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ABSTRACT
The advent of multicore processors has raised new demand for har-
nessing concurrency in the software mass market. We summarise
our previous work on the data parallel, functional array processing
language SAC. Its compiler technology is geared towards highly
runtime-efficient support for shared memory multiprocessors and,
thus, is readily applicable to today’s off-the-shelf multicore sys-
tems. Following a brief introduction to the language itself, we iden-
tify the major compilation challenges and outline the solutions we
have developed.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.2 [Programming
Languages]: Language Classifications—applicative (functional)
languages, concurrent, distributed, and parallel languages; D.3.3
[Programming Languages]: Language Constructs and Features—
concurrent programming structures, dynamic storage management

General Terms
Multicore programming

Keywords
SAC, Single Assignment C, generic array programming, automatic
parallelisation, data parallel programming

1. INTRODUCTION
The advent of multicore processors has raised new demand for

expressing and exploiting concurrency in mainstream software en-
gineering. The systems available on the processor mass market to-
day consist of a growing number of standard (von Neumann) cores,
which are symmetrically connected to a shared memory, i.e., they
effectively constitute shared memory architectures. From research
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in the last few decades it is well known that programming such sys-
tems efficiently can be a challenging task: Application problems
need to be subdivided and scheduled to processing resources, and
the granularity of individual subtasks needs to be chosen carefully;
memory access must be controlled to avoid the cache coherence
protocol or the memory subsystem as a whole to quickly develop
into a bottleneck, etc. As a consequence, it requires considerable
expertise in programming parallel systems in addition to applica-
tion domain specific knowledge in order to expose concurrency to
the executing machinery in a successful way.

An extra challenge arises from the fact that most commonly used
approaches to parallel programming are rather low-level: Programs
usually need to be fine-tuned to the particularities of the target hard-
ware. Therefore, whenever applications are to be executed on new
hardware they need to be at least partially rewritten. This con-
tributes to the high cost of engineering parallel programs.

The only remedy to this situation lies in tools and languages that
enable advanced compilers to automatically identify concurrency
and to efficiently map it onto different multicores architectures. So
far, this has only been achieved in application areas where specific
concurrency patterns prevail. Amongst them, approaches based on
data-parallel programming play a major role. Our contribution to
this field of research is the data-parallel functional programming
language SAC (Single Assignment C) [1, 2]. Partly inspired by ear-
lier developments in the areas of SISAL [3], NESL [4] and APL [5],
we geared the design of SAC towards a certain set of application
domains: numerical kernels in scientific, signal processing and im-
age processing applications. However, it turns out that the under-
lying array programming paradigm is suitable for a much broader
range of application areas including financial modelling and data
mining.

Our predominant motivation with SAC is to demonstrate how
we can combine high-level declarative array programming with a
runtime performance that is competitive to imperative solutions.
The compiler technology that we have developed in this context
aggressively exploits the conceptual advantages of the declarative
paradigm for large-scale program transformation. Indeed, we man-
age to achieve sequential runtime performance levels that are com-
petitive with FORTRAN code [6]. Compiler-directed generation of
multithreaded code does not only allow SAC programs to take ad-
vantage of multicore processors and shared memory systems thereof
without any additional programming effort [7], but given the com-
petitive sequential performance generates real speedups over exist-
ing solutions [8, 9].

In this paper we summarise the key compiler technology that we
have developed in order to be able to compile SAC-programs ef-
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ficiently into multithreaded code for shared memory architectures.
Since this architectural model matches today’s mass market mul-
ticore processor architectures, we have a ready-to-use technology
for harnessing the full power of these machines without enforcing
the programmer to be aware of the target architecture in mind.

The remainder of this paper is organised as follows. We be-
gin with a brief introduction to SAC in Section 2. It focuses on
WITH-loops, the central data parallel construct. They prepare the
grounds for an array-oriented programming style, which we illus-
trate in Section 3. A consequent application of this programming
style leads to both: highly abstract code and intensive use ofWITH-
loops. How we actually compile theseWITH-loops into multi-
threaded code is outlined in Section 4. Section 5 outlines the key
optimisation techniques that improve the granularity of individual
threads, and Section 6 describes the design of our memory man-
agement subsystem, which has proved crucial for achieving high
performance. Eventually, we draw conclusions in Section 7.

