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Abstract

Most implementations of machine learning algorithms are
based on special-purpose frameworks such as TensorFlow
or PyTorch. While these frameworks are convenient to use,
they introduce multi-million lines of code dependency that
one has to trust, understand and potentially modify. As an
alternative, this paper investigates a direct implementation
of a state of the art Convolutional Neural Network (CNN) in
an array language. While our implementation requires 150
lines of code to define the special-purpose operators needed
for CNNs, which are readily provided through frameworks
such as TensorFlow and PyTorch, our implementation out-
performs these frameworks by factors 2 and 3 on a fixed set
of hardware — a 64-core GPU-accelerated machine; for a sim-
ple example network. The resulting specification is written
in a rank-polymorphic data-parallel style, and it can be im-
mediately leveraged by optimising compilers. Indeed, array
languages make neural networks fast.

CCS Concepts: • Software and its engineering → Com-

pilers; • Computing methodologies → Machine learning.
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1 Introduction

With the increasing success of machine learning in various
domains, scientists attempt to solve more and more complex
problems using neural networks and deep learning. Increased
complexity in the context of deep learning typically means
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more layers of neurons and larger training sets, all of which
results in the necessity to process larger amounts of data.
As a result, modern networks require advanced and power-
ful hardware — modern machine learning applications are
envisioned to run on massively parallel high-throughput
systems that may be equipped with GPUs, TPUs, or even
custom-built hardware.
Programming such complex systems is very challenging,

specifically in an architecture-agnostic way. Therefore, there
is a big demand for a system that abstracts away architectural
details allowing the users to focus on the machine learning
algorithms. TensorFlow or PyTorch solve exactly that prob-
lem— they provide a convenient level of abstraction, offering
a number of building blocks that machine learning scientists
can use to specify their problems. Productivity of such a
solution is quite high as these frameworks are embedded
into high-level languages such as Python or C++.

However, turning a framework-based specification into an
efficient code remains challenging. There is a huge semantic
gap between the specification and the hardware. Frameworks
such as TensorFlow and PyTorch build on many levels of
abstractions, most of which offer alternatives in the way
the framework is installed and run on a given system. Typi-
cally there is a Python front-end, a core library in C++ that
depends on numerous external libraries for linear algebra,
tensor operations, libraries for GPUs and other specialised
hardware. Such complexity makes it challenging to deliver
excellent performance: optimisations across multiple layers
of abstraction, as well as across multiple external libraries,
inherently come with overheads and hardware-specific trade
offs.

The key question we are investigating is: can we identify
a single layer of abstraction where on the one hand we can
express the core building blocks and generate efficient paral-
lel code, and on the other hand that is high-level enough to
be used as a front-end.

Based on the observation that neural networks can be con-
cisely expressed as computations on high-ranked tensors,
we look into using a shape-polymorphic array language à
la APL [20] as the central layer of abstraction. While APL
itself is perfectly suitable in terms of expressiveness [47]
the interpreter-based implementation of operators, unsur-
prisingly, does not readily provide parallel performance any-
where near that of TensorFlow or PyTorch.
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Over the last 50 years we have seen quite some research
into compilation of array languages into efficient parallel
code [3, 5, 17, 33, 36]. These languages leverage whole pro-
gram optimisations and they offer decent levels of parallel
performance. They also offer high program portability, as in-
puts are typically hardware-agnostic and all the decisions on
optimisations and code generation are taken by the compiler.
A user can influence these decisions by passing options, but
no code modifications are required.
For the purposes of this paper we use SaC [33], a func-

tional array language, as our implementation vehicle. To be
clear, the presented ideas are not specific to the choice of the
array language, see Section 2 and Section 4.4 for further de-
tails. We focus on a simple yet frequently benchmarked CNN
for recognising handwritten characters. First we implement
building blocks that are required to define the chosen CNN
in native SaC and then we use these building blocks to define
the network. We compare the resulting code size and perfor-
mance against TensorFlow and PyTorch. We observe that
the overall problem can be expressed concisely (300 lines
of native1 SaC code) and on a GPU-accelerated 64-core ma-
chine, our solution performs two and three times faster than
the TensorFlow- and PyTorch-based implementations. The
key aspect of such good performance is first-class support for
multi-dimensional arrays in a functional setting followed by
a number of well-known code-generation techniques used
by the chosen compiler.
This example suggests that at least for this particular do-

main, the trade off between conciseness, performance and
development time is quite satisfying.

