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ABSTRACT
Memory management plays a key role when trying to compile
functional programs into efficiently executable code. In particu-
lar when using flat representations for multi-dimensional arrays,
i.e., when using a single memory block for the entire data of a
multi-dimensional array, in-place updates become crucial for highly
competitive performance.

This paper proposes a novel code generation technique for per-
forming fold-operations on hyper-planes of multi-dimensional ar-
rays, where the fold-operation itself operates on non-scalar sub-
arrays, i.e., on vectors or higher-dimensional arrays. This tech-
nique allows for a single result array allocation over the entire
folding operation without requiring the folding operation itself to
be scalarised. It enables the utilisation of vector operations without
any added memory allocation or copying overhead. We describe
our technique in the context of SaC, sketch our implementation in
the context of the compiler sac2c and provide some initial perfor-
mance measurements that give an indication of the effectiveness of
this new technique.
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1 INTRODUCTION
High-Level array languages such as Futhark[11], Accelerate[4],
Lift[19], Halide[15], or SaC[16] have demonstrated that it is possi-
ble to generate very efficient parallel codes from abstract problem
specifications. This resonates very well with the functional credo
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of the “what not how” and it opens up competitive parallel perfor-
mance to domain experts without requiring them to become HPC
experts.While it has been shown across many different projects that
this goal can be reached in principle, we are still far from having
techniques that can cope with all possible high-level expressions
equally well, let alone having a single tool chain that comprises all
known techniques. In particular when applying the array approach
to new application areas, we typically identify new code pattern
that are not yet covered well enough to allow the programmer to
solely concentrate on the “what”.

This paper focuses on one particular code-pattern which ap-
pears frequently in applications that naturally lend themselves
to algorithmic descriptions on higher-dimensional arrays (dimen-
sionality ≥ 3) such as for example CNNs (Convolutional Neural
Networks)[24]. More specifically, it deals with fold-operations that
are mapped across the outer dimensions of higher-dimensional
arrays whose folding operation itself computes non-scalar arrays
from non-scalar arrays. The challenge here is memory management.
In order to avoid excessive memory allocations or copying, we need
to perform the reduction operation in-place on the result array. As
the folding operation expects arrays as arguments and produces
arrays as results, any intermediate “accumulator values” are arrays
as well. Furthermore, since the folding operation does not operate
on the outermost axis but is mapped across the outermost axis, any
in-place folding has to be done entirely on sub-arrays, requiring
accumulator values to be mapped into parts of the result array.

One way to avoid this problem is to re-write the computation
into a semantically equivalent one that performs folding-operations
on the innermost dimension(s). Optimisations such asWith-Loop-
Scalarization [9] aim at such transformations. Unfortunately, such
a re-write (i) is not always possible, (ii) for the given scenario leads
to poor spatial locality of memory accesses, and (iii) it typically
inhibits the use of vector operations.

In this paper, we propose a code generation technique that al-
lows such reductions on sub-arrays to be performed in place. It
constitutes a novel extension of the code generation techniques that
have been developed in the context of SaC [10]. Our contributions
are:

• a clear identification of the code pattern that poses the mem-
ory management challenge

• an analysis how this challenge can be met in the context of
flat array representations

• a code generation scheme that enables in-place reductions
on non-scalar hyper-planes

Section 2 gives a short overview of the SaC language and some
of its features relevant to the presented work, section 3 provides a
detailed account of the problem the new code generation technique
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will resolve. Section 4 briefly explains the pre-existing code genera-
tion before section 5 relates this to the problem at hand. Section 6
then proposes a solution in the form of the “in-place accumula-
tor optimisation”, a modification of the code generation process.
We quantify the effect of our optimisation in section 7 where we
discusses the results of several benchmark comparisons between
optimised and non-optimised code. Sections 8 and 9 then discuss
related work and summarise the drawn conclusions, respectively.

2 SAC
SaC is an array language with N-dimensional arrays at its core.
Scalar values are considered zero-dimensional arrays, vectors are
one-dimensional arrays, matrices are two-dimensional arrays, and
so forth. Arrays in SaC are described by their data and their shape.
The shape of an array can be accessed with the shape function. For
instance, an array with shape [2,4,5] has three dimensions. The
first dimension has two elements, and each element can be seen
as an array of shape [4,5]. Indexing in SaC looks and works the
same as in C. An array can be suffixed with square brackets and an
index to select a specific part of the array.

There are three main ways in SaC to create arrays. An array
literal can be used, enumerating all the elements of an array. These
can also be nested to any depth. For instance, [[1,2,3],[4,5,6]]
is an array of shape [2,3]. The empty array, [], has shape [0], a
one-dimensional array with no elements. The number 2 is consid-
ered an array of shape [], a zero-dimensional array. The ability to
look at the shape of any value, even the shape of a shape, or the
shape of a number, allows the definition of algorithms that work
for arbitrarily shaped input.

The genarray construct is a slightly more general approach to
creating arrays. It takes a shape description and a single element,
and then fills an array of the given shape with copies of that el-
ement. For instance, genarray([2,3],1) will produce the same
array as [[1,1,1],[1,1,1]]. This will also work if the element
is a non-scalar array. The same array as the previous example can
for instance also be obtained by genarray([2],[1,1,1]), or by
genarray([2],genarray([3],1)).

The third and most general approach to defining arrays in SaC is
the with-loop. It gives a description of an array, by successively call-
ing some code that generates an individual element, parameterised
by the index of that element. This can be seen as a for loop, but
instead of a variable representing the iteration number, there are
variables representing the current indices into the resulting array.
As an example, figure 1 uses a with-loop to describe the array shown
in figure 1b with the code 9 - abs(x-y), where x and y are the
indices into the array. This with-loop uses the keyword genarray,
to indicate that it is creating a new array of shape [5,10] with
default element 0. While the example of figure 1 uses constants to
keep it simple, the bounds of the with-loop ([0,0] and [5,10]) can
be arbitrary expressions. Even the vector of indices ([x,y]) can be
represented by a single variable to abstract away over the number
of indices. The lower and upper bound can be defined by using
the shape function over an existing array. This can then be used
to define functions that are polymorphic over the shape of their
arguments. Indices within the bounds are filled using the body of
the withloop. Any indices outside the bounds will be filled using
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We quantify the effect of our optimisation in section 7 where we
discusses the results of several benchmark comparisons between
optimised and non-optimised code. Sections 8 and 9 then discuss
related work and summarise the drawn conclusions, respectively.

2 SAC
SaC is an array language with N-dimensional arrays at its core.
Scalar values are considered zero-dimensional arrays, vectors are
one-dimensional arrays, matrices are two-dimensional arrays, and
so forth. Arrays in SaC are described by their data and their shape.
The shape of an array can be accessed with the shape function. For
instance, an array with shape [2,4,5] has three dimensions. The
first dimension has two elements, and each element can be seen
as an array of shape [4,5]. Indexing in SaC looks and works the
same as in C. An array can be suffixed with square brackets and an
index to select a specific part of the array.

There are three main ways in SaC to create arrays. An array
literal can be used, enumerating all the elements of an array. These
can also be nested to any depth. For instance, [[1,2,3],[4,5,6]]
is an array of shape [2,3]. The empty array, [], has shape [0], a
one-dimensional array with no elements. The number 2 is consid-
ered an array of shape [], a zero-dimensional array. The ability to
look at the shape of any value, even the shape of a shape, or the
shape of a number, allows the definition of algorithms that work
for arbitrarily shaped input.

The genarray construct is a slightly more general approach to
creating arrays. It takes a shape description and a single element,
and then fills an array of the given shape with copies of that el-
ement. For instance, genarray([2,3],1) will produce the same
array as [[1,1,1],[1,1,1]]. This will also work if the element
is a non-scalar array. The same array as the previous example can
for instance also be obtained by genarray([2],[1,1,1]), or by
genarray([2],genarray([3],1)).

The third and most general approach to defining arrays in SaC is
the with-loop. It gives a description of an array, by successively call-
ing some code that generates an individual element, parameterised
by the index of that element. This can be seen as a for loop, but
instead of a variable representing the iteration number, there are
variables representing the current indices into the resulting array.
As an example, figure 1 uses a with-loop to describe the array shown
in figure 1b with the code 9 - abs(x-y), where x and y are the
indices into the array. This with-loop uses the keyword genarray,
to indicate that it is creating a new array of shape [5,10] with
default element 0. While the example of figure 1 uses constants to
keep it simple, the bounds of the with-loop ([0,0] and [5,10]) can
be arbitrary expressions. Even the vector of indices ([x,y]) can be
represented by a single variable to abstract away over the number
of indices. The lower and upper bound can be defined by using
the shape function over an existing array. This can then be used
to define functions that are polymorphic over the shape of their
arguments. Indices within the bounds are filled using the body of
the withloop. Any indices outside the bounds will be filled using
the default element. Figure 2 contains a function calculating a more
general version of the code in figure 1. Instead of always calculating
a matrix of constant size, the dimensions of the matrix can now be

1 diagonal = with {
2 ( [0,0] <= [x,y] < [5,10] ): 9 - abs(x-y);
3 } : genarray( [5,10], 0);

(a) Example code

Result:
9, 8, 7, 6, 5, 4, 3, 2, 1, 0
8, 9, 8, 7, 6, 5, 4, 3, 2, 1
7, 8, 9, 8, 7, 6, 5, 4, 3, 2
6, 7, 8, 9, 8, 7, 6, 5, 4, 3
5, 6, 7, 8, 9, 8, 7, 6, 5, 4

(b) Value of diagonal variable

Figure 1: A genarray-with-loop example

1 int[.,.] diagonal (int x, int y) {
2 return with {
3 ( [0,0] <= ivec < [x,y] ) :
4 (max(x,y) - 1) - abs(ivec[0]-ivec[1]);
5 } : genarray( [x,y], 0);
6 }

Figure 2: A shape-polymorphic function with with-loop
body

1 int[.] sum(int[.,.] input){
2 return with {
3 ( [0] <= iv < shape(input)[0] ) :
4 input[iv];
5 } : fold( +, genarray([shape(input)[1]],0));
6 }

Figure 3: Computing the sum of rows of a two dimensional
array with a with-loop

provided as arguments, and the return type is adjusted to int[.,.]
expressing the result’s dimensionality only.

In addition to the genarray-with-loop, SaC has several other
types of with-loops. In this paper, we focus on the genarray and
fold variants, as these are the with-loops that are involved in reduc-
tions over hyper-planes. An example of a fold-with-loop can be seen
in figure 3. This example shows how the summation of the rows
of a matrix can be defined by a with-loop. The with-loop describes
the selection of individual rows by the parameterised expression
input[iv]. Instead of putting all of these expressions into an array,
the fold-with-loop uses a reduction operation (+), and a neutral
element (genarray([shape(input)[1]],0)), to combine all the
elements into a single result. The neutral element here describes
a vector of zeroes, whose length matches the second dimension
of input. These example with-loops describe their result using a
single expression. For more complex with-loops a block of local
assignments can precede the expression.

Apart from these basic tools, there are many array operations
defined through with-loops in the standard library of SaC such as
take, drop, map, etc. They fall outside the scope of this paper, but
are described in more detail in the official SaC tutorial [17].

Figure 1: A genarray-with-loop example
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provided as arguments, and the return type is adjusted to int[.,.]
expressing the result’s dimensionality only.

In addition to the genarray-with-loop, SaC has several other
types of with-loops. In this paper, we focus on the genarray and
fold variants, as these are the with-loops that are involved in reduc-
tions over hyper-planes. An example of a fold-with-loop can be seen
in figure 3. This example shows how the summation of the rows
of a matrix can be defined by a with-loop. The with-loop describes
the selection of individual rows by the parameterised expression
input[iv]. Instead of putting all of these expressions into an array,
the fold-with-loop uses a reduction operation (+), and a neutral
element (genarray([shape(input)[1]],0)), to combine all the
elements into a single result. The neutral element here describes
a vector of zeroes, whose length matches the second dimension
of input. These example with-loops describe their result using a
single expression. For more complex with-loops a block of local
assignments can precede the expression.

Apart from these basic tools, there are many array operations
defined through with-loops in the standard library of SaC such as
take, drop, map, etc. They fall outside the scope of this paper, but
are described in more detail in the official SaC tutorial [17].

Figure 2: A shape-polymorphic function with with-loop
body

the default element. Figure 2 contains a function calculating a more
general version of the code in figure 1. Instead of always calculating
a matrix of constant size, the dimensions of the matrix can now be
provided as arguments, and the return type is adjusted to int[.,.]
expressing the result’s dimensionality only.

In addition to the genarray-with-loop, SaC has several other
types of with-loops. In this paper, we focus on the genarray and
fold variants, as these are the with-loops that are involved in reduc-
tions over hyper-planes. An example of a fold-with-loop can be seen
in figure 3. This example shows how the summation of the rows
of a matrix can be defined by a with-loop. The with-loop describes
the selection of individual rows by the parameterised expression
input[iv]. Instead of putting all of these expressions into an array,
the fold-with-loop uses a reduction operation (+), and a neutral
element (genarray([shape(input)[1]],0)), to combine all the
elements into a single result. The neutral element here describes
a vector of zeroes, whose length matches the second dimension
of input. These example with-loops describe their result using a
single expression. For more complex with-loops a block of local
assignments can precede the expression.

Apart from these basic tools, there are many array operations
defined through with-loops in the standard library of SaC such as
take, drop, map, etc. They fall outside the scope of this paper, but
are described in more detail in the official SaC tutorial [17].

3 PROBLEM STATEMENT
As running example, we consider computing a rolling sum over
three rows of a matrix. For simplicity, we fill the last two rows
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related work and summarise the drawn conclusions, respectively.
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provided as arguments, and the return type is adjusted to int[.,.]
expressing the result’s dimensionality only.

