of types

The well-formedness relations for quark types Γ ` Q : ∗Q and types Γ ` T : ∗
are shown in Fig. 11. The relations follow the mutually recursive structure
of the types. A quark type is well-formed if the types and sorts it refers to
are well-formed. Similarly, an array type [Q|i] is well-formed if Q is a well-
formed quark type and the index expression i denotes a non-negative vector.
The type of singleton scalars num(i) requires a scalar index term i, whereas
singleton vector types numvec(i) need an index vector. Note that ⊥Q is not a
well-formed quark type: it may arise during type-checking but the programmer
is not allowed to use it explicitly in a program.

5.6 Subtyping

The subtype relations on types Γ ` T <: T and quark types Γ ` Q <:Q Q,
shown in Fig. 12, follow the same mutually recursive pattern. Both relations
are reflexive and transitive. The bottom quark type ⊥Q is a subtype of every
quark type. As in other type systems, subtyping on function quark types is
contravariant in the argument type and covariant in the result type (QSub-
Fun). More generally, according to QSub-Pi, a dependent function quark
type Πx1 :: I1. T1 is a subtype of another dependent function type Πx2 :: I2. T2 if
two conditions are met: Firstly, I2 must denote a subset of I1. This is verified
by declaring a fresh variable x of sort I2 and deriving that x then also has
sort I1. Secondly, when applied to an argument of sort I2, the result of the
first function must have a type which is a subtype of the second function’s
result type. The subtype relation for both the tuple quark type {T n} and the
dependent pair quark type Σx :: I. T is covariant in all positions.

The rules Sub-Num and Sub-Numvec formalize that every singleton scalar
is also a scalar integer array and that a singleton vector is also a an integer
vector. Subtyping on array types is covariant: by Sub-ArrQ, an array type
[Q1|i] is a subtype of another array type [Q2|i] when Q1 is a subtype of
Q2. This intuitive subtyping rule is known to cause problems in the presence
of mutable arrays [?]: An array of type [Q1|i] may be known in a different
context as a [Q2|i], with Γ ` Q1 <:Q Q2. Now, updating an element in the
latter context with a quark of type Q2 will break the typing in the former
context. It is a clear advantage of immutable arrays that they are not affected
by this subtle issue. The array types [Q|i1] and [Q|i2] are equivalent by
rule Sub-ArrShp if i1 and i2 denote the same shape. Sub-Single defines a
similar equality for singleton types.

25

Γ ` Q <:Q Q (QSub-Refl)

Γ ` Q1 <:Q Q2 Γ ` Q2 <:Q Q3
(QSub-Trans)

Γ ` Q1 <:Q Q3

Γ ` ⊥Q <:Q Q (QSub-Bot)

Γ ` S1 <: T1 Γ ` T2 <: S2 (QSub-Fun)
Γ ` T1 → T2 <:Q S1 → S2

Γ, x :: I2 ` x :: I1 Γ, x2 :: I2 ` T1[x1 7→i x2] <: T2
(QSub-Pi)

Γ ` Πx1 :: I1. T1 <:Q Πx2 :: I2. T2

∀j. Γ ` Tj <: Sj
(QSub-Tup)

Γ ` {Tn} <:Q {Sn}

Γ, x :: I1 ` x :: I2 Γ, x1 :: I1 ` T1 <: T2[x2 7→i x1]
(QSub-Sigma)

Γ ` Σx1 :: I1. T1 <:Q Σx2 :: I2. T2

Γ ` T <: T (Sub-Refl)

Γ ` T1 <: T2 Γ ` T2 <: T3 (Sub-Trans)
Γ ` T1 <: T3

Γ ` Q1 <:Q Q2
(Sub-ArrQ)

Γ ` [Q1|i] <: [Q2|i]

Γ ` i1 :: idxvec(i) Γ ` i2 :: {idxvec(i) in i1}
(Sub-ArrShp)

Γ ` [Q|i1] <: [Q|i2]

Γ ` i1 :: I Γ ` i2 :: {I in i1}
(Sub-Single)

Γ ` S(i1) <: S(i2)

Γ ` num(i) <: [int|[]] (Sub-Num)

Γ ` i :: idxvec(il) (Sub-Numvec)
Γ ` numvec(i) <: [int|[l]]

Fig. 12. Subtyping on types and quark types

5.7 Type checking

Now that we treated all the prerequisites, we can define the typing relation
Γ ` t : T and the quark typing relation Γ ` q :Q Q. The most basic typing rules
for functional array programs are summarized in Fig. 13. The subsumption
rules QT-Sub and T-Sub state that quarks and terms have multiple types
through subtyping.