The individual contributions of the paper are:

• we make a case for using array languages to host a
machine-learning framework,

• we provide a concise implementation of the CNN for
hand-written image recognition in SaC without using
any domain-specific libraries, and

• we present a performance evaluation of the CNN in
SaC against multiple variants of the PyTorch- and
TensorFlow-based versions of the algorithm on a
high-performance cluster node.

The rest of the paper is organised as follows. Section 2
briefly introduces machine learning algorithms and state
of the art frameworks. In Sections 2 and 3 the notion of
functional arrays and describe our implementation of the
CNN are introduced. All the implementations used in the
paper can be found in [39]. Section 4 presents a performance
and productivity evaluation. Section 5 reviews related work,
and we conclude in Section 6.

1The code does not depend on any specialised numerical libraries like
MKL [19], only system libraries like libc or pthreads. We relate the SaC
code with TensorFlow and PyTorch code in Section 4.1.

2 Background

In the last decade machine learning has attracted a lot of
attention as it offers solutions to several practical problems
that mainly have to do with automatic recognition of com-
plex patterns: objects in images or videos, automatic text
translation, recommendation systems, speech recognition,
etc. We only focus on the computational aspects of machine
learning algorithms and on CNNs in particular. For an in-
depth review refer to [18, 31].

All machine learning algorithms are based around the idea
that we want to learn (through guessing) a function 𝑓 that
maps given input variables 𝑋 to given output variables 𝑌 , i.e.
𝑌 = 𝑓 𝑋 , in the best possible way, according to some cost
function. Once 𝑓 is found for given samples of 𝑋 and 𝑌 , we
apply it to new inputs 𝑋 .

Linear Regression. The simplest example of a machine
learning algorithm is linear regression [9, 22]. It is probably
one of the most well-understood algorithms in the area, yet it
demonstrates fundamental principles that are used in CNNs
as well. Given a set of 𝑛 statistical units {𝑦𝑖 , 𝑥𝑖1, . . . , 𝑥𝑖𝑚},
for 𝑖 ∈ {1, . . . , 𝑛}, we assume that the relationship between
𝑦s and 𝑥s is linear, so that each 𝑦𝑖 can be computed as: 𝑦𝑖 =
𝛽0 + 𝛽1𝑥𝑖1 + · · · + 𝛽𝑚𝑥𝑖𝑚 + 𝜖𝑖 . This can be written in matrix
form as:

𝑦 = 𝑋𝛽 + 𝜖 where

𝑦 =
©­­«
𝑦1
...

𝑦𝑛

ª®®¬ 𝑋 =
©­­«
1 𝑥11 · · · 𝑥1𝑚
...

. . .

1 𝑥𝑛1 · · · 𝑥𝑛𝑚

ª®®¬ 𝛽 =
©­­«
𝛽0
...

𝛽𝑚

ª®®¬ 𝜖 =
©­­«
𝜖1
...

𝜖𝑛

ª®®¬
There exists a large number of methods to estimate or infer
parameters 𝛽 and 𝜖 such that our model function “best” fits
the data. For example, one commonly used method is linear
least squares [22]. We assume that 𝜖 = 0 and the cost function
that we want to minimise is:

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2 where 𝑦𝑖 = 𝑋𝛽 .