2. INTRODUCING SAC
As the name “Single Assignment C” suggests, SAC leaves the

beaten track of functional languages with respect to syntax and
adopts a C-like notation. This is meant to facilitate adaptation
for programmers with a background in imperative languages, the
prevalent paradigm in our targeted application domains. Core SAC
is a functional, side-effect free variant of C: we interpret assign-
ment sequences as nested let-expressions, branches as conditional
expressions and loops as syntactic sugar for tail-end recursive func-
tions; details can be found in [1]. Despite the radically different un-
derlying execution model (context-free substitution of expressions
vs. step-wise manipulation of global state), all language constructs
adopted from C show exactly the same operational behaviour as
expected by imperative programmers. This allows programmers to
choose their favourite interpretation of SAC code while the com-
piler exploits the benefits of a side-effect free semantics for ad-
vanced optimisation and automatic parallelisation.

On top of this language kernel SAC provides genuine support
for processing truly multidimensional and truly stateless/functional
arrays using a shape-generic style of programming. Any SAC ex-
pression evaluates to an array. Arrays may be passed between
functions without restrictions. Array types include arrays of fixed
shape, e.g.int[3,7], arrays of fixed rank, e.g.int[.,.], and ar-
rays of any rank, e.g.int[*]. The latter include scalars, which
we consider rank-0 arrays with an empty shape vector. For conve-
nience and equivalence with C we useint rather than the equiv-
alentint[] as a type notation for scalars. The hierarchy of array
types induces a subtype relationship, and SAC supports function
overloading with respect to subtyping.

SAC only provides a small set of built-in array operations. Es-
sentially, there are primitives to retrieve data pertaining to the struc-
ture and contents of arrays, e.g. an array’s rank (dim(array)) or its
shape (shape(array)). A selection facility provides access to indi-
vidual elements or entire subarrays using a familiar square bracket
notation:array[idxvec].

All aggregate array operations are specified usingWITH-loop ex-
pressions, a SAC-specific array comprehension:

with {
( lower_bound <= idxvec < upper_bound) : expr;

}: genarray( shape, default)

Here,lower_bound andupper_bound denote expressions that must
evaluate to integer vectors of equal length. They define a rectan-
gular (generally multidimensional) index set. The identifieridxvec

represents elements of this set, similar to loop variables inFOR-
loops. However, we deliberately do not define any order on these
index sets. We call the specification of such an index set agener-
ator and associate it with some potentially complex SAC expres-
sion. Thus, we create a mapping between index vectors and values,
in other words an array. As an example, consider theWITH-loop

with {
([0,0] <= iv < [3,5]) : 42;

}: genarray( [3,5], 0)

that defines a 3× 5 matrix with all elements uniformly set to 42.
The scope ofidxvec (here namediv) is confined to the expression
associated with the generator. It can be used to access the current
index location. For example, theWITH-loop

with {
([0] <= iv < [5]) : iv[0];

}: genarray( [5], 0)

computes the vector[0,1,2,3,4]. Note thativ denotes a 1-ele-
ment vector rather than a scalar. Therefore, we need to select the
first (and only) element fromiv to achieve the desired result. Ac-
tually, it is not the generator that defines the shape of the resulting
array, but the first expression following the key wordgenarray. So
far, the two have always coincided, but for example

with {
([1] <= iv < [4]) : 42;

}: genarray( [5], 0)

computes the vector[0,42,42,42,0]. We still create a 5-element
vector, but only the three inner elements are defined as 42 while
all others are set to thedefault value, which is given by the second
expression following the key wordgenarray. Since the default
expression is not within the scope of a generator, it has no access to
the index. Hence, all array elements not covered by any generator
are guaranteed to have the same value.

WITH-loops are not limited to a single generator. For example,
theWITH-loop

with {
([1] <= iv < [4]) : 1;
([3] <= iv < [5]) : 2;

}: genarray( [6], 0)

defines the vector[0,1,1,2,2,0]. All elements of the resulting
array still not covered by any of the generators are initialised with
the value of the default expression, 0 in the example. Whenever the
index sets defined by the various generators are not pairwise dis-
joint, the order of the generators matters: in the example the array’s
value at index location[3], which is covered by both generators is
set to 2 rather than to 1, i.e., the last generator dominates.