In addition to the genarray-with-loop, SaC has several other
types of with-loops. In this paper, we focus on the genarray and
fold variants, as these are the with-loops that are involved in reduc-
tions over hyper-planes. An example of a fold-with-loop can be seen
in figure 3. This example shows how the summation of the rows
of a matrix can be defined by a with-loop. The with-loop describes
the selection of individual rows by the parameterised expression
input[iv]. Instead of putting all of these expressions into an array,
the fold-with-loop uses a reduction operation (+), and a neutral
element (genarray([shape(input)[1]],0)), to combine all the
elements into a single result. The neutral element here describes
a vector of zeroes, whose length matches the second dimension
of input. These example with-loops describe their result using a
single expression. For more complex with-loops a block of local
assignments can precede the expression.

Apart from these basic tools, there are many array operations
defined through with-loops in the standard library of SaC such as
take, drop, map, etc. They fall outside the scope of this paper, but
are described in more detail in the official SaC tutorial [17].

Figure 3: Computing the sum of rows of a two dimensional
array with a with-loop

of the result with the value 0. Figure 4 shows three possible im-
plementations in SaC. Figure 4a defines this operation through an
element-wise addition using the expression a[i,j] + a[i+1,j]
+ a[i+2,j] to express the summation of corresponding j-th ele-
ments in the i-th, i+1-th, and i+2-th row. This operation is mapped
to all elements of the given matrix a, but those of the last two rows.
Figure 4b looks very similar. However, here the explicit summa-
tion is specified for entire rows, which are obtained by selections
a[i], a[i+1], and a[i+2]. Consequently, this operation is mapped
across row indices rather than element indices. Finally, we look at
a slightly more generic row-wise formulation shown in figure 4c. It
uses a fold-with-loop to compute the sum of rows. The +3 on line
6 ensures that we look at adding three rows here. However, the
number of rows to be summed up can be adjusted by changing that
number, provided the bound of the outer with-loop (800000-2) is
adjusted accordingly.

While the results of these three implementations are equivalent,
their runtimes are not. The first two are roughly equivalent, but the
fold version is significantly slower. One possible cause for this is
that the fold version does one addition more than the other versions.
I.e., it calculates 0 + a[i] + ..., while the others only calculate
a[i] + .... To compensate for this, the first two versions are
changed slightly to enforce the extra addition of 0 as well.

All runtime results presented in this paper are obtained using a
dual-core Intel E5-2650L at 2.5 GHz with 128 GB ram running Arch-
Linux kernel 5.10. For compilation, we use sac2c 1.3.3-MijasCosta
and gcc 10.2.0. The memory results are obtained by using the
-profile m option of the SaC compiler. The measurements for
all three versions are shown in figure 5. They are obtained by ex-
ecuting a program that calls one of the three rowadd functions
exactly once. To compensate for random background noise, each
function is executed 100 times.

Figure 5a shows the 95 runtimes closest to the mean runtime
for each function. The versions V1 and V2 perform roughly equiva-
lently with an average runtime of 5.8 seconds. The V3 version, how-
ever, is noticeably slower with an average runtime of 6.3 seconds.
This means that the fold-based implementation for this example is
almost 10% slower than the other two versions.

The memory use of Rowadd_V3 stands out as well, as seen in
figure 5b. While all three versions have the same memory footprint
of 6.25 GB, i.e., the maximum memory allocated at any given time,
rowadd_V3 performs 800.000 memory allocations while the other
two versions only perform 3 allocations. Given that integers take 4
bytes of memory, we can see that at any given time no more than
two copies of the entire matrix with 800M elements are allocated.
When looking at the total allocation figures, we see that versions V1
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3 PROBLEM STATEMENT
As running example, we consider computing a rolling sum over
three rows of a matrix. For simplicity, we fill the last two rows
of the result with the value 0. Figure 4 shows three possible im-
plementations in SaC. Figure 4a defines this operation through an
element-wise addition using the expression a[i,j] + a[i+1,j]
+ a[i+2,j] to express the summation of corresponding j-th ele-
ments in the i-th, i+1-th, and i+2-th row. This operation is mapped
to all elements of the given matrix a, but those of the last two rows.
Figure 4b looks very similar. However, here the explicit summa-
tion is specified for entire rows, which are obtained by selections
a[i], a[i+1], and a[i+2]. Consequently, this operation is mapped
across row indices rather than element indices. Finally, we look at
a slightly more generic row-wise formulation shown in figure 4c. It
uses a fold-with-loop to compute the sum of rows. The +3 on line
6 ensures that we look at adding three rows here. However, the
number of rows to be summed up can be adjusted by changing that
number, provided the bound of the outer with-loop (800000-2) is
adjusted accordingly.

While the results of these three implementations are equivalent,
their runtimes are not. The first two are roughly equivalent, but the
fold version is significantly slower. One possible cause for this is
that the fold version does one addition more than the other versions.
I.e., it calculates 0 + a[i] + ..., while the others only calculate
a[i] + .... To compensate for this, the first two versions are
changed slightly to enforce the extra addition of 0 as well.

All runtime results presented in this paper are obtained using a
dual-core Intel E5-2650L at 2.5 GHz with 128 GB ram running Arch-
Linux kernel 5.10. For compilation, we use sac2c 1.3.3-MijasCosta
and gcc 10.2.0. The memory results are obtained by using the
-profile m option of the SaC compiler. The measurements for
all three versions are shown in figure 5. They are obtained by ex-
ecuting a program that calls one of the three rowadd functions
exactly once. To compensate for random background noise, each
function is executed 100 times.

Figure 5a shows the 95 runtimes closest to the mean runtime
for each function. The versions V1 and V2 perform roughly equiva-
lently with an average runtime of 5.8 seconds. The V3 version, how-
ever, is noticeably slower with an average runtime of 6.3 seconds.
This means that the fold-based implementation for this example is
almost 10% slower than the other two versions.

The memory use of Rowadd_V3 stands out as well, as seen in
figure 5b. While all three versions have the same memory footprint
of 6.25 GB, i.e., the maximum memory allocated at any given time,
rowadd_V3 performs 800.000 memory allocations while the other
two versions only perform 3 allocations. Given that integers take 4
bytes of memory, we can see that at any given time no more than
two copies of the entire matrix with 800M elements are allocated.
When looking at the total allocation figures, we see that versions V1
and V2 allocate these two copies exactly once. In contrast, version
V3 over the execution time uses 800.000 allocations to allocate the
equivalent of one more copy. Given that this has no noticeable
impact on the memory footprint, we can deduce that V3 most likely
allocates and frees almost 800.000 rows, one at a time, to hold
intermediate results. In order to better understand why this is the
case, let us look at the SaC compilation process.

1 int[800000,1000] rowadd_V1( int[800000,1000] a)
2 {
3 res = with {
4 ( [0,0] <= [i,j] < shape(a) - [2,0]) :
5 a[i,j]+ a[i+1,j]+a[i+2,j];
6 } : genarray([800000,1000],0);
7 return res;
8 }

(a) Adding rows by adding individual elements

1 int[800000,1000] rowadd_V2( int[800000,1000] a)
2 {
3 res = with {
4 ( [0] <= [i] < [800000-2]) :
5 a[i]+ a[i+1]+a[i+2];
6 } : genarray([800000],genarray([1000],0));
7 return res;
8 }

(b) Adding rows by adding whole rows at a time

1 int[800000,1000] rowadd_V3( int[800000,1000] a)
2 {
3 res = with {
4 ( [0] <= iv < [800000-2]) :
5 with {
6 (iv <= jv < iv+3) : a[jv];
7 } : fold( +, genarray([1000], 0));
8 } : genarray([800000],genarray([1000],0));
9 return res;
10 }

(c) Adding rows using a fold-with-loop

Figure 4: Three ways of a rolling addition of three rows of a
matrix

(a) Runtime measurements for the rowadd functions
version # allocations total allocated max allocated

rowadd_V1 3 6.25 GB 6.25 GB
rowadd_V2 3 6.25 GB 6.25 GB
rowadd_V3 800000 9.42 GB 6.25 GB

(b) Memory measurements for the rowadd functions

Figure 5: Rowadd measurement results

4 SAC COMPILER
After scanning and parsing the source code, the SaC compiler trans-
forms the code in several phases. The most relevant phase for the
purpose of this paper is the phase that introduces an explicit no-
tion of memory. It adds explicit memory allocations, pointers, and
assignments, as well as static and dynamic memory management

Figure 4: Three ways of a rolling addition of three rows of a
matrix

and V2 allocate these two copies exactly once. In contrast, version
V3 over the execution time uses 800.000 allocations to allocate the
equivalent of one more copy. Given that this has no noticeable
impact on the memory footprint, we can deduce that V3 most likely
allocates and frees almost 800.000 rows, one at a time, to hold
intermediate results. In order to better understand why this is the
case, let us look at the SaC compilation process.

4 SAC COMPILER
After scanning and parsing the source code, the SaC compiler trans-
forms the code in several phases. The most relevant phase for the
purpose of this paper is the phase that introduces an explicit no-
tion of memory. It adds explicit memory allocations, pointers, and
assignments, as well as static and dynamic memory management
operations. Memory management in SaC is based on reference
counting as this enables destructive updates of arrays whenever
possible, providing a solution to the aggregate update problem[13].
A detailed description of the memory phase can be found in Tro-
jahner [22].
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a[i], a[i+1], and a[i+2]. Consequently, this operation is mapped
across row indices rather than element indices. Finally, we look at
a slightly more generic row-wise formulation shown in figure 4c. It
uses a fold-with-loop to compute the sum of rows. The +3 on line
6 ensures that we look at adding three rows here. However, the
number of rows to be summed up can be adjusted by changing that
number, provided the bound of the outer with-loop (800000-2) is
adjusted accordingly.
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that the fold version does one addition more than the other versions.
I.e., it calculates 0 + a[i] + ..., while the others only calculate
a[i] + .... To compensate for this, the first two versions are
changed slightly to enforce the extra addition of 0 as well.

All runtime results presented in this paper are obtained using a
dual-core Intel E5-2650L at 2.5 GHz with 128 GB ram running Arch-
Linux kernel 5.10. For compilation, we use sac2c 1.3.3-MijasCosta
and gcc 10.2.0. The memory results are obtained by using the
-profile m option of the SaC compiler. The measurements for
all three versions are shown in figure 5. They are obtained by ex-
ecuting a program that calls one of the three rowadd functions
exactly once. To compensate for random background noise, each
function is executed 100 times.

Figure 5a shows the 95 runtimes closest to the mean runtime
for each function. The versions V1 and V2 perform roughly equiva-
lently with an average runtime of 5.8 seconds. The V3 version, how-
ever, is noticeably slower with an average runtime of 6.3 seconds.
This means that the fold-based implementation for this example is
almost 10% slower than the other two versions.
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allocates and frees almost 800.000 rows, one at a time, to hold
intermediate results. In order to better understand why this is the
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2 {
3 res = with {
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3 res = with {
4 ( [0] <= iv < [800000-2]) :
5 with {
6 (iv <= jv < iv+3) : a[jv];
7 } : fold( +, genarray([1000], 0));
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9 return res;
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(c) Adding rows using a fold-with-loop
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(a) Runtime measurements for the rowadd functions
version # allocations total allocated max allocated
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4 SAC COMPILER
After scanning and parsing the source code, the SaC compiler trans-
forms the code in several phases. The most relevant phase for the
purpose of this paper is the phase that introduces an explicit no-
tion of memory. It adds explicit memory allocations, pointers, and
assignments, as well as static and dynamic memory management
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4.1 Array representation
One of the key choices of the SaC compiler infrastructure is to
allocate all data of an array within a single chunk of memory, irre-
spective of the array’s dimensionality or shape. This representation,
often referred to as “flat array representation”, keeps the overhead
for dynamic memory management to a minimum and it guarantees
constant offsets between elements and their neighbouring elements
with respect to any dimension. The drawback of such a flat repre-
sentation is that combining new arrays from existing arrays, such
as creating matrices from vectors, requires copying the elements
from the smaller arrays into a single, larger chunk of memory.
While there are several optimisations that reorganise code in a way
that higher-dimensional arrays are defined directly from scalars,
these are not always applicable, at least not without introducing a
considerable computational overhead (see e.g. Grelck et al. [9]). In
the sequel, we describe how the current code generation process
nevertheless in most cases can avoid copying upon nested array
creation.

4.2 Values, Memory and MemVals
The memory phase makes memory explicit by introducing a notion
of three different kinds of variables: Val, Mem, and MemVal. Variables
of kind Val represent values in the classical functional program-
ming sense, i.e., all variables before the memory phase can be seen
as being of this kind. Mem-variables represent stateful memory loca-
tions not holding any value yet. Finally, variables of kind MemVal
are referring to memory locations that hold a value. Ultimately,
all values that need to exist at some point during runtime need
to be transferred from variables of type Val into variables of type
MemVal.

For the basic handling of Val, Mem, and MemVal variables the
compiler provides a few built-in operations:

• _alloc_ :: Val→ Mem
Allocates memory for an array of shape Val.

• _fill_ :: Val × Mem → MemVal
Fills a memory location with a value.

• _copy_ :: MemVal → Val
Copies the value of a section of filled memory.

• _suballoc_ :: Mem × MemVal → Mem
Indices Mem with index MemVal to obtain a subsection of Mem.
The returned Mem value is treated in the same way as freshly
allocated memory despite pointing into some pre-existing
Mem. This constitutes the key operation to avoid copying
when constructing arrays from smaller arrays.

• _free_ :: MemVal → Void
Frees previously filled memory.

Apart from these basic memory instructions, there are also some
more complicated expressions introduced to reduce memory allo-
cation and deallocation as much as possible:

• _reuse_ :: MemVal → Mem
Skips a memory deallocation and allocation step and trans-
fers ownership of a piece of memory directly. Used for in-
place updates.

• _alloc_or_reuse_ :: Val × MemVal+ → Mem
Performs a reuse on one of the MemVal arguments if this
is possible according to their reference counts. Performs an
alloc of size Val otherwise. This is used if the reference
counts are not statically determinable.