The attractiveness of this method lies in the existence of
the closed solution for the parameter vector 𝛽 given by the
formula: 𝛽 = (𝑋⊤𝑋 )−1𝑋⊤𝑦.
Note two important aspects. First, instead of searching

through all the functions from𝑋 to𝑌 , we restrict the general
shape of that function and introduce a set of parameters
(𝛽-s in our case). The search for a function reduces to the
search for the parameters. Secondly, computationally, most
of the involved operations can be reduced to linear algebra
operations. This means that we will need a representation
for vectors, matrices, tensors and common operations on
them when implementing machine learning algorithms.

Neural Networks. Continuing on from linear regression,
we can consider the function 𝑓 : 𝑋 → 𝑌 that we want to
learn as a composition of functions 𝑔𝑖 that can be further
decomposed into smaller functions. Overall such a compo-
sition forms a graph (or network) connecting inputs 𝑋 with
outputs 𝑌 .
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A typical function composition takes the form: 𝑓 𝑥 =

𝐴 (∑𝑖 𝑤𝑖 (𝑔𝑖 𝑥)) where 𝐴 is an activation function (usually
it is chosen to be continuous and differentiable, e.g. sigmoid,
hyperbolic tangent, etc.) and𝑤𝑖 are so called weights. These
weights are parameters of our approximation that we want
to find, similarly to 𝛽 in linear regression, so that our cost
function is minimised.

Usually, neural networks are designed in a way that offers
slicing of the elementary functions 𝑔𝑖 into layers, so that all
the elements in the given layer can be computed indepen-
dently. As a layer is an activation function of the weighted
sum of other layers, most of the transitions in the network
can be expressed as matrix or tensor operations.

Very often due to the size and complexity of the network,
the closed solution that finds optimal weights either does
not exist or is very difficult to find. Therefore, weight pre-
diction is usually performed in an iterative manner. In this
case, the concept of backpropagation — a method to calcu-
late the gradient of the objective function with respect to
the weights — is being applied. The key assumption is that
we can improve an approximation of all weights 𝑤 by re-
computing 𝑤 from the overall error and the gradient of 𝐹
through𝑤 := 𝑤 − 𝜂∇𝐹 (𝑤). In the cases when our objective
function can be written as: 𝐹 =

∑
𝑖 𝐹𝑖 , the gradient descent

can be rewritten as: 𝑤 − 𝜂∇∑
𝑖 𝐹𝑖 = 𝑤 − 𝜂∑𝑖 ∇𝐹𝑖 . Further-

more, the stochastic gradient descent [51] approximates the
true gradient as follows: 𝑤 := 𝑤 − 𝜂∇𝐹𝑖 (𝑤) which is typi-
cally more efficient. Intuitively, if we process a batch of items,
we can update weights after processing one individual item.
Finally, with carefully chosen activation functions 𝐴, the
computation of the backpropagation can be expressed as a
composition of linear algebra operations.

Chosen Problem. CNNs [18, 31], are neural networks
where at least one layer is computed as a convolution of
the values from the previous layers. In this paper we will
implement a CNN and use it to recognise hand-written digits.
We base our implementation on Zhang’s network design [52].
For training and recognition we rely on the widely used
MNIST data set2 as input.

State of the Art Machine Learning Frameworks. The
overall designs of state of the art machine learning frame-
works such as TensorFlow [1], Caffe [21], CNTK [50],
Torch [7], or PyTorch [28] are very similar. There is a core
part written in C/C++ with the use of external libraries, and
there is an interface part — usually a Python library. The
core part contains highly-optimised kernels doing tensor
operations, linear algebra operations, and convolutions, that
are pre-optimised for the range of supported architectures.

2see http://yann.lecun.com/exdb/mnist/.

All these frameworks support computations on GPUs, multi-
threaded and distributed executions. TensorFlow also sup-
ports custom hardware known as Tensor Processing Units
(TPU).