SAC actually features several variants ofWITH-loops. Let us
assume we have named the array defined by the previousWITH-
loopA. Then, themodarray-WITH-loop

with {
([0] <= iv < [3]) : 3;

}: modarray( A)

computes the vector[3,3,3,2,2,0]. More precisely, it computes
a new array that has exactly the same shape as the existing array
referred to by the expression following the key wordmodarray.
The computation of those elements covered by one or more gener-
ators follows exactly the same pattern as in the case ofgenarray-
WITH-loops, but the remaining elements are defined by the values
of the corresponding elements in the referenced array rather than
by a common default value.
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AnotherWITH-loop variant supports the definition of reduction
operations. For example, thefold-WITH-loop

with {
(iv < shape(A)) : A[iv];

}: fold( +, 0)

computes the sum of all elements of an existing arrayA. The key
word fold is followed by the name of a binary associative and
commutative function and an expression defining that function’s
neutral element. In analogy to the otherWITH-loop variants, we
compute a set of values, here the elements ofA, and eventually ap-
ply the given fold operation. Note, that we have omitted the lower
bound in the generator. For allWITH-loops this defaults to the zero
vector of appropriate length. Likewise, we may omit the specifica-
tion of an upper bound ingenarray- andmodarray-WITH-loops.
If so, the upper bound coincides with the shape of the array to be
created. Furthermore, the specification of a neutral element in a
fold-WITH-loop may be omitted if the fold operation is built-in.

Another extension ofWITH-loops that has significant consequen-
ces for the complexity of the compilation process affects genera-
tors. In addition to dense rectangular index ranges, as in all exam-
ples shown so far, SAC supports regular index grids within rectan-
gular boundaries: Generators optionally feature astep vector that
determines the periodicity in each dimension and awidth vector
that describes the block size within the periodic pattern. For exam-
ple,

with {
([1] <= iv < [11] step [4] width [2]) : 1;

}: genarray( [12], 0)

yields the vector[0,1,1,0,0,1,1,0,0,1,1,0]. Like the bound-
ary vectors step and width vectors are in fact expression positions
and may be computed from function arguments at runtime.

3. PROGRAMMING METHODOLOGY
SAC propagates a programming methodology based on the prin-

ciples of abstraction and composition. Rather than building entire
application programs directly by means ofWITH-loops, we merely
utilise them to define small abstractions with a well defined mean-
ing. They in turn form the building blocks for constructing more
complex operations and eventually entire application programs by
composition.

Fig. 1 illustrates the principle of abstraction by rank-invariant
definitions of three common array operations. The overloaded def-
initions of the functionabs and the infix operator>= extend the
corresponding scalar functions to arrays of any rank and shape.
The functionany is a standard reduction operation, which yields
true if any of the argument array elements istrue, otherwise it
yieldsfalse. Note that SAC only requires the annotation of types
in function signatures while the compiler infers types of local vari-
ables.

In analogy to the examples in Fig. 1, the SAC standard library
provides a plethora of array operations similar to the built-ins of
APL [10, 11], J [12], NIAL [13] or FORTRAN-90. Among them
are element-wise extensions of arithmetic and relational operators,
typical reduction operations like sum and product, various subarray
selection facilities as well as shift and rotate operations and many
more.

Basic array operations defined byWITH-loops lay the founda-
tion for constructing more complex operations by means of com-
position. Fig. 2 illustrates this principle by a generic convergence
criterion for iterative algorithms of any kind, which is entirely de-
fined by composition of basic array operations.

double[*] abs (double[*] a)
{

res = with {
(iv) : abs( a[iv]);

}: genarray( shape(a), 0);
return( res);

}

bool[*] (>=) (double[*] a, double[*] b)
{

res = with {
(iv) : a[iv] >= b[iv];

}: genarray( min( shape(a),
shape(b)), 0);

return( res);
}

bool any (bool[*] a)
{

res = with {
(iv < shape(a)) : a[iv];

}: fold( ||, false);
return( res);

}

Figure 1: Defining rank-invariant array operations

The example of the shape-generic convergence criterion nicely
demonstrate the power of shape-generic array programming: One
may read the definition of the functioncontinue as if it was ap-
plied to scalar arguments, and in fact it can be applied to scalars.
However, the shape-generic definition of the individual array oper-
ations used as building blocks immediately makes the whole func-
tion applicable to arrays of arbitrary rank. Not only does this tech-
nique liberate programs from loop nestings and explicit indexing
that obfuscate the true functionality of an operation, but it also
makes the function more generally applicable and more easily main-
tainable.

bool continue (double[*] new,
double[*] old,
double eps)

{
return( any( abs( new - old) >= eps));

}

Figure 2: Defining array operations by composition

4. EXPLOITING CONCURRENCY
SAC programs offer essentially two different sources of concur-

rency. Thanks to the functional semantics, the evaluation order
of subexpressions is only limited by data dependencies. Although
semicolon-separated lists of assignments, as adopted from C, insin-
uate a certain evaluation order to programmers with an imperative
mindset, the SAC compiler is actually free to reorder them for op-
timisation purposes or to execute them in parallel if desired. This
is in stark contrast to the similar lookingdo-notation of HASKELL,
where semicolons are used to express a defined execution order
in an otherwise purely functional context. The second source of
concurrency in SAC programs areWITH-loops. Throughout Sec-
tion 2 we stressed the fact that generators definesets of indices
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Figure 3: Multithreaded execution models

and, hence,WITH-loops describe sets of computations, either to
initialise the elements of a new array or as basis for a reduction
operation.