According to rule T-Val, type checking of non-empty array values [|qp|[sd]|]

requires to verify that each quark qi has the same quark type Q. For arrays of
abstractions, Q has the form T1 → T2. Using the declared domain type T1, the
rule QT-Abs, checks an abstraction quark λx :T1. t by inserting x : T1 into
the environment and determining its result type T2. The rule for dependent

26

Γ ` q :Q Q1 Γ ` Q1 <:Q Q2
(QT-Sub)

Γ ` q :Q Q2

Γ ` c :Q int (QT-Int)

Γ, x : T1 ` t : T2 (QT-Abs)
Γ ` λx :T1. t :Q T1 → T2

Γ, x :: I ` t : T
(QT-Pi)

Γ ` λ′x :: I. t :Q Πx :: I. T

∀j. Γ ` vj : Tj
(QT-Tup)

Γ ` {vn} :Q {Tn}

Γ ` Σx :: I. T : ∗Q Γ ` i :: I Γ ` t : T [x 7→i i]
(QT-Sigma)

Γ ` {′i,t:Σx :: I. T} :Q Σx :: I. T

Γ ` t : T1 Γ ` T1 <: T2 (T-Sub)
Γ ` t : T2

x : T ∈ Γ (T-Ctx)
Γ ` x : T

n > 0 ∀j. Γ ` qj :Q Q
(T-Val)

Γ ` [|qn|[sd]|] : [Q|[sd]]

Γ ` [||[sd]|] : [⊥Q|[s
d]] (T-ValE)

Γ ` [|c|[]|] : num(c) (T-Num)

Γ ` [|cn|[n]|] : numvec([cn]) (T-Numvec)

Γ ` t1 : [T1 → T2|[]] Γ ` t2 : T1 (T-App)
Γ ` t1 t2 : T2

Γ ` t : [Πx :: I. T|[]] Γ ` i :: I
(T-IApp)

Γ ` t ′i : T [x 7→i i]

∀j. Γ ` tj : Tj
(T-Tup)

Γ ` {tn} : [{Tn}|[]]

Γ ` Σx :: I. T : ∗Q Γ ` i :: I Γ ` t : T [x 7→i i]
(T-ITup)

Γ ` {′i,t : Σx :: I. T} : [Σx :: I. T|[]]

Γ ` t1 : T1 Γ, x : T1 ` t2 : T2 (T-Let)
Γ ` let x = t1 in t2 : T2

Γ ` t1 : [{Tn}|[]] Γ, x1 : T1, .., xn : Tn ` t2 : Tn+1
(T-Unpack)

Γ ` let {xn} = t1 in t2 : Tn+1

Γ ` t1 : [Σx :: I. T|[]] Γ, xi :: I, x : T [x 7→i xi] ` t2 : T2
(T-IUnpack)

Γ ` let {xi, x} = t1 in t2 : T2

Fig. 13. Basic typing rules

27

functions works analogously. A dependent pair {′i,t:Σx :: I. T} has the quark
type Σx :: I. T if the index term i has sort I and if the term t has the type
obtained by substituting all references to the identifier x in T with the index
term i.

For an empty array value without quarks, no precise quark type can be de-
termined. For this reason, rule T-ValE assigns it the bottom quark type ⊥Q,
which is a quark subtype of any quark type. In addition to their array types,
constant integer scalars and vectors also have more specific constant singleton
types.

The rules T-App and T-IApp ensure that only scalar arrays of (dependent)
functions can be applied to suitable arguments. The result of applying a de-
pendent function of type Πx :: I. T to an index i has type T in which all index
identifiers x have been replaced with i. Well-typed tuple and dependent pair
constructors yield scalar arrays containing the respective quark. Vice versa,
unpacking can only be performed for scalar tuples.