• _wl_assign_ :: Val × MemVal × Mem→ Void
Specialised fill operation for with-loops. Indices Mem with
MemVal, then fills result with Val.
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operations. Memory management in SaC is based on reference
counting as this enables destructive updates of arrays whenever
possible, providing a solution to the aggregate update problem[13].
A detailed description of the memory phase can be found in Tro-
jahner [22].
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One of the key choices of the SaC compiler infrastructure is to
allocate all data of an array within a single chunk of memory, irre-
spective of the array’s dimensionality or shape. This representation,
often referred to as “flat array representation”, keeps the overhead
for dynamic memory management to a minimum and it guarantees
constant offsets between elements and their neighbouring elements
with respect to any dimension. The drawback of such a flat repre-
sentation is that combining new arrays from existing arrays, such
as creating matrices from vectors, requires copying the elements
from the smaller arrays into a single, larger chunk of memory.
While there are several optimisations that reorganise code in a way
that higher-dimensional arrays are defined directly from scalars,
these are not always applicable, at least not without introducing a
considerable computational overhead (see e.g. Grelck et al. [9]). In
the sequel, we describe how the current code generation process
nevertheless in most cases can avoid copying upon nested array
creation.

4.2 Values, Memory and MemVals
The memory phase makes memory explicit by introducing a notion
of three different kinds of variables: Val, Mem, and MemVal. Variables
of kind Val represent values in the classical functional program-
ming sense, i.e., all variables before the memory phase can be seen
as being of this kind. Mem-variables represent stateful memory loca-
tions not holding any value yet. Finally, variables of kind MemVal
are referring to memory locations that hold a value. Ultimately,
all values that need to exist at some point during runtime need
to be transferred from variables of type Val into variables of type
MemVal.

For the basic handling of Val, Mem, and MemVal variables the
compiler provides a few built-in operations:

• _alloc_ :: Val→ Mem
Allocates memory for an array of shape Val.

• _fill_ :: Val × Mem → MemVal
Fills a memory location with a value.

• _copy_ :: MemVal → Val
Copies the value of a section of filled memory.

• _suballoc_ :: Mem × MemVal → Mem
Indices Mem with index MemVal to obtain a subsection of Mem.
The returned Mem value is treated in the same way as freshly
allocated memory despite pointing into some pre-existing
Mem. This constitutes the key operation to avoid copying
when constructing arrays from smaller arrays.

• _free_ :: MemVal → Void
Frees previously filled memory.

Apart from these basic memory instructions, there are also some
more complicated expressions introduced to reduce memory allo-
cation and deallocation as much as possible:

• _reuse_ :: MemVal → Mem
Skips a memory deallocation and allocation step and trans-
fers ownership of a piece of memory directly. Used for in-
place updates.

• _alloc_or_reuse_ :: Val × MemVal+ → Mem
Performs a reuse on one of the MemVal arguments if this
is possible according to their reference counts. Performs an
alloc of size Val otherwise. This is used if the reference
counts are not statically determinable.

• _wl_assign_ :: Val × MemVal × Mem→ Void
Specialised fill operation for with-loops. Indices Mem with
MemVal, then fills result with Val.

1 a = [1,2,3,4]; \\ Val
2 b = _neg_V_(a); \\ Val

(a) Before memory phase
1 a_mem = _alloc_([4]); \\ Mem
2 a = _fill_([1,2,3,4], a_mem); \\ MemVal
3 _inc_rc_(a, n);
4 b_mem = _alloc_or_reuse_([4], a); \\ Mem
5 b = _fill_(_neg_V_(a), b_mem); \\ MemVal
6 _inc_rc_(b,m);
7 _dec_rc_(a,1);

(b) After memory phase

Figure 6: Memory phase transformation example

An example of how the memory instructions are inserted is
shown in figure 6. Figure 6a shows a small two line code snippet that
negates all values of a vector using the built-in _neg_V_ operation.
The transformed code is presented in figure 6b. Memory is allocated
on line 1, before being filled in line 2 with the value [1,2,3,4].
Note here, that _alloc_ always initialises the reference count with
1. In line 3, the reference count of the MemVal a is increased by n,
assuming that there are nmore references to a later in the code. Line
4 tries to reuse the memory from a for b. This will only work if n=0,
so in the situation where line 2 in figure 6a is the last reference to
a. Otherwise fresh memory is allocated. Lines 6 and 7 then update
the reference counts, again assuming m further references to b in
the remainder of the code.

4.3 Handling memory for with-loops
Figure 7 shows an example of how memory management for

genarray-with-loops is done. Memory for the result of a genarray-
with-loop is introduced directly in front of thewith-loop, on line 1 of
figure 7b. It is then filled one element at a time using _wl_assign_
on line 5. This works fine in cases where _wl_assign_ takes scalar
values as its first argument, but when with-loops are nested, the
naive translation scheme leads to less efficient code. Figure 8
shows such an example. Here, we see in line 4 of figure 8b that for
each execution of the outer with-loop body a new 5-element vector
is allocated which in line 10 is copied into the result matrix that
was allocated in line 1. This is precisely the copying that results
from a flat array representation as explained in section 4.1. This
copying can be avoided by means of an in-place computation op-
timisation explained in Trojahner [22]. The key idea is to add the
_suballoc_ primitive which can replace the local call to _alloc_

Figure 6: Memory phase transformation example

An example of how the memory instructions are inserted is
shown in figure 6. Figure 6a shows a small two line code snippet that
negates all values of a vector using the built-in _neg_V_ operation.
The transformed code is presented in figure 6b. Memory is allocated
on line 1, before being filled in line 2 with the value [1,2,3,4].
Note here, that _alloc_ always initialises the reference count with
1. In line 3, the reference count of the MemVal a is increased by n,
assuming that there are nmore references to a later in the code. Line
4 tries to reuse the memory from a for b. This will only work if n=0,
so in the situation where line 2 in figure 6a is the last reference to
a. Otherwise fresh memory is allocated. Lines 6 and 7 then update
the reference counts, again assuming m further references to b in
the remainder of the code.

4.3 Handling memory for with-loops
Figure 7 shows an example of howmemorymanagement for genarray-
with-loops is done. Memory for the result of a genarray-with-loop
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1 a = with {
2 ([0,0] <= [i,j] < [5,10]) : i*10+j;
3 } : genarray( [5,10], 0);

(a) Before memory phase
1 a_mem = _alloc_([5,10]);
2 a = with {
3 ([0,0] <= [i,j] < [5,10]) {
4 val = i*10+j;
5 res = _wl_assign_(val,[i,j], a_mem);
6 }: res
7 } : genarray( [5,10], 0);

(b) After memory phase

Figure 7: Genarray-with-loop memory example

1 a = with {
2 ([0] <= [i] < [10]) : with {
3 ([0] <= [j] < [5]): i*5 + j;
4 } : genarray( [5], 0);
5 } : genarray( [10], [0,0,0,0,0]);

(a) Before memory phase
1 a_mem = _alloc_( [10,5]);
2 a = with {
3 ([0] <= [i] < [10]) {
4 val_mem = _alloc_([5]);
5 val = with {
6 ([0] <= [j] < [5]) {
7 inner = i*5+j;
8 res = _wl_assign_( inner, [j], val_mem);}: res
9 } : genarray( [5], 0);}
10 outer_res = _wl_assign_( _copy_(val), [i], a_mem);
11 _free_(val_mem);
12 } : outer_res
13 } : genarray( [10], [0,0,0,0,0]);

(b) With naive memory instructions
1 a_mem = _alloc_( [10,5]);
2 a = with {
3 ([0] <= [i] < [10]) {
4 val_mem = _suballoc_(a_mem,[i]);
5 val = with {
6 ([0] <= [j] < [10]) {
7 inner = i*5+j;
8 res = _wl_assign_( inner, [j], val_mem);}: res
9 } : genarray( [5], 0);}
10 } : genarray( [10], [0,0,0,0,0]);

(c) After memory phase

Figure 8: Nested genarray-with-loop memory example

making sure that the result of the inner with-loop is directly placed
into the correct position of the overall result, rendering the copying
superfluous. The final code is shown in figure 8c. Here, we can see
that not only the call to _copy_ could be elided but the second call
to _wl_assign_ has disappeared completely. This is correct as the
inner with-loop already assigns all the values to their final location
in the memory allocated in line 1.

For fold-with-loops, memory management works differently. An
example fold-with-loop is shown in figure 9. The size of the re-

1 val = with {
2 ([0] <= [i] < [10]) : a[i];
3 } : fold( +, [0,0,0,0,0]);

(a) Before memory phase
1 accu_init_mem = _alloc_([5]);
2 accu = _fill_([0,0,0,0,0],accu_init_mem);
3 for (i=0; i < 10; i++) {
4 accu_mem = _alloc_or_reuse_([5], accu);
5 accu = _fill_(_add_VxV_(accu , a[i]), accu_mem);
6 }

(b) After memory phase

Figure 9: Fold-with-loop memory example

1 int[800000,1000] rowadd_V1( int[800000,1000] a,
2 int[1000] n)
3 {
4 res_mem = _alloc_([800000,1000]);
5 res = with {
6 ( [0,0] <= [i,j] < shape(a) - [3,0]) {
7 elem_val = n[j] + a[i,j] + a[i+1,j]+ a[i+2,j];
8 elem = _wl_assign_(elem_val,[i,j] res_mem);
9 }: elem
10 } : genarray([800000,1000],0);
11 return res;
12 }

Figure 10: Optimised version of rowadd_V1

sult of a fold-with-loop, in general, cannot be statically determined
as the shape of the result depends on the folding operation and
potentially even depends on the individual values to be folded. Con-
sequently, there is no explicit pre-allocation of the result memory.
Instead, we allocate an accumulator accu which is initialised with
the neutral element of the folding operation (see line 2 in figure 9b).
The compilation of the folding function (_add_VxV_ on line 5) in
turn is responsible to allocate the memory for the result. Once this
memory is filled in line 5, the resulting MemVal either serves as
accumulator for the next iteration of the folding operation or as
the final result.

5 PROBLEM REVISITED
Using the compiler details introduced in section 4, the problem
from section 3 can now be analysed in greater detail. To recap, the
main problem is that programs defined with nested fold-with-loops
produce significantly slower code than equivalent programs defined
with genarray-with-loops. To better understand this, we now look
at how the SaC compiler tries to optimise the three versions of
rowadd introduced in figure 4. The first two versions also contain
the extra addition of 0 as discussed in section 3 in the form of the n
parameter, to make them more comparable with the fold version.
The first version can be seen in figure 10.

The main change is the addition of explicit memory instructions,
as there is little to optimise here. The second version in figure 11
now has a nested with-loop within the with-loop that was already
there. This would normally create extra overhead because of the

Figure 7: Genarray-with-loop memory example

is introduced directly in front of the with-loop, on line 1 of fig-
ure 7b. It is then filled one element at a time using _wl_assign_
on line 5. This works fine in cases where _wl_assign_ takes scalar
values as its first argument, but when with-loops are nested, the
naive translation scheme leads to less efficient code. Figure 8 shows
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11 _free_(val_mem);
12 } : outer_res
13 } : genarray( [10], [0,0,0,0,0]);

(b) With naive memory instructions
1 a_mem = _alloc_( [10,5]);
2 a = with {
3 ([0] <= [i] < [10]) {
4 val_mem = _suballoc_(a_mem,[i]);
5 val = with {
6 ([0] <= [j] < [10]) {
7 inner = i*5+j;
8 res = _wl_assign_( inner, [j], val_mem);}: res
9 } : genarray( [5], 0);}
10 } : genarray( [10], [0,0,0,0,0]);

(c) After memory phase

Figure 8: Nested genarray-with-loop memory example

making sure that the result of the inner with-loop is directly placed
into the correct position of the overall result, rendering the copying
superfluous. The final code is shown in figure 8c. Here, we can see
that not only the call to _copy_ could be elided but the second call
to _wl_assign_ has disappeared completely. This is correct as the
inner with-loop already assigns all the values to their final location
in the memory allocated in line 1.

For fold-with-loops, memory management works differently. An
example fold-with-loop is shown in figure 9. The size of the re-

1 val = with {
2 ([0] <= [i] < [10]) : a[i];
3 } : fold( +, [0,0,0,0,0]);

(a) Before memory phase
1 accu_init_mem = _alloc_([5]);
2 accu = _fill_([0,0,0,0,0],accu_init_mem);
3 for (i=0; i < 10; i++) {
4 accu_mem = _alloc_or_reuse_([5], accu);
5 accu = _fill_(_add_VxV_(accu , a[i]), accu_mem);
6 }

(b) After memory phase

Figure 9: Fold-with-loop memory example

1 int[800000,1000] rowadd_V1( int[800000,1000] a,
2 int[1000] n)
3 {
4 res_mem = _alloc_([800000,1000]);
5 res = with {
6 ( [0,0] <= [i,j] < shape(a) - [3,0]) {
7 elem_val = n[j] + a[i,j] + a[i+1,j]+ a[i+2,j];
8 elem = _wl_assign_(elem_val,[i,j] res_mem);
9 }: elem
10 } : genarray([800000,1000],0);
11 return res;
12 }

Figure 10: Optimised version of rowadd_V1

sult of a fold-with-loop, in general, cannot be statically determined
as the shape of the result depends on the folding operation and
potentially even depends on the individual values to be folded. Con-
sequently, there is no explicit pre-allocation of the result memory.
Instead, we allocate an accumulator accu which is initialised with
the neutral element of the folding operation (see line 2 in figure 9b).
The compilation of the folding function (_add_VxV_ on line 5) in
turn is responsible to allocate the memory for the result. Once this
memory is filled in line 5, the resulting MemVal either serves as
accumulator for the next iteration of the folding operation or as
the final result.

5 PROBLEM REVISITED
Using the compiler details introduced in section 4, the problem
from section 3 can now be analysed in greater detail. To recap, the
main problem is that programs defined with nested fold-with-loops
produce significantly slower code than equivalent programs defined
with genarray-with-loops. To better understand this, we now look
at how the SaC compiler tries to optimise the three versions of
rowadd introduced in figure 4. The first two versions also contain
the extra addition of 0 as discussed in section 3 in the form of the n
parameter, to make them more comparable with the fold version.
The first version can be seen in figure 10.