During the last two (if not more) decades a lot of research has
gone into harnessing the first form of concurrency. The bottom
line, however, is that an implicit approach to parallelisation is not
feasible in practice. Although it is rather cheap to identify concur-
rently executable subexpressions, it turns out to be extremely diffi-
cult to identify those ones that actually justify their parallel execu-
tion by paying off the corresponding overhead for synchronisation
and communication [14, 15, 16].

As a consequence, we utilise concurrency on the general ex-
pression level only for optimisation purposes and entirely focus
on WITH-loops for parallelisation. Since any (library-defined) ar-
ray operation in SAC in one way or another boils down to a set
of WITH-loops, they are ubiquitous in intermediate SAC code and
account for the vast majority of program execution time. From a
compiler writer’s perspective they offer a standardised interface to
express a wide range of array operations in a data parallel way. For
each element of the multidimensional index space the correspond-
ing expression is independent of all others. In contrast to “parallel”
loops in imperative languages, the functional semantics of SAC for-
mally guarantees the absence of hidden dependencies.

We call the smallest entity of execution amicrothread. A micro-
thread evaluates exactly one associated expression for a single ele-
ment of the index set. The data parallel approach usually leads to
a massive unfolding of concurrency: The number of microthreads
cooperatively executing an individualWITH-loop typically exceeds
the number of available computing resources by orders of magni-
tude, leading to our first compilation challenge: In order to actu-
ally exploit multiple processing cores we need the assistance of the
operating system. More precisely, we must express our computa-
tion in terms of operating system threads, which are then scheduled
by the operating system for concurrent execution onto processor
cores. Unfortunately, system level threads are usually quite ex-
pensive, and, hence, a one-to-one mapping of our microthreads to
operating system threads is prohibitive. Our experience shows that
employing a number of system threads similar to the number of in-
dependent computing resources is more likely to yield satisfactory
performance. Therefore, we need to schedule microthreads to op-
erating system threads. Three issues are essential for the successful
scheduling of microthreads:

• Parallel execution of aWITH-loop leads to a synchronisation
barrier. Hence, we need to schedule microthreads to system
threads in a way that smoothly balances the computational
workload.

• In our context the code associated with each microthread is
dominated by array accesses, which more or less directly
map to memory load instructions in compiled code. As a
consequence, scheduling policies must take data locality into
account.

• Thanks to multiple generators with periodic step and width
specifications, loop structures in compiled code can already
be complicated in the purely sequential case. Therefore, we
must orthogonalise the realisation of microthread scheduling
from the underlying code.

We have experimented with various scheduling policies; details
can be found in [7]. Approaches with a central work queue from
which system threads take microthreads for execution proved clearly
unsatisfactory. This is not so much an effect of congestion upon
access to the shared work queue, but essentially due to poor data
locality.

Eventually, we have adopted two different scheduling policies: a
purely static and a semi-dynamic one. Our experience shows that in
many array processing codes workload is actually fairly evenly dis-
tributed among microthreads. As a consequence, static policies that
subdivide the index space of microthreads into evenly sized rectan-
gular blocks, one per system thread, perform reasonably well, in
particular as they incur very little scheduling overhead at runtime.

Our semi-dynamic scheduling policy is inspired by affinity loop
scheduling techniques [17, 18]; it is based on an a-priori static al-
location of work similar to the static policy. However, each system
thread further subdivides its pre-allocated index space of micro-
threads into a private and a public subspace: Whereas each sys-
tem thread definitely executes the microthreads in its private sub-
space, it may actually share the workload associated with its public
subspace. As soon as a system thread has completed all its pre-
allocated microthreads, both from its private and from its public
index subspace, it commences “stealing” microthreads from other
system thread’s public index subspaces.

Based on the assumption that the number of microthreads greatly
exceeds the number of processor cores, we restrict ourselves to a
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single level of parallelism. Hence, program execution is always
in one of two states: either a singlemaster thread executes the
sequential part of the program or a fixed number ofworker threads
cooperatively execute a singleWITH-loop. This is illustrated on
the left hand side of Fig. 3. WITH-loops nested within others do
not lead to a further unfolding of parallel activity, but are executed
sequentially. This restriction allows us to come up with a much
leaner and more efficient runtime system.