Typing of the array specific built-ins is shown in Fig. 14. The rank and shape

primitives can be applied to arbitrary arrays and yield singleton types. length
is only applicable to singleton vectors and yields a scalar singleton. Three rules
are used to type applications of binary operations: They may be applied to
integer arrays of equal shape (T-Bin), yielding another of the same element
type and shape. More interestingly, when applied to (compatible) singletons
(T-BinS, T-BinV), the result is also a singleton whose value is characterized
by the application of the operation to the original singletons’ indices. The
vector operations vec, take, and drop always require appropriate singleton
arguments and yield a singleton vector formed in the same way.

The typing rule T-Sel statically enforces all the necessary preconditions of
the selection: the selection vector must be a singleton with appropriate length
that ranges within the boundaries of the array selected into. A (valid) selection
always yields a scalar array but never a singleton.

An array constructor with frame shape f is well-typed if all cells have the same
quark type Q and the same shape ic. The new array then has type [Q|f ++ ic].
In the special case where all cells of a vector are singleton scalars, rule T-
ArrNumvec gives the array the appropriate singleton vector type. Typing
of a with-loop gen x < t1 of t2 with t3 verifies that the frame shape t1 and
the cell shape t2 are non-negative vectors associated with the index vectors
i1 and i2, respectively. For checking the cell expression t3, the identifier x is
bound to both a vector sort ranging between zero and the frame shape and a
singleton vector with exactly that value. If the cell expression then has type
[Q|i2], where i2 is also the value of the cell shape t2, then the with-loop has
type [Q|i1 ++ i2].

28

Γ ` t : [Q|i] Γ ` i :: idxvec(il) (T-Rank)
Γ ` rank t : num(il)

Γ ` t : [Q|i]
(T-Shape)

Γ ` shape t : numvec(i)

Γ ` t : numvec(i) Γ ` i :: idxvec(il) (T-Length)
Γ ` length t : num(il)

Γ ` t : [{num(i1), num(i2)}|[]]
(T-BinS)

Γ ` f2 t : num(f2(i1,i2))

Γ ` t : [{numvec(i1), numvec(i2)}|[]]
Γ ` i1 :: idxvec(i) Γ ` i2 :: idxvec(i)

(T-BinV)
Γ ` f2 t : numvec(f2(i1,i2))

Γ ` t : [{[int|i], [int|i]}|[]]
(T-Bin)

Γ ` f2 t : [int|i]

Γ ` t : [{[Q|is], numvec(i)}|[]] Γ ` is :: idxvec(il)
Γ ` i :: {idxvec(il) in vec(il,0)..is}

(T-Sel)
Γ ` sel t : [Q|[]]

Γ ` t : [{num(il), num(i)}|[]] Γ ` il :: {idx in 0..}
(T-Vec)

Γ ` vec t : numvec(vec(il,i))

Γ ` t : [{numvec(i1), numvec(i2)}|[]]
(T-Cat)

Γ ` ++ t : numvec(i1 ++ i2)

Γ ` t : [{num(i), numvec(iv)}|[]]
Γ ` iv :: idxvec(il) Γ ` i :: {idx in 0..il + 1}

(T-Take)
Γ ` take t : numvec(take(i,iv))

Γ ` t : [{num(i), numvec(iv)}|[]]
Γ ` iv :: idxvec(il) Γ ` i :: {idx in 0..il + 1}

(T-Drop)
Γ ` drop t : numvec(drop(i,iv))

∀j. Γ ` tj : [Q|i]
(T-Arr)

Γ ` [tp|[cn]] : [Q|[cn] ++ i]

∀j. Γ ` tj : num(ij)
(T-ArrNumvec)

Γ ` [tn|[n]] : numvec([in])

Γ ` t1 : numvec(i1) Γ ` i1 :: {idxvec(n) in vec(n,0)..}
Γ ` t2 : numvec(i2) Γ ` i2 :: {idxvec(m) in vec(m,0)..}