The main change is the addition of explicit memory instructions,
as there is little to optimise here. The second version in figure 11
now has a nested with-loop within the with-loop that was already
there. This would normally create extra overhead because of the

Figure 8: Nested genarray-with-loop memory example

such an example. Here, we see in line 4 of figure 8b that for each
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1 a = with {
2 ([0,0] <= [i,j] < [5,10]) : i*10+j;
3 } : genarray( [5,10], 0);

(a) Before memory phase
1 a_mem = _alloc_([5,10]);
2 a = with {
3 ([0,0] <= [i,j] < [5,10]) {
4 val = i*10+j;
5 res = _wl_assign_(val,[i,j], a_mem);
6 }: res
7 } : genarray( [5,10], 0);

(b) After memory phase

Figure 7: Genarray-with-loop memory example

1 a = with {
2 ([0] <= [i] < [10]) : with {
3 ([0] <= [j] < [5]): i*5 + j;
4 } : genarray( [5], 0);
5 } : genarray( [10], [0,0,0,0,0]);

(a) Before memory phase
1 a_mem = _alloc_( [10,5]);
2 a = with {
3 ([0] <= [i] < [10]) {
4 val_mem = _alloc_([5]);
5 val = with {
6 ([0] <= [j] < [5]) {
7 inner = i*5+j;
8 res = _wl_assign_( inner, [j], val_mem);}: res
9 } : genarray( [5], 0);}
10 outer_res = _wl_assign_( _copy_(val), [i], a_mem);
11 _free_(val_mem);
12 } : outer_res
13 } : genarray( [10], [0,0,0,0,0]);

(b) With naive memory instructions
1 a_mem = _alloc_( [10,5]);
2 a = with {
3 ([0] <= [i] < [10]) {
4 val_mem = _suballoc_(a_mem,[i]);
5 val = with {
6 ([0] <= [j] < [10]) {
7 inner = i*5+j;
8 res = _wl_assign_( inner, [j], val_mem);}: res
9 } : genarray( [5], 0);}
10 } : genarray( [10], [0,0,0,0,0]);

(c) After memory phase

Figure 8: Nested genarray-with-loop memory example

making sure that the result of the inner with-loop is directly placed
into the correct position of the overall result, rendering the copying
superfluous. The final code is shown in figure 8c. Here, we can see
that not only the call to _copy_ could be elided but the second call
to _wl_assign_ has disappeared completely. This is correct as the
inner with-loop already assigns all the values to their final location
in the memory allocated in line 1.

For fold-with-loops, memory management works differently. An
example fold-with-loop is shown in figure 9. The size of the re-

1 val = with {
2 ([0] <= [i] < [10]) : a[i];
3 } : fold( +, [0,0,0,0,0]);

(a) Before memory phase
1 accu_init_mem = _alloc_([5]);
2 accu = _fill_([0,0,0,0,0],accu_init_mem);
3 for (i=0; i < 10; i++) {
4 accu_mem = _alloc_or_reuse_([5], accu);
5 accu = _fill_(_add_VxV_(accu , a[i]), accu_mem);
6 }

(b) After memory phase

Figure 9: Fold-with-loop memory example

1 int[800000,1000] rowadd_V1( int[800000,1000] a,
2 int[1000] n)
3 {
4 res_mem = _alloc_([800000,1000]);
5 res = with {
6 ( [0,0] <= [i,j] < shape(a) - [3,0]) {
7 elem_val = n[j] + a[i,j] + a[i+1,j]+ a[i+2,j];
8 elem = _wl_assign_(elem_val,[i,j] res_mem);
9 }: elem
10 } : genarray([800000,1000],0);
11 return res;
12 }

Figure 10: Optimised version of rowadd_V1

sult of a fold-with-loop, in general, cannot be statically determined
as the shape of the result depends on the folding operation and
potentially even depends on the individual values to be folded. Con-
sequently, there is no explicit pre-allocation of the result memory.
Instead, we allocate an accumulator accu which is initialised with
the neutral element of the folding operation (see line 2 in figure 9b).
The compilation of the folding function (_add_VxV_ on line 5) in
turn is responsible to allocate the memory for the result. Once this
memory is filled in line 5, the resulting MemVal either serves as
accumulator for the next iteration of the folding operation or as
the final result.

5 PROBLEM REVISITED
Using the compiler details introduced in section 4, the problem
from section 3 can now be analysed in greater detail. To recap, the
main problem is that programs defined with nested fold-with-loops
produce significantly slower code than equivalent programs defined
with genarray-with-loops. To better understand this, we now look
at how the SaC compiler tries to optimise the three versions of
rowadd introduced in figure 4. The first two versions also contain
the extra addition of 0 as discussed in section 3 in the form of the n
parameter, to make them more comparable with the fold version.
The first version can be seen in figure 10.

The main change is the addition of explicit memory instructions,
as there is little to optimise here. The second version in figure 11
now has a nested with-loop within the with-loop that was already
there. This would normally create extra overhead because of the

Figure 9: Fold-with-loop memory example

execution of the outer with-loop body a new 5-element vector is
allocated which in line 10 is copied into the result matrix that was
allocated in line 1. This is precisely the copying that results from a
flat array representation as explained in section 4.1. This copying
can be avoided by means of an in-place computation optimisation
explained in Trojahner [22]. The key idea is to add the _suballoc_
primitive which can replace the local call to _alloc_ making sure
that the result of the inner with-loop is directly placed into the
correct position of the overall result, rendering the copying super-
fluous. The final code is shown in figure 8c. Here, we can see that
not only the call to _copy_ could be elided but the second call to
_wl_assign_ has disappeared completely. This is correct as the
inner with-loop already assigns all the values to their final location
in the memory allocated in line 1.

For fold-with-loops, memory management works differently. An
example fold-with-loop is shown in figure 9. The size of the re-
sult of a fold-with-loop, in general, cannot be statically determined
as the shape of the result depends on the folding operation and
potentially even depends on the individual values to be folded. Con-
sequently, there is no explicit pre-allocation of the result memory.
Instead, we allocate an accumulator accu which is initialised with
the neutral element of the folding operation (see line 2 in figure 9b).
The compilation of the folding function (_add_VxV_ on line 5) in
turn is responsible to allocate the memory for the result. Once this
memory is filled in line 5, the resulting MemVal either serves as
accumulator for the next iteration of the folding operation or as
the final result.

5 PROBLEM REVISITED
Using the compiler details introduced in section 4, the problem
from section 3 can now be analysed in greater detail. To recap, the
main problem is that programs defined with nested fold-with-loops
produce significantly slower code than equivalent programs defined
with genarray-with-loops. To better understand this, we now look
at how the SaC compiler tries to optimise the three versions of
rowadd introduced in figure 4. The first two versions also contain
the extra addition of 0 as discussed in section 3 in the form of the n
parameter, to make them more comparable with the fold version.
The first version can be seen in figure 10.

The main change is the addition of explicit memory instructions,
as there is little to optimise here. The second version in figure 11
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1 a = with {
2 ([0,0] <= [i,j] < [5,10]) : i*10+j;
3 } : genarray( [5,10], 0);

(a) Before memory phase
1 a_mem = _alloc_([5,10]);
2 a = with {
3 ([0,0] <= [i,j] < [5,10]) {
4 val = i*10+j;
5 res = _wl_assign_(val,[i,j], a_mem);
6 }: res
7 } : genarray( [5,10], 0);

(b) After memory phase

Figure 7: Genarray-with-loop memory example

1 a = with {
2 ([0] <= [i] < [10]) : with {
3 ([0] <= [j] < [5]): i*5 + j;
4 } : genarray( [5], 0);
5 } : genarray( [10], [0,0,0,0,0]);

(a) Before memory phase
1 a_mem = _alloc_( [10,5]);
2 a = with {
3 ([0] <= [i] < [10]) {
4 val_mem = _alloc_([5]);
5 val = with {
6 ([0] <= [j] < [5]) {
7 inner = i*5+j;
8 res = _wl_assign_( inner, [j], val_mem);}: res
9 } : genarray( [5], 0);}
10 outer_res = _wl_assign_( _copy_(val), [i], a_mem);
11 _free_(val_mem);
12 } : outer_res
13 } : genarray( [10], [0,0,0,0,0]);

(b) With naive memory instructions
1 a_mem = _alloc_( [10,5]);
2 a = with {
3 ([0] <= [i] < [10]) {
4 val_mem = _suballoc_(a_mem,[i]);
5 val = with {
6 ([0] <= [j] < [10]) {
7 inner = i*5+j;
8 res = _wl_assign_( inner, [j], val_mem);}: res
9 } : genarray( [5], 0);}
10 } : genarray( [10], [0,0,0,0,0]);

(c) After memory phase

Figure 8: Nested genarray-with-loop memory example

making sure that the result of the inner with-loop is directly placed
into the correct position of the overall result, rendering the copying
superfluous. The final code is shown in figure 8c. Here, we can see
that not only the call to _copy_ could be elided but the second call
to _wl_assign_ has disappeared completely. This is correct as the
inner with-loop already assigns all the values to their final location
in the memory allocated in line 1.

For fold-with-loops, memory management works differently. An
example fold-with-loop is shown in figure 9. The size of the re-

1 val = with {
2 ([0] <= [i] < [10]) : a[i];
3 } : fold( +, [0,0,0,0,0]);

(a) Before memory phase
1 accu_init_mem = _alloc_([5]);
2 accu = _fill_([0,0,0,0,0],accu_init_mem);
3 for (i=0; i < 10; i++) {
4 accu_mem = _alloc_or_reuse_([5], accu);
5 accu = _fill_(_add_VxV_(accu , a[i]), accu_mem);
6 }

(b) After memory phase

Figure 9: Fold-with-loop memory example

1 int[800000,1000] rowadd_V1( int[800000,1000] a,
2 int[1000] n)
3 {
4 res_mem = _alloc_([800000,1000]);
5 res = with {
6 ( [0,0] <= [i,j] < shape(a) - [3,0]) {
7 elem_val = n[j] + a[i,j] + a[i+1,j]+ a[i+2,j];
8 elem = _wl_assign_(elem_val,[i,j] res_mem);
9 }: elem
10 } : genarray([800000,1000],0);
11 return res;
12 }

Figure 10: Optimised version of rowadd_V1

sult of a fold-with-loop, in general, cannot be statically determined
as the shape of the result depends on the folding operation and
potentially even depends on the individual values to be folded. Con-
sequently, there is no explicit pre-allocation of the result memory.
Instead, we allocate an accumulator accu which is initialised with
the neutral element of the folding operation (see line 2 in figure 9b).
The compilation of the folding function (_add_VxV_ on line 5) in
turn is responsible to allocate the memory for the result. Once this
memory is filled in line 5, the resulting MemVal either serves as
accumulator for the next iteration of the folding operation or as
the final result.

5 PROBLEM REVISITED
Using the compiler details introduced in section 4, the problem
from section 3 can now be analysed in greater detail. To recap, the
main problem is that programs defined with nested fold-with-loops
produce significantly slower code than equivalent programs defined
with genarray-with-loops. To better understand this, we now look
at how the SaC compiler tries to optimise the three versions of
rowadd introduced in figure 4. The first two versions also contain
the extra addition of 0 as discussed in section 3 in the form of the n
parameter, to make them more comparable with the fold version.
The first version can be seen in figure 10.

The main change is the addition of explicit memory instructions,
as there is little to optimise here. The second version in figure 11
now has a nested with-loop within the with-loop that was already
there. This would normally create extra overhead because of the

Figure 10: Optimised version of rowadd_V1

now has a nested with-loop within the with-loop that was already
there. This would normally create extra overhead because of the
introduction of intermediate results and more memory manage-
ment. However, as discussed in the previous section, the use of
sub-allocation can prevent this overhead by calculating the inner
with-loop in-place. This explains the similar performance seen in
figure 5. Rowadd_V3 looks different however. The main difference
between rowadd_V2 and rowadd_V3 is that the inner withloop at
line 9 does not compute one element per iteration. Instead, the
entire fold-loop, represented by lines 7 to 16 of figure 12, needs
to be computed before the final values of the elements are known.
Because the memory for the fold-with-loop is not allocated once
before the loop, but once per iteration of the loop, applying in-place
computation here is difficult. Every iteration computes an inter-
mediate result, which needs memory. This means that replacing
an _alloc_ with a _suballoc_ will not just affect the final alloca-
tion of the result, but also the allocation for all the intermediate
results. This can result in problems when done naively, such as
when the intermediate results are shared by other pieces of code, or
when they have a different size as the final result. It is non-trivial
to determine if doing the _suballoc_ substitution here will result
in problems or not. As such, the SaC compiler does not apply the
in-place computation optimisation to nested fold-with-loops at all
at the time of this research.

Because the in-place computation optimisation is not applicable
to a nested fold-with-loop, rowadd_V3 ends up allocating its own
memory within the folding function (line 8 of figure 12). At the end
of the fold-with-loop, on line 18, the contents of this memory need
to copied over to thememory allocated by the outer with-loop. After
this, the memory allocated by the inner with-loop needs to be freed.
This overhead shown on lines 17 through 20 is exactly the overhead
that is normally resolved by the in-place computation optimisation.
This suggests that the performance of rowadd_V3 can be improved
by finding a way to make an in-place computation optimisation
applicable similar to the existing one on genarray-with-loops.