Since the number of worker threads is a runtime constant, the
runtime system does not terminate worker threads after having com-
pleted oneWITH-loop and restart them for computing the following
one. In fact, our realisation of the fork/join execution model starts
all worker threads at once upon program startup and keeps them
alive until the whole program terminates. Fork and join points are
implemented by tailor-made synchronisation primitives, as illus-
trated in the centre of Fig. 3. A detailed description of our multi-
threaded runtime system can be found in [7].

Currently, we are experimenting with a less restricted execution
model, which we illustrate on the right hand side of Fig. 3. In this
model, which we calladaptive-hybrid, sequential code sections be-
tween twoWITH-loops can be executed either by the master thread
as before or in a replicated way by all worker threads (hence the
term “hybrid”). The advantage of replication is that it reduces syn-
chronisation and communication requirements. For example, repli-
cating the computation of some value needed by all worker threads
saves the synchronisation cost of having the worker threads wait for
the master thread to finish computing that value and the communi-
cation cost of making the computed value available to the worker
threads.

Unfortunately, replication of sequential code is not always fea-
sible because we need to preserve the observable behaviour of the
program and code may interact with the execution environment in
one or another way. As a simple example consider code that pro-
duces some output. This output must appear only once and, hence,
the code cannot be replicated. We decide about replicated or se-
quential execution in each individual case based on code analysis
(hence the term “adaptive”). More details about this novel approach
can be found in [19].

5. AGGREGATION OF WITH-LOOPS
Our programming methodology based on the composition of in-

dependently developed and tested components to larger compo-
nents has its obvious merits with respect to code reuse and soft-
ware engineering principles. Unfortunately, it also has a drawback
when it comes to parallel execution: Each individual microthread
only executes a small number of instructions. Take the convergence
criterion introduced in Section 3 as an example. Applied to reason-
ably large arrays, it offers a huge amount of concurrency. How-
ever, the amount of computation per array element in each of the
four WITH-loops is almost negligible. This situation adversely af-
fects the ratio between productive computation and organisational
overhead in case of parallel execution and inevitably leads to sub-
optimal parallel performance.

To remedy this situation we have developed a compiler optimi-
sation framework that systematically aggregates compositions of
computationally light-weightWITH-loops into single, computation-
ally heavy-weightWITH-loops. We have identified three different
types of composition and address each by a tailor-made compiler
optimisation. They are accompanied by and owe much of their ef-
fectiveness to a large number of standard optimisation techniques
like function inlining, constant folding, loop unrolling, loop invari-
ant removal or variable propagation to name just a few [1, 2].

Our first optimisation is namedWITH-loop folding. It is simi-

lar in spirit to deforestation techniques [20, 21, 22] developed in
the context of general-purpose functional languages and addresses
computational pipelines like the one in the convergence criterion
example: the result of each computational step, which is repre-
sented by aWITH-loop, becomes the argument of the subsequent
step. Executed naively, this code results in the costly creation of
three intermediate arrays before the final boolean result is com-
puted. Given that individualWITH-loops are the basis for parallel
program execution, the corresponding organisational overhead also
arises three times. WITH-loop folding effectively performs a for-
ward substitution of expressions from top to bottom, thus replacing
the selection of an element from an intermediate array by the defin-
ing expression itself. Fig. 4 shows the result of applyingWITH-loop
folding (and of course function inlining) to the convergence crite-
rion example: we compute the entire predicate by a singleWITH-
loop, that traverses both argument arrays exactly once and does not
create any intermediate data structures.

bool continue (double[*] new,
double[*] old,
double eps)

{
r = with {

(iv < min( shape(new), shape(old))):
abs( new[iv] - old[iv]) >= eps;

}: fold( ||, false);
return( r);

}

Figure 4: Intermediate representation of convergence criterion
after WITH -loop folding

The convergence criterion only demonstrates the most simple op-
timisation case handled byWITH-loop folding: EachWITH-loop
has a single generator only, the generators are all identical and
there is no computation on the index variable in the associated ex-
pressions. Fig. 5 shows the more challenging example of a simple
1-dimensional relaxation kernel. The original code implicitly con-
tains a total of 7WITH-loops: two for each application ofrotate
and one for each arithmetic operator. By means ofWITH-loop fold-
ing, supported by a large number of standard optimisations, this
implementation ofrelax is internally transformed into the single
WITH-loop shown in Fig. 5. For additional information onWITH-
loop folding see [23].