Γ, x :: {idxvec(n) in vec(n,0)..i1}, x : numvec(x) ` t3 : [Q|i2]
(T-Gen)

Γ ` gen x < t1 of t2 with t3 : [Q|i1 ++ i2]

Γ ` t1 : numvec(i) Γ ` i :: {idxvec(n) in vec(n,0)..} Γ ` t2 : T
Γ, x1 :: {idxvec(n) in vec(n,0)..i}, x1 : numvec(x1), x2 : T ` t3 : T

(T-Loop)
Γ ` loop x1 < t1, x2 = t2 with t3 : T

Fig. 14. Typing rules for the array-specific language elements

29

Γ ` t : S(i) Γ |S(i) ` m : Tm
(T-Case)

Γ ` case t in m : Tm

Γ ` t : T (T-Else)
Γ |S(i) ` else⇒ t : T

Γ |S(i) ` r ::r ir Γ, i in ir ` t : T Γ |S(i) ` m : T
(T-Range)

Γ |S(i) ` r ⇒ t | m : T

Γ ` t : S(ir) Γ ` ir :: I Γ ` i :: I
(IR-Eq)

Γ |S(i) ` t ::r ir

Γ ` t : S(ir) Γ ` ir :: I Γ ` i :: I
(IR-From)

Γ |S(i) ` t.. ::r ir..

Γ ` t : S(ir) Γ ` ir :: I Γ ` i :: I
(IR-To)

Γ |S(i) ` ..t ::r ..ir

Γ ` t1 : S(i1) Γ ` t2 : S(i2)
Γ ` i1 :: I Γ ` i2 :: I Γ ` i :: I

(IR-FromTo)
Γ |S(i) ` t1..t2 ::r i1..i2

Fig. 15. Typing rules for conditional expressions

Similarly, typing of a loop loop x1 < t1, x2 = t2 with t3 also requires that the
loop boundary t1 is a non-negative singleton vector. In addition to binding x1

to an appropriate sort and a singleton vector, the accumulator x2 is bound to
the type of the initial value t2 during type checking of the loop expression t3.
If the loop expression preserves the accumulator’s type, that type is also given
to the entire loop.

Conditional expressions of the form case t in m are typed according to the
typing rules in Fig. 15. The type of the branching condition t is determined
first and must be a singleton type. Its type is needed to verify that all ranges
are compatible to the branching condition, i.e. that all ranges are are integer
singletons of the same shape as t. For this purpose, the auxiliary typing relation
Γ |S(i) ` m : T takes the branching expression’s type S(i). For branches
of the form r ⇒ t | m, the rule T-Range uses the range index relation
Γ |S(i) ` r ::r ir to check that the boundaries in r are indeed appropriate
singletons denoting an index range ir. Since the branch is only evaluated if
the value of the branching condition lies within the range r, it checks the
branch with the additional property i in ir. The branch must then have the
same type as the other branches. The type of the terminal branch else⇒ te
is just the type of te.

30

5.8 Properties of the type system

Having introduced all the rules, we can now prove that the type system indeed
provides type-safety. For this, we have to show that each (closed) well-typed
term is either a value or can make an evaluation step. Moreover, evaluation
should preserve the well-typedness such that the term can be evaluated further.
In our context, where we did not provide facilities for general recursion, this
means that any well-typed array program will terminate yielding an array
value.

Theorem 5.1 (Progress) For all closed and well-typed array terms t, either
t is value or ∃t′. t −→ t′.

Proof: By induction on typing derivations (see proof in appendix of extended
technical report [?]).

Theorem 5.2 (Preservation) If Γ ` t : T and t −→ t′, then Γ ` t′ : T .

Proof: By induction on typing derivations (see proof in appendix of extended
technical report [?]).

We have specified the typing rules in a declarative style, which is concise
but does not allow for a immediate implementation in a type checking algo-
rithm. In particular, since neither index terms have a unique sort nor terms
have a unique type, the sort and type conversion rules are applicable in non-
deterministic order. In order to derive a decidable type checking algorithm,
the non-determinism must be tamed. Since defining an algorithmic set of typ-
ing rules is beyond the scope of this paper, we briefly sketch out the necessary
modifications.