6 IN-PLACE ACCUMULATOR OPTIMISATION
The main reason why the in-place computation optimisation is not
applicable to fold-with-loops is because the source and sometimes
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1 int[800000,1000] rowadd_V2( int[800000,1000] a, int[1000] n)
2 {
3 res_mem = _alloc_([800000,1000]);
4 res = with {
5 ( [0] <= [i] < [800000-3]) {
6 inner_mem = _suballoc_(res_mem,[i])
7 inner_res = with {
8 ( [0] <= [j] < [1000]) {
9 elem_val = n[j] + a[i,j] + a[i+1,j]+ a[i+2,j];
10 elem = _wl_assign_(elem_val,[j] inner_mem);
11 }: elem
12 } : genarray( [1000], 0);
13 } : inner_res
14 } : genarray([800000],n);
15 return res;
16 }

Figure 11: Optimised version of rowadd_V2

introduction of intermediate results and more memory manage-
ment. However, as discussed in the previous section, the use of
sub-allocation can prevent this overhead by calculating the inner
with-loop in-place. This explains the similar performance seen in
figure 5. Rowadd_V3 looks different however. The main difference
between rowadd_V2 and rowadd_V3 is that the inner withloop at
line 9 does not compute one element per iteration. Instead, the
entire fold-loop, represented by lines 7 to 16 of figure 12, needs
to be computed before the final values of the elements are known.
Because the memory for the fold-with-loop is not allocated once
before the loop, but once per iteration of the loop, applying in-place
computation here is difficult. Every iteration computes an inter-
mediate result, which needs memory. This means that replacing
an _alloc_ with a _suballoc_ will not just affect the final alloca-
tion of the result, but also the allocation for all the intermediate
results. This can result in problems when done naively, such as
when the intermediate results are shared by other pieces of code, or
when they have a different size as the final result. It is non-trivial
to determine if doing the _suballoc_ substitution here will result
in problems or not. As such, the SaC compiler does not apply the
in-place computation optimisation to nested fold-with-loops at all
at the time of this research.

Because the in-place computation optimisation is not applicable
to a nested fold-with-loop, rowadd_V3 ends up allocating its own
memory within the folding function (line 8 of figure 12). At the end
of the fold-with-loop, on line 18, the contents of this memory need
to copied over to thememory allocated by the outer with-loop. After
this, the memory allocated by the inner with-loop needs to be freed.
This overhead shown on lines 17 through 20 is exactly the overhead
that is normally resolved by the in-place computation optimisation.
This suggests that the performance of rowadd_V3 can be improved
by finding a way to make an in-place computation optimisation
applicable similar to the existing one on genarray-with-loops.

6 IN-PLACE ACCUMULATOR OPTIMISATION
The main reason why the in-place computation optimisation is not
applicable to fold-with-loops is because the source and sometimes

1 int[800000,1000] rowadd_V3( int[800000,1000] a, int[1000] n)
2 {
3 res_mem = _alloc_([800000,1000]);
4 res = with {
5 ( [0] <= iv < [800000-3]) {
6 inner_res = n;
7 for ( j=0; j<3; j++) {
8 inner_mem = _alloc_or_reuse_([1000], inner_res);
9 inner_res = with {
10 ( [0] <= k < [1000]) {
11 fold_iter_mem = _suballoc_(inner_mem,[k]);
12 fold_iter_val = inner_res[k] + a[iv+j,k];
13 fold_iter = _fill_(fold_iter_val, fold_iter_mem);
14 }: fold_iter
15 } : genarray( [1000], 0);
16 }
17 inner_res_mem = _suballoc_(res_mem,iv);
18 inner_res_copy = _fill_(_copy_(inner_res),
19 inner_res_mem);
20 _free_(inner_res);
21 } : inner_res_copy;
22 } : genarray([800000],n);
23 return res;
24 }

Figure 12: Optimised version of rowadd_V3

even the size of their memory is not statically decidable. For ex-
ample, folding a list with a filter operation has a result size that
depends on the value of the elements being filtered. Folding with a
max function would return some existing piece of memory, but it is
not possible to predict which memory without first calculating all
the elements and checking which one is the biggest. There is, how-
ever, one common source of the result memory of a fold-with-loop
that does have potential to benefit from the suballoc system. This
occurs when the fold-with-loop is trying to reuse the memory of
its internal accumulator for the result. Whether or not this happens
depends on what operation is used to do the actual folding. Many
folding operations do some kind of reduction where they combine
a value with an accumulator of a fixed size to create a new value for
the accumulator which has the same size. These kinds of operations
would benefit from being computed in-place, especially when they
are performed on large arrays.

The actual optimisation consists of three main steps: First, we
check if the optimisation is applicable to a given fold-with-loop
(Section 6.1). If it is, we then allocate memory for the accumulator
outside of the fold-loop and replace the attempt of reusing the old
accumulator with an explicit reuse of this newmemory (Section 6.2).
Finally, we replace the alloc statement for the memory of the accu-
mulator with a suballoc statement and delete the no longer needed
copy instructions at the end of the fold-with-loop (Section 6.3).

6.1 Applicability
To check if the optimisation is applicable, a program traversal is
done looking for the pattern in figure 13a. This figure shows a
simplified version of the code pattern as it looks like during the
memory phase of the SaC compiler. Because of the functional se-
mantics of SaC, each variable has exactly one definition during the
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1 int[800000,1000] rowadd_V2( int[800000,1000] a, int[1000] n)
2 {
3 res_mem = _alloc_([800000,1000]);
4 res = with {
5 ( [0] <= [i] < [800000-3]) {
6 inner_mem = _suballoc_(res_mem,[i])
7 inner_res = with {
8 ( [0] <= [j] < [1000]) {
9 elem_val = n[j] + a[i,j] + a[i+1,j]+ a[i+2,j];
10 elem = _wl_assign_(elem_val,[j] inner_mem);
11 }: elem
12 } : genarray( [1000], 0);
13 } : inner_res
14 } : genarray([800000],n);
15 return res;
16 }

Figure 11: Optimised version of rowadd_V2

introduction of intermediate results and more memory manage-
ment. However, as discussed in the previous section, the use of
sub-allocation can prevent this overhead by calculating the inner
with-loop in-place. This explains the similar performance seen in
figure 5. Rowadd_V3 looks different however. The main difference
between rowadd_V2 and rowadd_V3 is that the inner withloop at
line 9 does not compute one element per iteration. Instead, the
entire fold-loop, represented by lines 7 to 16 of figure 12, needs
to be computed before the final values of the elements are known.
Because the memory for the fold-with-loop is not allocated once
before the loop, but once per iteration of the loop, applying in-place
computation here is difficult. Every iteration computes an inter-
mediate result, which needs memory. This means that replacing
an _alloc_ with a _suballoc_ will not just affect the final alloca-
tion of the result, but also the allocation for all the intermediate
results. This can result in problems when done naively, such as
when the intermediate results are shared by other pieces of code, or
when they have a different size as the final result. It is non-trivial
to determine if doing the _suballoc_ substitution here will result
in problems or not. As such, the SaC compiler does not apply the
in-place computation optimisation to nested fold-with-loops at all
at the time of this research.

Because the in-place computation optimisation is not applicable
to a nested fold-with-loop, rowadd_V3 ends up allocating its own
memory within the folding function (line 8 of figure 12). At the end
of the fold-with-loop, on line 18, the contents of this memory need
to copied over to thememory allocated by the outer with-loop. After
this, the memory allocated by the inner with-loop needs to be freed.
This overhead shown on lines 17 through 20 is exactly the overhead
that is normally resolved by the in-place computation optimisation.
This suggests that the performance of rowadd_V3 can be improved
by finding a way to make an in-place computation optimisation
applicable similar to the existing one on genarray-with-loops.

6 IN-PLACE ACCUMULATOR OPTIMISATION
The main reason why the in-place computation optimisation is not
applicable to fold-with-loops is because the source and sometimes

1 int[800000,1000] rowadd_V3( int[800000,1000] a, int[1000] n)
2 {
3 res_mem = _alloc_([800000,1000]);
4 res = with {
5 ( [0] <= iv < [800000-3]) {
6 inner_res = n;
7 for ( j=0; j<3; j++) {
8 inner_mem = _alloc_or_reuse_([1000], inner_res);
9 inner_res = with {
10 ( [0] <= k < [1000]) {
11 fold_iter_mem = _suballoc_(inner_mem,[k]);
12 fold_iter_val = inner_res[k] + a[iv+j,k];
13 fold_iter = _fill_(fold_iter_val, fold_iter_mem);
14 }: fold_iter
15 } : genarray( [1000], 0);
16 }
17 inner_res_mem = _suballoc_(res_mem,iv);
18 inner_res_copy = _fill_(_copy_(inner_res),
19 inner_res_mem);
20 _free_(inner_res);
21 } : inner_res_copy;
22 } : genarray([800000],n);
23 return res;
24 }

Figure 12: Optimised version of rowadd_V3

even the size of their memory is not statically decidable. For ex-
ample, folding a list with a filter operation has a result size that
depends on the value of the elements being filtered. Folding with a
max function would return some existing piece of memory, but it is
not possible to predict which memory without first calculating all
the elements and checking which one is the biggest. There is, how-
ever, one common source of the result memory of a fold-with-loop
that does have potential to benefit from the suballoc system. This
occurs when the fold-with-loop is trying to reuse the memory of
its internal accumulator for the result. Whether or not this happens
depends on what operation is used to do the actual folding. Many
folding operations do some kind of reduction where they combine
a value with an accumulator of a fixed size to create a new value for
the accumulator which has the same size. These kinds of operations
would benefit from being computed in-place, especially when they
are performed on large arrays.

The actual optimisation consists of three main steps: First, we
check if the optimisation is applicable to a given fold-with-loop
(Section 6.1). If it is, we then allocate memory for the accumulator
outside of the fold-loop and replace the attempt of reusing the old
accumulator with an explicit reuse of this newmemory (Section 6.2).
Finally, we replace the alloc statement for the memory of the accu-
mulator with a suballoc statement and delete the no longer needed
copy instructions at the end of the fold-with-loop (Section 6.3).

6.1 Applicability
To check if the optimisation is applicable, a program traversal is
done looking for the pattern in figure 13a. This figure shows a
simplified version of the code pattern as it looks like during the
memory phase of the SaC compiler. Because of the functional se-
mantics of SaC, each variable has exactly one definition during the
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1 res = with { ( lb_i <= iv_i < ub_i) {
2 accumulator = _accu_(iv_i);
3 accu_mem = _alloc_or_reuse_(..., accumulator);
4 . . .
5 expr = . . .
6 iteration_res = fill_like_operation(expr, accu_mem);
7 . . .
8 } :iteration_res
9 }: fold( fold_op, neutral_el)

(a) Code pattern before in-place accumulator optimisation.

1 fold_mem = _alloc_(shape(neutral_el));
2 res = with { ( lb_i <= iv_i < ub_i) {
3 accumulator = _accu_(iv_i);
4 accu_mem = _mem_reuse_(fold_mem);
5 . . .
6 expr = . . .
7 iteration_res = fill_like_operation(expr, accu_mem);
8 . . .
9 } :iteration_res
10 }: fold( fold_op, neutral_el)

(b) Code pattern after in-place accumulator optimisation.

Figure 13: In-place accumulator optimisation. Code before
optimisation (top) and equivalent code after optimisation
(bottom).

memory phase of the compilation process. The main purpose of
this step is tracing where the memory of the accumulator of the
fold-with-loop is coming from, and checking if this is the same
memory used by the previous accumulator.

Fold-with-loops always start by creating a variable for the ac-
cumulator using the _accu_ primitive. This will either contain the
result of the previous iteration, or the neutral element if it is the first
iteration. If the with-loop tries to reuse the memory of this accu-
mulator variable for the result, then the optimisation is applicable.
In this case there will be an _alloc_or_reuse_ statement on the
accumulator variable. Additionally, the result of this statement has
to used as the memory for the result of the whole with-loop, which
is the expression at line 8 of figure 13a. In the pattern, the memory
of the accumulator is stored in accu_mem. Line 5 is an abstraction
of the actual calculation the with-loop is doing. Line 6 represents
the last assignment of this calculation to memory. It stores the
result, represented by expr, in the iteration_res variable, using
accu_mem as the needed memory. The fill_like_operation here
is a placeholder for the construct that is used to fill accu_mem with
the value of expr. Currently this can either be a fill primitive or an-
other with-loop. After this line, iteration_res is using accu_mem
as its memory, which is the same memory used by the accumulator.
In line 8 the iteration_res variable, is passed on as the result
of the loop. This confirms that the next accumulator will use the
same memory as the old accumulator. Since this fold-loop is there-
fore using the same memory for its accumulator in each iteration,
this memory is guaranteed to contain the final result. By using a
suballoc instead of a regular alloc on the place where this mem-
ory is allocated, the entire calculation can be done in-place. The
next step of the optimisation will make this place explicit.

6.2 Explicit accumulator memory
After having determined that a fold-with-loop fulfils all the required
conditions, the actual optimisation can be applied. Finding the origi-
nal alloc statement that allocates memory for the result is difficult.
And even if it is found, it might not be possible to do anything
with it because other sections of code are also able to access the
value in that memory. The solution is to allocate an entirely new
section of memory, which is then guaranteed to not be used by
anything else. This will bring the fold-with-loop in line with the
genarray-with-loop, which also allocates a fresh section of memory
before the start of the loop. The result of this transformation can
be seen in figure 13b.

A fold-with-loop needs to both read from andwrite to its accumu-
lator. It does this by using two variables at once. The accumulator
variable is used for reading, and the accu_mem variable is then
used to write the next accumulator. During the first iteration, the
source for accu_mem was unclear. Maybe the _alloc_or_reuse_
succeeded and it was the memory of the neutral element. Or, if the
reuse failed, it was fresh memory. For further iterations, the source
is the previous accumulator. The desired behaviour is therefore to
allocate fresh memory during the first iteration, but to perform a
guaranteed reuse in all other iterations. This resolves all ambiguity
about where the memory comes from, and allows other optimisa-
tions to more easily interact with it. To achieve this, a new memory
primitive is introduced on line 4 of figure 13b:

_𝑚𝑒𝑚_𝑟𝑒𝑢𝑠𝑒_ :: 𝑀𝑒𝑚 → 𝑀𝑒𝑚

The semantics of _mem_reuse_ are the same as that of _reuse_,
only the type is different. On the first iteration of figure 13b, the
freshly allocated memory fold_mem will be reused, which will do
nothing because it is still uninitialised. On subsequent iterations, it
will contain the result of the previous iteration, and a regular reuse
operation will be performed.