Our secondWITH-loop-specific optimisation is calledWITH-loop
fusion. It is similar in spirit to tupling techniques [24] in general-
purpose functional languages or conventional loop fusion [25, 26]
in imperative languages. WITH-loop fusion primarily addresses
pairs of WITH-loops that, unlike in the above cases, have no data
dependencies. Take as an example the definition of the function
minmaxval in Fig. 6. Following our programming methodology its
implementation is based on the composition of two simpler func-
tions,minval andmaxval, that in turn are implemented usingWITH-
loops. Executed naively, each search for a minimum or a maximum
value is done in parallel, but strictly one after the other. The argu-
ment array is traversed twice and there is a synchronisation barrier
in between.

WITH-loop fusion transforms the two originalWITH-loops into
a single one. More precisely, the generatedWITH-loop is an inter-
nal extension of language-levelWITH-loops. It has two operations
(fold(min) andfold(max)) and, likewise, the generator is associ-
ated with two expressions (a[iv] and againa[iv]) and the entire
WITH-loop yields two values (minv andmaxv). It comes handy that
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double[.] relax( double[.] v)
{

return( (rotate( 1, v) + v + rotate( -1, v)) / 3.0);
}

WITH-loop folding

double[.] relax( double[.] v)
{

r = with {
([0] <= iv < [1]) : (v[shape(iv)-1] + v[iv] + v[iv+1]) / 3.0;
([1] <= iv < shape(v)-1) : (v[iv -1] + v[iv] + v[iv+1]) / 3.0;
(shape(v)-1 <= iv < shape(v)) : (v[iv -1] + v[iv] + v[iv-shape(v)+1]) / 3.0;

}: modarray( v) );
return( r);

}

Figure 5: Effect of WITH -loop folding on 1-dimensional relaxation kernel

SAC also features functions that yield multiple values, as shown in
Fig. 6. Further applications of standard optimisations, in particu-
lar common subexpression elimination, turn the pair of expressions
(a[iv],a[iv]) into a single expression block of the form

{ val = a[iv]; return( val , val); }

This further transformation reduces the number of memory load
instructions by one half.

double minval( double[*] a)
{

minv = with {
(iv) : a[iv];

}: fold( min);
return( minv);

}

double maxval( double[*] a)
{

maxv = with {
(iv) : a[iv];

}: fold( max);
return( maxv);

}

double , double minmaxval( double[*] a)
{

return( minval( a), maxval( a));
}

WITH-loop fusion

double , double minmaxval( double[*] a)
{

minv , maxv = with {
(iv) : (a[iv], a[iv]);

}: (fold( min), fold( max));
return( minv , maxv);

}

Figure 6: Effect of WITH -loop fusion on function computing the
minimum and the maximum value of an array

Again, the optimisation challenge lies inWITH-loops that are
more complex than an introductory example: multiple generator-
expression pairs, affine functions on the index variables, periodic
generators, different operators, restricted data dependencies, etc.
Fig. 7 shows a more challenging example: We combine the relax-
ation kernel of Fig. 5 with the convergence criterion of Section 3.
Following a series ofWITH-loop folding steps within each individ-
ual part of the computation,WITH-loop fusion (by the help of many

double[.], bool relaxstep( double[.] old ,
double eps)

{
new = relax( v);
con = continue( new, old , eps);
return( new, con);

}

WITH-loop fusion

double[.], bool relaxstep( double[.] old ,
double eps)

{
res, con =
with {
([0] <= iv < [1]) : {

...
}
([1] <= iv < shape(old)-1) : {

new = (old[iv -1] + old[iv]
+ old[iv+1]) / 3.0;

con = abs( new - old[iv]) >= eps;
return( new, con);

}
(shape(old)-1 <= iv < shape(old)) : {

...
}

}: (modarray( old), fold( ||));
return( res, con);

}

Figure 7: Effect of WITH -loop fusion on relaxation step with
convergence test
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standard optimisations) eventually manages to fuse the two remain-
ing WITH-loops into a single one that computes both the new array
and the convergence predicate in a joint step. A formal definition
of WITH-loop fusion can be found in [27].