First, while most sort checking rules (Fig. 10) are syntax directed, the sort
conversion rules apply in non-deterministic order. The sort conversion rules
must be eliminated, their functionality transported into the all rules (not just
those of the sorting relation) that require it. Second, subtyping (Fig. 12) intro-
duces potential non-termination as the rules for transitivity and type equiva-
lence rules apply arbitrarily. Via subsumption, these infinite derivations may
arise anywhere in the typing derivation (Figs. 13–15). Thus, the subtyping
rules must be replaced by an algorithm that checks whether a type is a sub-
type of another type. Instead of relying on subsumption, the typing scheme
must apply this algorithm explicitly when necessary. Furthermore, without
subsumption, bounded type joins and meets must be computed whenever a
term’s type depends on the types of more than one of its sub terms. Finally,
more than one rule may apply for array values and array constructors. In these
cases, preference must be given to the more special num and numvec types.

31

6 Resolving Constraints

Type checking of array programs relies on the semantic judgments Γ |= i in ir

and Γ ~|= i in ir. They provide proof that under a given set of assumptions
Γ the value denoted by an index term i is constrained to an interval ir. Both
judgments are decided using procedures that operate on the interpretation of
the index sorts idx and idxvec(i) as integers and vectors of integers.

We partition the context Γ into the set S(Γ) which contains scalar sort decla-
rations and properties and the set V(Γ) consisting of vector sort declarations
and constraints on vectors. Both sets don’t contain sort declarations of subset
sorts. These are transformed into a declaration of the root sort and a subse-
quent sequence of constraints, e.g. x :: {idx in 0..} ; x :: idx, x in 0.. .
The type declarations in Γ are dispensable for constraint resolution. As shown
in the example below, the scalar index terms in V(Γ) may refer to variables
from S(Γ). However, there is no converse dependency since no scalar term has
a vector sub term.

Γ = d :: {idx in 0..}, s :: {idxvec(d) in vec(d,1)..}, x : [int|s]

S(Γ) = d :: idx, d in 0..

V(Γ) = s :: idxvec(d), s in vec(d,1)..

Scalar judgments Γ |= i in ir are checked using the assumptions in the set
S(Γ) only. The judgment is stated as a satisfiability problem with linear in-
teger arithmetic by interpreting the index properties as linear inequalities.
Current SMT solvers with support for linear arithmetic [?,?] can then refute
the negated property, thereby validating the judgment.

d :: idx, d in 0.., e :: idx, e in d.. |= e in 0..

⇔ d ≥ 0 ∧ e ≥ d ∧ ¬ e ≥ 0

The decision procedure for vector judgments Γ ~|= i in ir takes both sets
S(Γ) and V(Γ) into account. Similar to the approach for scalars, we rewrite
the problem such that is verifiable with existing means. A straightforward
approach would be to split up all vectors into scalar elements and to solve
the resulting scalar formula. However, as the length of vectors typically de-
pends on a variable bound in S(Γ), no finite number of elements will suffice.
Thus, instead of rewriting the problem as a scalar formula, we state it as a
formula in the array property fragment identified in [?] for which satisfiability
is decidable.

An array property is a formula of the form ∀i. ϕI(i) ⇒ ϕV (i) where the index
guard ϕI in our case always takes the form 0 ≤ i ∧ i ≤ l − 1 for some linear

32

term denoting the vector length l. For readability, we write 0 ≤ i < l. In the
value constraint, the quantified variable i may only be used in read expressions
of the form a[i].

The latter restriction rules out to express dependencies between a vector el-
ement at position i and another element at position j 6= i. For this reason,
we cannot straightforwardly rewrite constraints between index vectors whose
that contain the structural operations take, drop, or ++ as array properties.
Scheme T transforms well-behaved index vector terms into value constraint
terms; Scheme P transforms entire vector constraints into array properties,
where |i| denotes the length of a vector term and each j is a fresh variable.