Allocating fresh memory instead of reusing what was already
allocated introduces extra overhead in two ways:

(1) The actual allocation and de-allocation of memory takes a
small amount of time.

(2) The resulting memory has to be initialised. In this situation
this means making a copy of the neutral element.

However, in this specific scenario, both of these can be prevented
from happening. The first point gets completely eliminated by the
in-place computation phase later. The alloc that is introduced here
is guaranteed to be replaced with a suballoc, and suballoc does
not allocate fresh memory. Instead, it simply returns a pointer to
previously allocated memory. In fact, the resulting code gets faster,
because the allocation done by the alloc_or_reuse statement on
line 3 of figure 13a, which was not compatible with suballoc, is
replaced by an allocation that is. Additionally, since the old alloca-
tion is prevented, the statement that frees that memory also gets
removed. This is because memory allocated with suballoc does not
need to be individually freed. It will be freed when the memory that
is sub-allocated into is freed all at once. This means that introducing
this fresh allocation here will actually reduce the total amount of
memory allocations and de-allocations by one each.

Figure 13: In-place accumulator optimisation. Code before
optimisation (top) and equivalent code after optimisation
(bottom).

a value with an accumulator of a fixed size to create a new value for
the accumulator which has the same size. These kinds of operations
would benefit from being computed in-place, especially when they
are performed on large arrays.

The actual optimisation consists of three main steps: First, we
check if the optimisation is applicable to a given fold-with-loop
(Section 6.1). If it is, we then allocate memory for the accumulator
outside of the fold-loop and replace the attempt of reusing the old
accumulator with an explicit reuse of this newmemory (Section 6.2).
Finally, we replace the alloc statement for the memory of the accu-
mulator with a suballoc statement and delete the no longer needed
copy instructions at the end of the fold-with-loop (Section 6.3).

6.1 Applicability
To check if the optimisation is applicable, a program traversal is
done looking for the pattern in figure 13a. This figure shows a
simplified version of the code pattern as it looks like during the
memory phase of the SaC compiler. Because of the functional se-
mantics of SaC, each variable has exactly one definition during the
memory phase of the compilation process. The main purpose of
this step is tracing where the memory of the accumulator of the
fold-with-loop is coming from, and checking if this is the same
memory used by the previous accumulator.

Fold-with-loops always start by creating a variable for the ac-
cumulator using the _accu_ primitive. This will either contain the
result of the previous iteration, or the neutral element if it is the first
iteration. If the with-loop tries to reuse the memory of this accu-
mulator variable for the result, then the optimisation is applicable.
In this case there will be an _alloc_or_reuse_ statement on the

accumulator variable. Additionally, the result of this statement has
to used as the memory for the result of the whole with-loop, which
is the expression at line 8 of figure 13a. In the pattern, the memory
of the accumulator is stored in accu_mem. Line 5 is an abstraction
of the actual calculation the with-loop is doing. Line 6 represents
the last assignment of this calculation to memory. It stores the
result, represented by expr, in the iteration_res variable, using
accu_mem as the needed memory. The fill_like_operation here
is a placeholder for the construct that is used to fill accu_mem with
the value of expr. Currently this can either be a fill primitive or an-
other with-loop. After this line, iteration_res is using accu_mem
as its memory, which is the same memory used by the accumulator.
In line 8 the iteration_res variable, is passed on as the result
of the loop. This confirms that the next accumulator will use the
same memory as the old accumulator. Since this fold-loop is there-
fore using the same memory for its accumulator in each iteration,
this memory is guaranteed to contain the final result. By using a
suballoc instead of a regular alloc on the place where this mem-
ory is allocated, the entire calculation can be done in-place. The
next step of the optimisation will make this place explicit.

6.2 Explicit accumulator memory
After having determined that a fold-with-loop fulfils all the required
conditions, the actual optimisation can be applied. Finding the origi-
nal alloc statement that allocates memory for the result is difficult.
And even if it is found, it might not be possible to do anything
with it because other sections of code are also able to access the
value in that memory. The solution is to allocate an entirely new
section of memory, which is then guaranteed to not be used by
anything else. This will bring the fold-with-loop in line with the
genarray-with-loop, which also allocates a fresh section of memory
before the start of the loop. The result of this transformation can
be seen in figure 13b.

A fold-with-loop needs to both read from andwrite to its accumu-
lator. It does this by using two variables at once. The accumulator
variable is used for reading, and the accu_mem variable is then
used to write the next accumulator. During the first iteration, the
source for accu_mem was unclear. Maybe the _alloc_or_reuse_
succeeded and it was the memory of the neutral element. Or, if the
reuse failed, it was fresh memory. For further iterations, the source
is the previous accumulator. The desired behaviour is therefore to
allocate fresh memory during the first iteration, but to perform a
guaranteed reuse in all other iterations. This resolves all ambiguity
about where the memory comes from, and allows other optimisa-
tions to more easily interact with it. To achieve this, a new memory
primitive is introduced on line 4 of figure 13b:

_mem_reuse_ :: Mem → Mem

The semantics of _mem_reuse_ are the same as that of _reuse_,
only the type is different. On the first iteration of figure 13b, the
freshly allocated memory fold_mem will be reused, which will do
nothing because it is still uninitialised. On subsequent iterations, it
will contain the result of the previous iteration, and a regular reuse
operation will be performed.

Allocating fresh memory instead of reusing what was already
allocated introduces extra overhead in two ways:
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(1) The actual allocation and de-allocation of memory takes a
small amount of time.

(2) The resulting memory has to be initialised. In this situation
this means making a copy of the neutral element.

However, in this specific scenario, both of these can be prevented
from happening. The first point gets completely eliminated by the
in-place computation phase later. The alloc that is introduced here
is guaranteed to be replaced with a suballoc, and suballoc does
not allocate fresh memory. Instead, it simply returns a pointer to
previously allocated memory. In fact, the resulting code gets faster,
because the allocation done by the alloc_or_reuse statement on
line 3 of figure 13a, which was not compatible with suballoc, is
replaced by an allocation that is. Additionally, since the old alloca-
tion is prevented, the statement that frees that memory also gets
removed. This is because memory allocated with suballoc does not
need to be individually freed. It will be freed when the memory that
is sub-allocated into is freed all at once. This means that introducing
this fresh allocation here will actually reduce the total amount of
memory allocations and de-allocations by one each.

The second cause of overhead can also be avoided here, because
of the distinction between variables representing abstract values,
empty memory and filled memory, as discussed in section 4.2. They
are respectively referred to as having type Val, Mem and MemVal.
Val variables are not located in memory, and therefore cannot exist
at runtime. The Mem and MemVal variables are introduced by the
compiler to deal with this, but they are more restricted in how they
can be used. Since Mem variables represent empty memory, they
are never read from. Similarly, since MemVal variables represent
filled memory and variables can only have one definition, they
are never written to. A consequence of this is that when a Memval
variable gets replaced with fresh memory, it needs to be initialised
to maintain the same semantics. However, when replacing a Mem
variable with fresh memory, this is not required because all memory
variables are uninitialised to begin with. This explicit read/write
distinction allows for the core of the optimisation: merging the
copy operation required to maintain safe functional semantics with
the computation itself to remove overhead. Instead of first making
a copy in fresh memory, and then doing the whole computation
in this new memory, the first iteration reads from the old memory
and writes to the fresh memory. Every subsequent iteration then
reads and writes from the fresh memory. This makes an effective
copy without the associated overhead.

The overwriting of accu_mem in subsequent iterations is safe, as
indicated by the presence of the _alloc_or_reuse_ primitive. It
signifies that it has been statically determined that the accumulator
can safely be reused here, except for one condition: the reference
count is unknown. By allocating fresh memory, the reference count
of that memory becomes known, and safe reuse can be statically
guaranteed. This short explanation skipped over a lot of details
about the memory management system which are irrelevant for the
in-place accumulator optimisation. A more thorough explanation
about the details of memory variables and how they can and cannot
be used can be found in Trojahner [22].
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in-place accumulator optimisation. A more thorough explanation
about the details of memory variables and how they can and cannot
be used can be found in Trojahner [22].

6.3 In-place computations
The final step of the optimisation is to put the initial idea into
action, which is to reuse the existing implementation of the in-
place computation optimisation in the fold context. It turns out that
it suffices to annotate the affected fold-with-loops with where their
memory is allocated. Since the fold-with-loops that were affected by
the in-place accumulator optimisation now also have their memory
allocation in front of the loop, the existing system can be reused.

7 RESULTS
Theoretically, after applying the in-place accumulator optimisation,
the performance of rowadd_V3 should be more similar to that of
the other two versions. To test this, we repeat the experiment from
figure 5 for rowadd_V3 using the new in-place accumulator opti-
misation. The results of this test, added to the previously gathered
results, can be seen in figure 14. The extra memory allocations are
completely eliminated by the in-place accumulator optimisation.
This caused the mean execution time to shift from 6.3 seconds to
6.0 seconds. It is still not as efficient as the other two versions, but
it is now only 3% slower, instead of 10%. The performance gap is
smaller now, moving from 0.5 seconds to 0.2 seconds, which means

(a) Runtime measurements for the rowadd functions
version # alloc’s total allocated max allocated
V1 3 6.25 GB 6.25 GB
V2 3 6.25 GB 6.25 GB

V3 unoptimized 800000 9.42 GB 6.25 GB
V3 optimized 3 6.25 GB 6.25 GB

(b) Memory measurements for the rowadd functions

Figure 14: Testing results for the rowadd functions, includ-
ing optimised V3

that roughly 60% of the fold overhead is resolved. The remaining
performance difference can be explained by the fact that there is
still a nesting of with-loops, which will always have some loop
overhead compared to running just a single with-loop. The in-place
accumulator optimisation seems like a step in the right direction
however.

Throughout the paper the fixed example of rowadd was used to
explain the problem of fold overhead. This example is an instance
of a typical pattern where the fold performance hit comes into
play. The in-place accumulator optimisation works well on this
example, but we also want to know if it works well in general. To
investigate this, we look at variants of the problem, where the two
array dimensions and the amount of work being done is varied. We
try to systematically evaluate what the impact of the optimisation
is across these three axis. With this, we get a better idea of what
the impact of the optimisation is on more general programs.

The program shown in figure 15 is used as the basis of these tests.
It is a generalised version of the example shown in figure 4c. The
program has three parameters labelled INNER, OUTER and N. These
parameters are set using macros. This variation, in combination
with several compiler options, gives a set of benchmark tests. The
program itself calculates an abstract version of an update step, as
found in several algorithms. It starts with the array a, and then
calculates updated_a from that. This happens in line 24 to line 32.
Most of the rest of the program is boilerplate to prevent the constant
propagation optimisation to replace the entire calculation with the
result at compile time. The compiler can normally do this, because
the input is already fully specified at compile time. The benchmark-
ing code itself is also given explicitly. It uses the benchmarking
library to keep track of time during the actual calculation, which
is defined as the code between the start(i1) and end(i1) lines.
The benchmarking output is given in giga floating point operations
per second, or gflops for short.
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ing optimised V3
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1 use Array: all;
2 use StdIO: all;
3 use Benchmarking: all;
4 \\ Id functions to prevent the compiler from
5 \\ calculating the entire program as a
6 \\ constant at compile time.
7 noinline int[INNER] id( int[INNER] a)
8 { return a; }
9

10 noinline int[OUTER,INNER] id( int[OUTER,INNER] a)
11 { return a;}
12

13 int main()
14 { \\ Calculate initial elements. Hide
15 \\ details behind non-inlined functions
16 \\ so they are not seen as constants.
17 zeroes = id(genarray([INNER], 0));
18 a = id( genarray([OUTER,INNER], 1));
19 \\ Start benchmarking time.
20 i1 = getInterval( "vect", 0);
21 start( i1);
22 \\ Calculate a single update step
23 updated_a = with {
24 ( . <= iv < [OUTER-N]) {
25 \\ Calculate c = a[iv] + a[iv+1] + ... + a[iv+N].
26 c = with {
27 (iv <= jv < iv+N) : a[jv];
28 } : fold( +, zeroes);
29 } : c;
30 } : genarray( [OUTER], zeroes);
31 \\ Stop benchmarking time.
32 end( i1);
33 \\ Print part of result to make sure the
34 \\ calculation does not get optimised away.
35 print(updated_a[1,2]);
36 \\ Print benchmarking results
37 printResult( i1);
38 t,u = returnResultUnit( i1);
39 printf( "GFLOPS per %s: %f \n",
40 u, tod((OUTER-N)*INNER*N)/(1000000000.0*t));
41 return 0;
42 }

Figure 15: Benchmark which calculates an update step

The main calculations done by the program can be summarised
as follows:

𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑎[𝑖] =
𝑁∑
𝑛=0

𝑎[𝑖 + 𝑛]

This is done for every valid value of i, which ranges from 0 to
OUTER-N. The summation itself computes N additions. The val-
ues that are being added are arrays themselves, because a is two-
dimensional and it is being indexed with a scalar value. This re-
sults in an array of shape [INNER]. Adding two such arrays to-
gether comes down to adding them index-wise, which is INNER
floating point operations. Therefore the entire program computes
(OUTER-N)*N*INNER floating point operations.