The last of our threeWITH-loop condensing optimisation tech-
niques isWITH-loop scalarisation. It addressesWITH-loops that
are nested within each other and aims at creatingWITH-loops that
always operate on the element level of arrays. NestedWITH-loops
typically arise whenever the element type of argument arrays is not
one of the built-in scalar types, e.g.int or double, but itself a
user-defined array type. Fig. 8 shows an excerpt from the SAC stan-
dard library module for complex numbers. We introduce complex
numbers as 2-elementdouble vectors and overload the plus op-
erator with two further instances for complex numbers and arrays
of complex numbers. Whereas the former instance uses casting to

typedef double[2] complex;

complex (+) (complex a, complex b)
{

return( (:complex) (((:double[2]) a)
+ ((:double[2]) b)));

}

complex[*] (+) (complex[*] a, complex[*] b)
{

r = with {
(iv) : a[iv] + b[iv];

}: genarray( min( shape(a),
shape(b)),

(:complex )[0.0 ,0.0]);
return( r);

}

standard optimisations

complex[*] (+) (complex[*] a, complex[*] b)
{

r = with {
(iv) : with {

(cv) : a[iv][cv]
+ b[iv][cv];

}: genarray( [2], 0.0);
}: genarray( min( shape(a),

shape(b)), ...);
return( r);

}

WITH-loop scalarisation

double[*] (+) (double[*] a, double[*] b)
{

r = with {
(iv) : a[iv] + b[iv];

}: genarray( min( shape(a),
shape(b)), ...);

return( r);
}

Figure 8: Effect of WITH -loop scalarisation on arithmetic oper-
ations on arrays of complex numbers

double vectors and the corresponding addition on them, the lat-
ter very much resembles the familiar pattern of element-wise array
operations.

WITH-loop scalarisation replaces the typecomplex by its defi-
nition and increases the rank of arrays as necessary. Likewise, the
index space of the scalarisedWITH-loop on the bottom of Fig. 8
is increased by an additional dimension. Unfortunately, the type
system of SAC currently is not expressive enough to capture the
fixed extent of two elements along the innermost axis of arrays
while leaving the extent unspecified for all other axes. The effect of
WITH-loop scalarisation is twofold: Firstly, it avoids the creation of
temporary arrays for each element of the index space of the outer
WITH-loop. Secondly, it makes scheduling of microthreads more
flexible. A formal definition ofWITH-loop scalarisation can be
found in [28].

6. MEMORY MANAGEMENT
At first glance, implicit memory management does not seem to

be a particularly special feature for a functional programming lan-
guage like SAC. All functional languages and even modern imper-
ative languages like Java or C# feature automatic garbage collec-
tion. The prevailing technique is tracing garbage collection [29].
The principle is as follows: Allocation of memory reduces to push-
ing a global pointer forward by the amount of memory requested.
Memory is typically not de-allocated explicitly. Instead, allocation
continues until all available memory is exhausted, upon which exe-
cution of the program itself is temporarily suspended for a garbage
collection cycle. The garbage collector traces (hence the name) the
entire program graph to mark all data that is still needed. After-
wards, the heap is reorganised such that all remaining data struc-
tures are at the beginning of the address space and the allocation
pointer is reset to the first available address.

Unfortunately, tracing garbage collection is unsuitable for an
array language like SAC. Firstly, arrays tend to be large. It is
not uncommon for SAC programs that 90% of the heap is allo-
cated to only a few different arrays. Re-locating these arrays in
a garbage collection cycle is prohibitively expensive. Secondly,
tracing garbage collection provides little help to overcome theag-
gregate update problem [30]. In a functional environment, data
structures never change their values. Instead, new data structures
are created that hold the newly computed values and typically also
some values copied from the old instance of the data structure. This
can be implemented fairly efficiently for the typical functional data
structures like lists and trees, that are made up of many small cells.
Instead of copying the whole list or tree, one only needs to copy
individual cells and update a few pointers.

The opposite is true for arrays. Naively updating an array ele-
ment in a functionally sound way requires copying the whole ar-
ray, which is clearly prohibitive in terms of performance. Copy-
ing could be avoided though if we knew that the original array is
not needed anywhere else and, hence, would immediately become
garbage after the update operation. Unfortunately, this informa-
tion is not available with tracing garbage collection unless provided
through type system features like state monads [31] or uniqueness
types [32]. However, these techniques also enforce a very imper-
ative coding style on the programmer that runs counter the idea of
declarative programming.

To overcome these pitfalls the SAC memory management sub-
system is based on reference counting [33] and active heap man-
agement. Each array is associated with an additional counter that
keeps track of the number of active references to this array. Com-
piled SAC code is augmented with instructions to increment and
decrement these counters as necessary. As soon as the counter is
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decremented to zero, the array and the counter can safely be de-
allocated.

To a similar extent as tracing garbage collection proves unsuit-
able for SAC, the good reasons for not using reference counting in
other environments vanish. Arrays in SAC are non-cyclic and, at
least for the time being, also unnested. This avoids costly counter
update and memory de-allocation cascades. Although we intend to
support nested arrays in the future, we assume the typical nesting
depth to be small. Moreover, reasonably large arrays make mainte-
nance overhead for reference counters negligible, both in terms of
extra storage for the counter and extra code for its manipulation.