T JxK[i] = x[i]
T

q
st

y
[i] = s

T Jf2(v1, v2)K[i] = f2(T Jv1K[i], T Jv2K[i])

P Ji1 in i2K = (∀j. 0 ≤ j < |i1| ⇒ T Ji1K[j] = T Ji2K[j])
P Ji1 in i2..K = (∀j. 0 ≤ j < |i1| ⇒ T Ji2K[j] ≤ T Ji1K[j])
P Ji1 in ..i2K = (∀j. 0 ≤ j < |i1| ⇒ T Ji1K[j] < T Ji2K[j])
P Ji1 in i2..i3K = (∀j. 0 ≤ j < |i1| ⇒ T Ji2K[j] ≤ T Ji1K[j] ∧ T Ji1K[j] < T Ji3K[j])

The following example shows a judgment for verifying that a vector of arbi-
trary length with strictly positive elements is also a non-negative vector and
the corresponding satisfiability problem encoded in the array property frag-
ment. As described in [?], the quantifiers can be correctly eliminated from
this formula by first converting into negated normal form and subsequently
instantiating the quantifiers.

d :: idx, d in 0.., s :: idxvec(d), s in vec(d,1).. ~|= s in vec(d,0)..

⇔ d ≥ 0 ∧ (∀i. 0 ≤ i < d ⇒ s[i] ≥ 1) ∧ ¬(∀i. 0 ≤ i < d ⇒ 0 ≤ s[i])

In general, a vector judgment Γ ~|= i in ir also contains the structural vector
operations take, drop, and ++. These cannot be translated into the array
property fragment, as they establish constraints between vector elements with
different indices. E.g. for vectors x :: idxvec(n), y :: idxvec(n + 5) the
property x in drop(5,y) would translate to (∀i. 0 ≤ i < n ⇒ x[i] = y[i + 5]).
Unfortunately, it was shown in [?] that extending the array property fragment
with arithmetic expressions over universally quantified index variables gives a
fragment for which satisfiability is undecidable.

Nonetheless, almost all vector judgments arising in practical programs can still
be decided, because the structural operations can be eliminated in a simple,
yet effective preprocessing step. Only when the structural operations can’t be

33

eliminated, the judgment can neither be validated nor refuted. In this situa-
tion, the program is rejected with an appropriate error message. We informally
sketch out the transformation of judgments with structural vector operations
by means of an example. The example arises during type checking of the gen-
eralized selection gsel.

gsel : Πr :: nat. Πs :: natvec(r).
Πl :: {nat in ..r + 1}. Πv :: {natvec(l) in ..take(l,s)}.
[int|s]→ numvec(v)→ [int|drop(l,s)]

gsel ′r ′s ′l ′v a x = gen y < drop {length x, shape a} of [||[0]|]

with a.[x ++ y]

In order to verify that the selection inside the with-loop does not exceed the
array bounds, the following judgment must be validated.

r :: idx, r in 0.., l :: idx, l in 0..r + 1,

s :: idxvec(r), s in vec(r,0).., v :: idxvec(l), v in vec(l,0)..take(l,s),
y :: idxvec(r - l), y in vec(r - l,0)..drop(l,s) ~|= v ++ y in vec(r,0)..s

Vector v is constrained by the first l elements of s whereas y depends on the
last r - l elements of s. Furthermore, the concatenation of v and y is compared
to the entire vector s. During preprocessing, s is thus split into two vectors s1 of
length l and s2 of length r - l. All occurrences of take(l,s) and drop(l,s) are
then substituted with s1 and s2, respectively. s itself is consistently replaced
with s1 ++ s2.

r :: idx, r in 0.., l :: idx, l in 0..r + 1,

s1 :: idxvec(l), s2 :: idxvec(r - l), s1 ++ s2 in vec(r,0)..,
v :: idxvec(l), v in vec(l,0)..s1, y :: idxvec(r - l), y in vec(r - l,0)..s2

~|= v ++ y in vec(r,0)..s1 ++ s2

The intermediate result has no take and drop operations left, but some con-
catenations. These are eliminated by splitting up the properties they appear
in. s1 ++ s2 in vec(r,0).. is split into the two properties s1 in vec(l,0)..,
s2 in vec(r - l,0)... The conclusion v ++ y in vec(r,0)..s1 ++ s2 is treated
similarly. Both vectors v and s1 have length l. The property is thus split at that
point, yielding the two properties v in vec(l,0)..s1, y in vec(r - l,0)..s2.
The result contains no further structural operations. It may be validated after
rewriting it as a formula in the array property fragment.