Figure 16 shows the results of running the program with or with-
out the optimisation using the inputs seen in figure 16b. To account
for the effects of varying system load on performance, each test

was run 20 times and the average has been plotted in figure 16a.
Bars are shown at each measuring point to signify the standard de-
viation measured. Unless stated otherwise, all results in this section
use N=2 and the values of INNER and OUTER as seen in figure 16b.
The x-axis shows the value of OUTER divided by INNER, in order
to show the changes of both variables on a single axis. The values
for OUTER and INNER are chosen in such a way that the size of the
resulting array is the same for each combination. What changes
is the relation between how big the outer dimension is and how
big the inner dimension is. The figure shows that the optimisation
gives a reasonably consistent improvement for all values of OUTER
and INNER. This matches our expectation, as the optimisation of-
fers a scaling improvement for both variables. If OUTER is big, then
the inner fold-with-loop needs to be calculated many times. For
each computation of the inner with-loop, a memory allocation,
de-allocation and copy operation are optimised away. This will
therefore give more visible results if more iterations are executed.
The other way around also holds. All the previously mentioned
operations that are optimised away are normally executed over
an array of shape [INNER]. Especially for the copy operation, this
means that if INNER is big, the operation takes more time. Because
of this the in-place accumulator optimisation will also give better
results if INNER gets bigger. From the figure it seems like the extra
performance gain for large OUTER is more significant than the one
for large INNER, because the difference in performance gets bigger
on the right side of the graph. The sudden dip in overall perfor-
mance, both with and without the optimisation, on the right side
of the graph also indicates that performing many small operations
(large OUTER, small INNER) is less efficient in general than executing
less big operations (small OUTER, large INNER). This makes sense,
because every with-loop adds some overhead in setting up breaking
down. The more time is spent entering and leaving with-loops, the
less time is spent actually calculating the result, which decreases
the floating point operations per second.

(a) Execution results for N=2

INNER 100000 32000 10000 3200 1000 320 100 32 10
OUTER 1000 3125 10000 31250 100000 312500 1000000 3125000 10000000

(b) Values for INNER and OUTER.

Figure 16: Comparison of code performance with and with-
out the optimisation.

The effect of the loop overhead can be reduced by increasing
the amount of work a single loop iteration does. The workload of
the inner fold-with-loop can be increased by increasing the value
for N. This means that it will add more rows together, by doing

Figure 15: Benchmark which calculates an update step

try to systematically evaluate what the impact of the optimisation
is across these three axis. With this, we get a better idea of what
the impact of the optimisation is on more general programs.

The program shown in figure 15 is used as the basis of these tests.
It is a generalised version of the example shown in figure 4c. The
program has three parameters labelled INNER, OUTER and N. These
parameters are set using macros. This variation, in combination
with several compiler options, gives a set of benchmark tests. The
program itself calculates an abstract version of an update step, as
found in several algorithms. It starts with the array a, and then
calculates updated_a from that. This happens in line 24 to line 32.
Most of the rest of the program is boilerplate to prevent the constant
propagation optimisation to replace the entire calculation with the
result at compile time. The compiler can normally do this, because

the input is already fully specified at compile time. The benchmark-
ing code itself is also given explicitly. It uses the benchmarking
library to keep track of time during the actual calculation, which
is defined as the code between the start(i1) and end(i1) lines.
The benchmarking output is given in giga floating point operations
per second, or gflops for short.

The main calculations done by the program can be summarised
as follows:

updated_a[i] =
N∑
n=0

a[i + n]

This is done for every valid value of i, which ranges from 0 to
OUTER-N. The summation itself computes N additions. The val-
ues that are being added are arrays themselves, because a is two-
dimensional and it is being indexed with a scalar value. This re-
sults in an array of shape [INNER]. Adding two such arrays to-
gether comes down to adding them index-wise, which is INNER
floating point operations. Therefore the entire program computes
(OUTER-N)*N*INNER floating point operations.

Figure 16 shows the results of running the program with or with-
out the optimisation using the inputs seen in figure 16b. To account
for the effects of varying system load on performance, each test
was run 20 times and the average has been plotted in figure 16a.
Bars are shown at each measuring point to signify the standard de-
viation measured. Unless stated otherwise, all results in this section
use N=2 and the values of INNER and OUTER as seen in figure 16a.
The x-axis shows the value of OUTER divided by INNER, in order
to show the changes of both variables on a single axis. The values
for OUTER and INNER are chosen in such a way that the size of the
resulting array is the same for each combination. What changes
is the relation between how big the outer dimension is and how
big the inner dimension is. The figure shows that the optimisation
gives a reasonably consistent improvement for all values of OUTER
and INNER. This matches our expectation, as the optimisation of-
fers a scaling improvement for both variables. If OUTER is big, then
the inner fold-with-loop needs to be calculated many times. For
each computation of the inner with-loop, a memory allocation,
de-allocation and copy operation are optimised away. This will
therefore give more visible results if more iterations are executed.
The other way around also holds. All the previously mentioned
operations that are optimised away are normally executed over
an array of shape [INNER]. Especially for the copy operation, this
means that if INNER is big, the operation takes more time. Because
of this the in-place accumulator optimisation will also give better
results if INNER gets bigger. From the figure it seems like the extra
performance gain for large OUTER is more significant than the one
for large INNER, because the difference in performance gets bigger
on the right side of the graph. The sudden dip in overall perfor-
mance, both with and without the optimisation, on the right side
of the graph also indicates that performing many small operations
(large OUTER, small INNER) is less efficient in general than executing
less big operations (small OUTER, large INNER). This makes sense,
because every with-loop adds some overhead in setting up breaking
down. The more time is spent entering and leaving with-loops, the
less time is spent actually calculating the result, which decreases
the floating point operations per second.
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1 use Array: all;
2 use StdIO: all;
3 use Benchmarking: all;
4 \\ Id functions to prevent the compiler from
5 \\ calculating the entire program as a
6 \\ constant at compile time.
7 noinline int[INNER] id( int[INNER] a)
8 { return a; }
9

10 noinline int[OUTER,INNER] id( int[OUTER,INNER] a)
11 { return a;}
12

13 int main()
14 { \\ Calculate initial elements. Hide
15 \\ details behind non-inlined functions
16 \\ so they are not seen as constants.
17 zeroes = id(genarray([INNER], 0));
18 a = id( genarray([OUTER,INNER], 1));
19 \\ Start benchmarking time.
20 i1 = getInterval( "vect", 0);
21 start( i1);
22 \\ Calculate a single update step
23 updated_a = with {
24 ( . <= iv < [OUTER-N]) {
25 \\ Calculate c = a[iv] + a[iv+1] + ... + a[iv+N].
26 c = with {
27 (iv <= jv < iv+N) : a[jv];
28 } : fold( +, zeroes);
29 } : c;
30 } : genarray( [OUTER], zeroes);
31 \\ Stop benchmarking time.
32 end( i1);
33 \\ Print part of result to make sure the
34 \\ calculation does not get optimised away.
35 print(updated_a[1,2]);
36 \\ Print benchmarking results
37 printResult( i1);
38 t,u = returnResultUnit( i1);
39 printf( "GFLOPS per %s: %f \n",
40 u, tod((OUTER-N)*INNER*N)/(1000000000.0*t));
41 return 0;
42 }

Figure 15: Benchmark which calculates an update step

The main calculations done by the program can be summarised
as follows:

𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑎[𝑖] =
𝑁∑
𝑛=0

𝑎[𝑖 + 𝑛]

This is done for every valid value of i, which ranges from 0 to
OUTER-N. The summation itself computes N additions. The val-
ues that are being added are arrays themselves, because a is two-
dimensional and it is being indexed with a scalar value. This re-
sults in an array of shape [INNER]. Adding two such arrays to-
gether comes down to adding them index-wise, which is INNER
floating point operations. Therefore the entire program computes
(OUTER-N)*N*INNER floating point operations.

Figure 16 shows the results of running the program with or with-
out the optimisation using the inputs seen in figure 16b. To account
for the effects of varying system load on performance, each test

was run 20 times and the average has been plotted in figure 16a.
Bars are shown at each measuring point to signify the standard de-
viation measured. Unless stated otherwise, all results in this section
use N=2 and the values of INNER and OUTER as seen in figure 16b.
The x-axis shows the value of OUTER divided by INNER, in order
to show the changes of both variables on a single axis. The values
for OUTER and INNER are chosen in such a way that the size of the
resulting array is the same for each combination. What changes
is the relation between how big the outer dimension is and how
big the inner dimension is. The figure shows that the optimisation
gives a reasonably consistent improvement for all values of OUTER
and INNER. This matches our expectation, as the optimisation of-
fers a scaling improvement for both variables. If OUTER is big, then
the inner fold-with-loop needs to be calculated many times. For
each computation of the inner with-loop, a memory allocation,
de-allocation and copy operation are optimised away. This will
therefore give more visible results if more iterations are executed.
The other way around also holds. All the previously mentioned
operations that are optimised away are normally executed over
an array of shape [INNER]. Especially for the copy operation, this
means that if INNER is big, the operation takes more time. Because
of this the in-place accumulator optimisation will also give better
results if INNER gets bigger. From the figure it seems like the extra
performance gain for large OUTER is more significant than the one
for large INNER, because the difference in performance gets bigger
on the right side of the graph. The sudden dip in overall perfor-
mance, both with and without the optimisation, on the right side
of the graph also indicates that performing many small operations
(large OUTER, small INNER) is less efficient in general than executing
less big operations (small OUTER, large INNER). This makes sense,
because every with-loop adds some overhead in setting up breaking
down. The more time is spent entering and leaving with-loops, the
less time is spent actually calculating the result, which decreases
the floating point operations per second.

(a) Execution results for N=2

INNER 100000 32000 10000 3200 1000 320 100 32 10
OUTER 1000 3125 10000 31250 100000 312500 1000000 3125000 10000000

(b) Values for INNER and OUTER.

Figure 16: Comparison of code performance with and with-
out the optimisation.

The effect of the loop overhead can be reduced by increasing
the amount of work a single loop iteration does. The workload of
the inner fold-with-loop can be increased by increasing the value
for N. This means that it will add more rows together, by doing
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out the optimisation.

The effect of the loop overhead can be reduced by increasing
the amount of work a single loop iteration does. The workload of
the inner fold-with-loop can be increased by increasing the value
for N. This means that it will add more rows together, by doing
more iterations. This will then increase the workload for a single
iteration of the outer with-loop. The results of this can be seen in
figure 17. Because the total amount of floating point operations has
gone up, while the amount of loop iterations stayed the same, the
effect of the loop overhead relative to the time spend performing
calculations has gone down. This results in a higher amount of
floating point operations per second, which increases further as
N goes up. Another notable change is that the performance gain
on the left side of the figures goes down, eventually disappearing
entirely. The performance gain on the right side of the figures seems
to be unaffected however. This is because even with a bigger value
for N, if the value for INNER is very small, the total workload of the
inner fold-with-loop (N*INNER) is still small. A smaller workload
for the inner with-loop means the effects of the loop overhead are
more distinct. This in turn means the effects of reducing the loop
overhead are more visible.

To get an idea of what these numbers mean and if they are good
or not, a baseline is required. This can be obtained by modifying
the code of line 27 of figure 15 as described in figure 18.

This change does not change the semantics, but it does allow the
compiler to unroll the with-loop because the index range of jv is
now just depending on constants, and no longer on iv. After this
change, the compiler sees that the fold-with-loop is only calculat-
ing a total of N iterations. For small values of N (by default 9) the
compiler will decide that it is more efficient to unroll the with-loop.
This means that instead of compiling into code with a loop like
described in figure 12, the loop gets optimised away. This can be
done by copying the body of the loop one time for each iteration,
resulting in a sequential program with code duplication. However,
since the fold-loop is now gone, the reason why other optimisations
such as with-loop scalarization or in-place computation were not
applicable is now gone. In practice this means that the unrolled
inner with-loop gets merged with the outer with-loop, removing
all the overhead caused by the inner with-loop in the process. Since
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(a) Execution results for N=3 (b) Execution results for N=5

(c) Execution results for N=7 (d) Execution results for N=9

(e) Execution results for N=12 (f) Execution results for N=15

Figure 17: More comparison results for bigger values of N

more iterations. This will then increase the workload for a single
iteration of the outer with-loop. The results of this can be seen in
figure 17. Because the total amount of floating point operations has
gone up, while the amount of loop iterations stayed the same, the
effect of the loop overhead relative to the time spend performing
calculations has gone down. This results in a higher amount of
floating point operations per second, which increases further as
N goes up. Another notable change is that the performance gain
on the left side of the figures goes down, eventually disappearing
entirely. The performance gain on the right side of the figures seems
to be unaffected however. This is because even with a bigger value
for N, if the value for INNER is very small, the total workload of the
inner fold-with-loop (N*INNER) is still small. A smaller workload
for the inner with-loop means the effects of the loop overhead are
more distinct. This in turn means the effects of reducing the loop
overhead are more visible.

To get an idea of what these numbers mean and if they are good
or not, a baseline is required. This can be obtained by modifying
the code of line 27 of figure 15 as described in figure 18.

This change does not change the semantics, but it does allow the
compiler to unroll the with-loop because the index range of jv is
now just depending on constants, and no longer on iv. After this
change, the compiler sees that the fold-with-loop is only calculat-
ing a total of N iterations. For small values of N (by default 9) the

(iv <= jv < iv+N) : a[jv];

⇓

(0 <= jv < N) : a[iv+jv];

Figure 18: Modification to fold-with-loop that will allow
with-loop unrolling

compiler will decide that it is more efficient to unroll the with-loop.
This means that instead of compiling into code with a loop like
described in figure 12, the loop gets optimised away. This can be
done by copying the body of the loop one time for each iteration,
resulting in a sequential program with code duplication. However,
since the fold-loop is now gone, the reason why other optimisations
such as with-loop scalarization or in-place computation were not
applicable is now gone. In practice this means that the unrolled
inner with-loop gets merged with the outer with-loop, removing
all the overhead caused by the inner with-loop in the process. Since
the main goal of the in-place accumulator optimisation is to reduce
this overhead, removing it entirely is the best achievable result. The
results of this experiment can be seen in figure 19. The right side
of the figure contains the results obtained by the modification in
figure 18, which optimises the inner fold-with-loop away. The left
side of the figure contains the equivalent results without this modi-
fication. As expected, with the change to the inner fold-with-loop
the optimised and non optimised code are performing equivalently
in this case. If there is no inner with-loop, then the in-place accu-
mulator optimisation has nothing to optimise. When comparing
right and left graphs, it also becomes visible that in roughly the
middle of the graphs, the performance achieved by the in-place
accumulator optimisation is approaching the same performance as
when the with-loop is fully optimised away. On the edges of the
graphs, there is a larger gap in performance.