Most importantly, reference counting provides us with a solu-
tion to the aggregate update problem. Before executing an element
update operation, we consult the current state of the array’s refer-
ence counter and only copy the whole array if necessary. In fact,
reference counting information can be useful in a variety of situ-
ations. For example, the element-wise summation of two equally
shaped arrays yields an entirely new array. Nevertheless, if the ref-
erence counter of one of the argument arrays equals one, we can
safely reuse that array’s memory for constructing the result array.
As a consequence, we not only spare memory allocation and de-
allocation overhead, but we also reduce the memory footprint of
the operation by one third.

While the general case requires reference counters to be incre-
mented and decremented at runtime, static analysis can do a lot
to reduce the actual number of these operations. More importantly,
static analysis often allows us to decide at compile time about mem-
ory de-allocation or reuse. In [34] we provide a basic scheme for
augmenting SAC code with reference counting instructions and de-
scribe a number of optimisations that reduce the incurred runtime
overhead through static analysis of code properties.

Unlike tracing garbage collection, reference counting relies on
an additional memory allocator to organise the heap, from which
memory is allocated and to which memory is released in an arbi-
trary sequence of allocation and de-allocation requests. Whereas
efficient allocators are available for sequential execution, multi-
threaded access to a shared heap requires proper synchronisation.
While it is simple to synchronise each allocation and de-allocation
operation using a global lock, it also immediately becomes a con-
currency bottleneck. In fact, we must organise the heap in a way
that reduces locking to a minimum. To achieve this SAC uses its
own memory allocator that is integrated with the multithreaded run-
time system. This design allows us to exploit various side condi-
tions and invariants that a general-purpose multithreaded memory
allocator cannot rely on.

n
subheapsubheap

1

shared global heap

Figure 9: Architecture of parallel memory allocator

Fig. 9 illustrates the architecture of our memory allocator. Within
the global address space the SAC memory allocator pre-allocates
subheaps for each thread. These subheaps are exclusively available
to the corresponding worker thread and, thus, can be accessed with-
out synchronisation. Thread-specific subheaps are used for mem-
ory requests up to a certain configurable size. Only if a worker
thread needs to allocate a chunk of memory that exceeds this size
or if a worker thread needs to extend its subheap from the global
heap, synchronisation is required. However, such events are rare in
practice.

The organisation of the heap into concurrently accessible sub-

heaps also solves the problem of false sharing [35] because worker
threads use disjoint sections of the address space to allocate small
data structures. Furthermore, our runtime system ensures that each
worker thread can identify itself and directly access its private heap.
In contrast, the restricted standard interface for memory alloca-
tors requires general-purpose solutions to rely on expensive thread-
specific global data to access such information.

We can also statically distinguish between code sections that are
executed in a single threaded manner and those that are actually
executed in parallel. Therefore, we can entirely avoid synchroni-
sation even on access to the global heap in many situations. This
tight integration between multithreaded runtime system and heap
organisation proved essential for achieving high performance with
applications that require frequent allocation and de-allocation of
arrays; details can be found in [36].

7. CONCLUSION
The ubiquity of parallelism in current and future computing hard-

ware requires new programming models that expose concurrency
at the right level of abstraction and new compilation technology
that efficiently maps programs to execution machinery. We have
presented the functional language SAC and its concept of generic,
compositional array programming as one such approach. Further-
more, we have identified the major challenges in compiling SAC
code into efficient code for modern multicore processors and out-
lined the most important aspects of the compilation framework that
we have developed for SAC:

• efficient organisation of multithreaded program execution and
aggregation of microthreads to system threads,

• systematic aggregation of compositions of computationally
light-weight WITH-loops into fewer, computationally inten-
siveWITH-loops,

• efficient memory management based on reference counting
and active administration of the shared heap.

Space does not permit us to quantify the effects of our various tech-
niques on the runtime performance of compiled SAC programs.
However, several case studies [8, 9, 6] have shown that despite a
generic, compositional style of programming and the use of func-
tional stateless arrays with implicit memory management, our com-
pilation framework succeeds in competing well with hand-optimis-
ed FORTRAN code. Moreover, our fully compiler-directed paral-
lelisation yields substantial additional performance gains on sym-
metric shared memory multiprocessor architectures including to-
day’s off-the-shelf multicore processors. By matching high se-
quential performance with implicit parallelisation SAC realises real
speedups over existing low-level solutions, whose manual paralleli-
sation would be labour-intensive and costly.
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