r :: idx, r in 0.., l :: idx, l in 0..r + 1,

s1 :: idxvec(l), s2 :: idxvec(r - l), s1 in vec(l,0).., s2 in vec(r - l,0)..,
v :: idxvec(l), v in vec(l,0)..s1, y :: idxvec(r - l), y in vec(r - l,0)..s2

~|= v in vec(l,0)..s1, y in vec(r - l,0)..s2

34

Elimination of structural operations fails if the constraints don’t imply how
to split a variable or a vector constraint into segments. We obtain an example
of this when we change the order of x and y inside the selection of gsel and
once more check whether all accesses to a are in bounds.

gsel ′r ′s ′l ′v a x = gen y < drop {length x, shape a} of [||[0]|]

with a.[y ++ x]

After eliminating take and drop operations as in the previous example, we
get the following intermediate judgment.

r :: idx, r in 0.., l :: idx, l in 0..r + 1,

s1 :: idxvec(l), s2 :: idxvec(r - l), s1 ++ s2 in vec(r,0)..,
v :: idxvec(l), v in vec(l,0)..s1, y :: idxvec(r - l), y in vec(r - l,0)..s2

~|= y ++ v in vec(r,0)..s1 ++ s2

In the property y ++ v in vec(r,0)..s1 ++ s2, the vectors y and s1 have length
r − l and length l, respectively. The scalar constraints don’t allow to derive
whether r − l < l, r − l = l, or r − l > l and thus the property can’t be split
any further. In consequence, the entire program is rejected with a message
that points out the location of the structural error.

Due to permuting x and y, the last variant of gsel was erroneous to start with
and should not have been accepted anyways. In fact, we did not yet encounter
a valid program that was rejected because of a structural problem. This is not
surprising as the structure of shape vectors and array index vectors is crucial
for every rank-generic program.

A potential alternative would be to rule out all cases in which the struc-
tural operations cannot be eliminated a priori by reflecting the structure of
index vectors in their sort. For example, an index vector v1 could have the
sort idxvec(l1, l2) to indicate that it consists of two segments of the stated
lengths. Whenever it is combined with other vectors v2, v3 in a dyadic oper-
ation f(v1, v2) or in a vector property v1 in v2..v3, the other vectors must
have provably the same structure. By construction, all structural operations
could then be eliminated in single step, allowing to rewrite the judgment as
an array property immediately.

7 Related Work

The work presented in this paper combines multidimensional, irregularly nested
array programming with dependent types. In the following, we briefly mention

35

work from the different areas of programming language research that’s related
to our’s.

Array languages like MatLab [?], APL [?,?], J [?] or Nial [?] are interpreted
and mostly untyped. In particular they are known for offering a plethora of
well optimized operators for each array operation supported by the language.
This stands in contrast to our work in which we try to condense the essence
of multidimensional array programming into a small number of primitively
recursive constructs.

As soon as attempts are made to compile array programs for efficient execu-
tion, knowledge about the array properties and their relationships becomes
crucial. For example in FISh [?], each function f is accompanied by a shape
function #f which maps the shape of the argument to the shape of the result.
Shape inference proceeds by first inlining all functions and then statically
evaluating all shape functions. FISh rejects all programs that contain non-
constant array shapes. In our approach, we may statically verify shape- and
rank-generic programs without excessive inlining. Rediscovering array proper-
ties for better compilation of untyped array languages such as MatLab is an
area of ongoing research, see for example [?,?,?]. In our context the array types
contain everything the programmer knows about the structural properties of
the program, eliminating the need for such work.