Since the optimisation aims to reduce overhead caused primarily
by memory management, an interesting experiment is to look at
the results when using different memory management systems.
SaC has its own memory management system called the private
heap manager (phm). This can be disabled to use the system default,
which uses malloc and free as defined by the local c compiler.
The phm is not available on macOS, so both the behaviour with
and without the phm is relevant. All other results in this section
are obtained by compiling with the phm, unless explicitly stated
otherwise. The previously shown results are shown next to results
of the same experiments with the phm off in figure 20. The general
performance of the program without the phm is lower that when
it is enabled. This makes sense, because the phm is specifically
tailored for SaC. It therefore performs better than the more gen-
eral system default memory manager does. For low values of N,
the optimisation gives a bigger improvement without the mem-
ory manager than with it. If N is low, there is relatively more loop
overhead. The phm can reduce this loop overhead by streamlining
memory allocation and de-allocation. Without the phm, the effect
of memory (de)allocations is higher, so when the in-place accumu-
lator optimisation removes some of them, this has a greater effect.
In general the choice for heap manager does not really matter based
on the values for INNER and OUTER. In some specific cases there
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more iterations. This will then increase the workload for a single
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gone up, while the amount of loop iterations stayed the same, the
effect of the loop overhead relative to the time spend performing
calculations has gone down. This results in a higher amount of
floating point operations per second, which increases further as
N goes up. Another notable change is that the performance gain
on the left side of the figures goes down, eventually disappearing
entirely. The performance gain on the right side of the figures seems
to be unaffected however. This is because even with a bigger value
for N, if the value for INNER is very small, the total workload of the
inner fold-with-loop (N*INNER) is still small. A smaller workload
for the inner with-loop means the effects of the loop overhead are
more distinct. This in turn means the effects of reducing the loop
overhead are more visible.

To get an idea of what these numbers mean and if they are good
or not, a baseline is required. This can be obtained by modifying
the code of line 27 of figure 15 as described in figure 18.

This change does not change the semantics, but it does allow the
compiler to unroll the with-loop because the index range of jv is
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This means that instead of compiling into code with a loop like
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inner with-loop gets merged with the outer with-loop, removing
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SaC has its own memory management system called the private
heap manager (phm). This can be disabled to use the system default,
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The phm is not available on macOS, so both the behaviour with
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the main goal of the in-place accumulator optimisation is to reduce
this overhead, removing it entirely is the best achievable result. The
results of this experiment can be seen in figure 19. The right side
of the figure contains the results obtained by the modification in
figure 18, which optimises the inner fold-with-loop away. The left
side of the figure contains the equivalent results without this modi-
fication. As expected, with the change to the inner fold-with-loop
the optimised and non optimised code are performing equivalently
in this case. If there is no inner with-loop, then the in-place accu-
mulator optimisation has nothing to optimise. When comparing
right and left graphs, it also becomes visible that in roughly the
middle of the graphs, the performance achieved by the in-place
accumulator optimisation is approaching the same performance as
when the with-loop is fully optimised away. On the edges of the
graphs, there is a larger gap in performance.

38



In-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays IFL ’21, September 1–3, 2021, Nijmegen, NetherlandsIn-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays IFL ’21, September 1–3, 2021, Nijmegen, Netherlands

(a) Unmodified for N=2 (b) Unrolled with-loops for N=2

(c) Unmodified for N=3 (d) Unrolled with-loops for N=3

(e) Unmodified for N=5 (f) Unrolled with-loops for N=5

Figure 19: Comparison of results with and without the mod-
ification described in figure 18

are differences. These seem to be an artefact of the way the heap
managers allocate arrays of different sizes.

8 RELATEDWORK
While this paper focuses on the specific problems caused by nest-
ing fold-with-loops within the SaC programming language, similar
problems also exist in other languages. The idea of compiling a
high level functional language to high performance, system specific
code is not limited to just SaC. Other projects such as Futhark[11],
Lift[19], Rise[20], Accelerate[4], Sisal[8], SkePU[7], Marrow[18],
Halide[15], etc follow a similar design philosophy, and therefore
might run into similar memory problems. These systems also need
to deal with memory for nested computations in an efficient manner.
Details on the exact memory strategies used by these languages
are often not publicly available. In addition, memory focus often
lies on effective use of device memory (GPU memory). This paper
focuses on system memory (main memory). The proposed opti-
misation might be transferable, but this needs further research.
If the internal memory representation of arrays is not flat, but a
nested structure using pointers, than in-place computation is not
required, as intermediate results do not need to be moved around.
However, flat memory representations have several advantages,
and are therefore more likely to be in use.

(a) Results with phm for N=2 (b) Results without phm for N=2

(c) Results with phm for N=5 (d) Results without phm for N=5

(e) Results with phm for N=12 (f) Results without phm forN=12

Figure 20: Comparison of results with and without the phm

The Futhark language[11, 12] has many similarities with SaC.
They both are array languages with functional semantics and a
focus on having the same code be compiled efficiently for differ-
ent systems. Futhark also runs into the problem that code with
nested constructs is often easy to write, but not as efficient to ex-
ecute. While this paper aims to reduce this problem by reducing
the overhead caused by nesting, the Futhark compiler focuses on
removing nesting by various types of flattening, for instance Blel-
lochs algorithm [3]. This approach has been refined over time, but
is not yet as fast as hand optimised code [2, 6]. It should be possible
to carry the in-place computation approach over to the Futhark
setting, in particular as both Futhark and SaC try to statically in-
fer uniqueness of references to facilitate in-place-updates. Both
languages allow for explicit uniqueness annotations and have an
aliasing analysis under the hood for uniqueness inference. While
Futhark, to our knowledge, does not support in-place-updates in
statically undecidable situations, this capability of SaC is irrelevant
for the optimisation proposed here as the optimisation relies on a
statically inferred reuse-guarantee. However, the research in the
context of Futhark seems to primarily focus on parallel execution
on GPUs, and our proposed optimisation sofar is only applicable in
a single threaded context.

Figure 19: Comparison of results with and without the mod-
ification described in figure 18

Since the optimisation aims to reduce overhead caused primarily
by memory management, an interesting experiment is to look at
the results when using different memory management systems.
SaC has its own memory management system called the private
heap manager (phm). This can be disabled to use the system default,
which uses malloc and free as defined by the local c compiler.
The phm is not available on macOS, so both the behaviour with
and without the phm is relevant. All other results in this section
are obtained by compiling with the phm, unless explicitly stated
otherwise. The previously shown results are shown next to results
of the same experiments with the phm off in figure 20. The general
performance of the program without the phm is lower that when
it is enabled. This makes sense, because the phm is specifically
tailored for SaC. It therefore performs better than the more gen-
eral system default memory manager does. For low values of N,
the optimisation gives a bigger improvement without the mem-
ory manager than with it. If N is low, there is relatively more loop
overhead. The phm can reduce this loop overhead by streamlining
memory allocation and de-allocation. Without the phm, the effect
of memory (de)allocations is higher, so when the in-place accumu-
lator optimisation removes some of them, this has a greater effect.
In general the choice for heap manager does not really matter based
on the values for INNER and OUTER. In some specific cases there
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They both are array languages with functional semantics and a
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ecute. While this paper aims to reduce this problem by reducing
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Halide[15], etc follow a similar design philosophy, and therefore
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to deal with memory for nested computations in an efficient manner.
Details on the exact memory strategies used by these languages
are often not publicly available. In addition, memory focus often
lies on effective use of device memory (GPU memory). This paper
focuses on system memory (main memory). The proposed opti-
misation might be transferable, but this needs further research.
If the internal memory representation of arrays is not flat, but a
nested structure using pointers, than in-place computation is not
required, as intermediate results do not need to be moved around.
However, flat memory representations have several advantages,
and are therefore more likely to be in use.
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The Futhark language[11, 12] has many similarities with SaC.
They both are array languages with functional semantics and a
focus on having the same code be compiled efficiently for differ-
ent systems. Futhark also runs into the problem that code with
nested constructs is often easy to write, but not as efficient to ex-
ecute. While this paper aims to reduce this problem by reducing
the overhead caused by nesting, the Futhark compiler focuses on
removing nesting by various types of flattening, for instance Blel-
lochs algorithm [3]. This approach has been refined over time, but
is not yet as fast as hand optimised code [2, 6]. It should be possible
to carry the in-place computation approach over to the Futhark
setting, in particular as both Futhark and SaC try to statically in-
fer uniqueness of references to facilitate in-place-updates. Both
languages allow for explicit uniqueness annotations and have an
aliasing analysis under the hood for uniqueness inference. While
Futhark, to our knowledge, does not support in-place-updates in
statically undecidable situations, this capability of SaC is irrelevant
for the optimisation proposed here as the optimisation relies on a
statically inferred reuse-guarantee. However, the research in the
context of Futhark seems to primarily focus on parallel execution
on GPUs, and our proposed optimisation sofar is only applicable in
a single threaded context.

Another high level functional language focusing on high perfor-
mance parallel computation is Lift. In addition to compiler optimi-
sations, Lift also limits the expressiveness of some constructs. For
instance, arbitrary array indexation is not possible. This means that
arrays can only be accessed through certain constructs such as map
or reduce. By limiting the number of constructs that can access
arrays, it becomes easier to reason about data sharing. An early
publication on Lift stated that no memory reuse was being done
[19]. A later publication talks about memory reuse, but does not
give an implementation[21]. This same publication does state that
Lift also runs into the problem of overhead caused by generating
intermediate results. The proposed solution is to fuse operations
together. There is no description of what happens when this fails
or is inefficient, which is where in-place computations might help,
depending on the used memory layout.

The Shine compiler for the Rise language is based on Lift, but uses
multiple intermediate representations during compilation to more
effectively specialise for certain compilation phases. There is no
support for memory reuse, but the generated code is otherwise very
similar to that of Lift. The benchmark comparison done with Lift
therefore shows the effects of memory reuse on performance[20].

Another approach to obtain a high level language for parallel con-
structs with high performance is to use domain specific languages.
Examples of this include Accelerate[4], SkePU[7], Marrow[18] and
Halide[15]. These work by embedding inside a general purpose
language such as Haskell or C++. This means that they often do not
do their own memory management, as this is handled by the host
language. The same problems with intermediate results caused by
nesting also appear here. However, and the chosen solution seem
to focus on flatting[5, 14]. Marrow explicitly focuses on allowing
the nesting of parallel constructs. In addition, flattening too much
makes implementing compiler optimisations harder, which can
result in less efficient code. When flattening fails or is otherwise
undesired, and the language has direct control over its memory

management, in-place computations could help improve perfor-
mance. Halide stands out here because it explicitly decouples what
an algorithm computes from how/where it is executed. This allows
manual control over the location of intermediate results. Work has
also been done on using machine learning to automate finding the
most optimal execution strategy[1]. This approach can probably not
be combined with defining specific compiler optimisations like the
one proposed in this paper, but is likely to tackle a similar problem.

Other languages like the Sisal[8] take an approach similar to
SaC. They use reference counting to focus on in-place updating
wherever possible, in addition to fusing loops. In such a setting
the in-place accumulator optimisation should be directly applicable.

9 CONCLUSION
This paper investigates why SaC code using fold-with-loops on
hyper-planes with non-scalar fold results performs worse than
other specifications for computing the same results. As a running
example, we use three versions of rowadd as introduced in sec-
tion 3. These do not have the same performance, while they do
compute the same result. This violates the design philosophy of
SaC, and forces programmers to think about implementation de-
tails again if they want efficient code. From an analysis of the way
the three versions of rowadd are compiled we see that one of the
main causes for the performance discrepancy is a lack of memory
reuse in nested fold-with-loops. Several other optimisations, such
as with-loop scalarization and in-place computations, are not appli-
cable to nested fold-with-loops. This leads to less efficient memory
management and extra copies in the generated code. Rewriting all
these optimisations to also work for fold-with-loops is difficult at
best and impossible at worst. Instead, this paper takes the approach
to change the code generation for fold-with-loops making them
more similar to genarray-with-loops.

In general, fold-with-loops cannot predict where the final result
will be allocated. Yet this information is required for the existing
memory reuse optimisations. The key insight of this paper is that
if a fold-with-loop can be computed in-place, then an upfront al-
location becomes possible. The in-place accumulator optimisation
introduced in section 6 is designed to identify these situations
and to leverage this information to bring the memory manage-
ment of fold-with-loops in-line with the memory management of
genarray-with-loops. This allows the existing in-place computation
optimisation to also work for these nested fold-with-loops. The
source code for the in-place accumulator optimisation is currently
available online [23], and is planned to be part of the next major
SaC release.

From the performance evaluation in section 7, we see that the
in-place accumulator optimisation significantly improves the per-
formance of rowadd_V3. The performance gap between the rowadd
functions is reduced by 60%. More general testing shows an im-
provement when the inner fold-with-loop is executed a lot, because
every iteration is slightly faster, so more iterations compound the
effect. Similarly, there is also an improvement when the result of
the inner fold-with-loop is a large array, because a copy opera-
tion on this array is prevented. The iteration based improvement
is notably bigger than the size based improvement. Both of these
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improvements are more distinct when the fold-with-loop that is
being optimised has a low workload. If this workload gets bigger, by
increasing the amount of calculations done in the body of the loop,
the effects of reducing the loop overhead become less noticeable.
However, especially if the with-loop is executed a lot, there is still a
noticeable improvement. None of the benchmark tests show a loss
in performance while using the in-place accumulator optimisation.
The worst observed performance is still as good as the performance
without the optimisation.

Currently, the proposed optimisation is only applicable when
the fold-with-loop is executed sequentially. It does not interfere
with possible code vectorisation, but it does interfere with multi-
threaded executions, be it on multi-core systems, GPUs or clusters.
For that reason, the current implementation is only enabled when
generating code for single-threaded execution. An extension in this
regard is left for future work.
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