The field of functional array programming was pioneered by Sisal [?] and
Nesl [?]. Sisal demonstrated that functional array programming and implicit
parallelization can achieve competitive run time performance, despite the ag-
gregate update problem. While Sisal restricts itself to (one-dimensional) vec-
tors of homogeneously nested vectors, Nesl also supports irregularly nested
vectors. Recent work has been going on to integrate nested data-parallelism
into Haskell [?,?]. In contrast to our work, these approaches provide no
support for truly multidimensional arrays.

As the last field of related work we survey the research area of dependently
typed programming [?]. Dependent types naturally lend themselves for de-
scribing arrays as they allow the use of (dynamic) terms to index within fami-
lies of types. Indeed, the classical example for dependently typed programming
is the index family of vectors from which an element with a particular length
is selected. The expressive power of dependent types renders the problem of
type equality generally undecidable as it boils down to deciding whether any
two expressions denote the same value. For example, Cayenne [?] is a fully
dependently typed language. Its type system is undecidable and it lacks phase
distinction. Both problems can be overcome by restricting the type language as
done in epigram [?,?], which rules out general recursion in type-forming ex-
pressions to retain decidability. Recently, the Ynot project aims at integrating
dependent types into programming systems with effectful computations [?].

36

Most closely related to our approach are more light-weight approaches such as
Xi and Pfenning’s dml [?], Xi’s applied type system [?], and Zenger’s indexed
types [?]. These approaches allow term-indexing into type families only for
certain index sorts. The type-checking problem is reduced to constraint solv-
ing on these sorts, which is decidable. Our work shares some of its technical
underpinnings with dml. Xi and Pfenning also proposed the use of dependent
types for the elimination of array boundary checks. However, apart from that,
dml offered no particular support for array programming or data parallelism.

8 Conclusion

Making the expressive power of dependent types available for practical pro-
gram development is a subject of ongoing research. It is a particular challenge
to design programming systems with dependent types in a way such that a
user is not required to have expert knowledge in type theory. We think that in
the array programming paradigm, employing dependent types is both intuitive
and beneficial.

Dependent types are intuitive for array programs because rank and shape
are inherent properties of multidimensional arrays. Scientific programmers are
used to specifying their algorithms in terms of array shapes: every undergrad-
uate course on linear algebra teaches the type of matrix multiplication as
Rm×n ×Rn×p → Rm×p. For specifications like this, dependent types allow the
developer to concisely express the function signature in a computer program.

Dependent types are beneficial for array programs, because structural con-
straints are crucial for their safe evaluation. A type system with dependent
types can statically enforce the relevant constraints, thus ruling out programs
that may fail during evaluation. Without potential run time errors, the ac-
cepted programs do not need to perform expensive run time checks. Moreover,
a compiler can exploit the structural properties encoded in the dependent
types for extensive program optimization.

Since our type system uses an SMT solver to verify the necessary constraints,
type checking proceeds fully automatically. The system thus resembles a type
system for a mainstream programming language that either accepts or rejects
a program with an appropriate message. In case of rejecting a program, our
system can even provide precise values of the index variables for which the
program will fail. This behavior is similar to a model checking tool that yields
a counter example for which the desired property is violated.

The ideas presented in this paper form the basis of the functional array pro-
gramming language Qube. We are currently developing a compiler [?] for Qube

37

that implements dependent array types as proposed in this paper. To simplify
programming with indexed types, the system allows implicit index arguments
which are automatically reconstructed if omitted [?]. We envision to exploit
the information provided by the dependent types to generate more efficient
array programs both for sequential and parallel execution. For example, pro-
vided we know that the execution of otherwise dead code does not cause a
run time error, this code can safely be eliminated even with a call-by-value
semantics. Similarly, we may replace selections into arrays defined by means
of with-loops with the selected element’s definition, thereby achieving defor-
estation. Finally, in combination with a memory management scheme based
on run time reference counting or a linear type system, we may often perform
destructive array updates even in our context of immutable arrays. The struc-
tural information in the dependent types will help the compiler to identify
potentially reusable arrays. Eventually, a substantially revised and extended
future version of SaC may incorporate the essential concepts of Qube.

Acknowledgments We would like to thank Florian Büther and Markus
Weigel for contributing to the compiler for the Qube language. We also thank
Johannes Blume for many interesting discussions about resolution of vector
constraints.

38