The main difference between the frameworks lies in the
number of building blocks that they provide which in turn
influences the productivity of data scientists. For instance,
Caffe and CNTK make it possible to specify networks via
a configuration file allowing users to avoid programming
entirely. Differences in the underlying libraries (BLAS, tensor
libraries, GPU libraries) and optimisation techniques (XLA
compiler, just-in-time compilation, kernel fusion) lead to
runtime differences on the chosen hardware.
All frameworks have in common that they construct an

internal representation of the dataflow graph of the network.
This representation makes it possible to support automatic
differentiation which automates the computation of gradient
descents. Furthermore, such dataflow graphs are analysed in
order to exploit natural concurrency of the network, optimise
the scheduling ofmultiple network nodes across the available
devices or threads, etc. In TensorFlow and CNTK the graph
is statically fixed, whereas in PyTorch the graph can change
at runtime.

The Essence of Array Programming. The underlying
linear algebra of CNNs suggests that any implementation
is amenable to a formulation based on multi-dimensional
arrays. Any declarative array language as powerful as APL,
the Ψ-calculus [26], or SaC can be used to express tensor
operations.
Conceptually, all that is needed is an abstraction for 𝑛-

dimensional arrays, with three basic primitives: selection,
shape-enquiry and some form of 𝑛-dimensional map func-
tionality. In SaC [13, 33], arrays can be constructed by using
square brackets:

𝑎 = [1, 2, 3] 𝑏 = [[1, 2], [3, 4], [5, 6]]
𝑐 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

It is assumed here, that all arrays are rectangular, i.e. all
nestings are homogeneous, and expressions like [[1, 2], [3]]
are considered ill-formed. Each array has a shape which
is a vector (1-dimensional array) denoting the number of
elements per axis. For the above examples, we have:

shape (𝑎) = [3] shape (𝑏) = [3, 2]
shape (𝑐) = [2, 2, 2]

All expressions are considered arrays — empty arrays as well
as scalar values also have shapes:

shape ( []) = [0] shape ( [[]]) = [1, 0]
shape (42) = []

The shape of an empty vector is [0]; the shape of the 2D
array containing one row that contains no elements is [1, 0],
and the shape of a scalar value is the empty vector. Selections

http://yann.lecun.com/exdb/mnist/
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have C-like syntax <array>[ <iv> ] (where <iv> is shorthand
for <index-vector>) and the following two constraints:

1. shape (<iv>) ¤≤ shape (shape (<array>))
the length of the index vector can at most be as long
as the array has axes, i.e. we are comparing two sin-
gleton vectors — the shape of the index vector must
be element-wise less or equal ( ¤≤ ) to the shape of the
shape of the array, and

2. <iv> ¤< shape (<array>)
the values of the index vector must be in range, i.e.
element-wise less ( ¤<) than the corresponding shape
elements.

In case <iv> has maximal length, the corresponding scalar
element in <array> is selected. Otherwise, the selection per-
tains to the first axes of <array> only and returns a sub-array
whose shape corresponds to those components of the shape
of <array> for which no indices were provided. In case <iv>

is empty, the entire array is selected.
Finally, SaC provides a data-parallel array constructor for

𝑛-dimensional arrays named with-loop. For the context of
this paper, we use its shorthand notation that we call tensor
comprehension [34]. An 𝑛-dimensional array can be specified
by an expression of the form:

{ <idx-var> -> <elem-expr> | <idx-var> < <shp-expr> }
where the shape of the result is determined by the value of
<shp-expr>, and each element is computed by evaluating the
expression <elem-expr>. SaC allows <elem-expr> to evaluate
to non-scalar arrays, provided that all these expressions are
of identical shape. The shape of the overall result is the
concatenation of <shp-expr> and shape (<elem-expr>). For
example, we have:

{ iv -> 1 | iv < [3] } = [1, 1, 1]
{ iv -> [1, 2] | iv < [2] } = [[1, 2], [1, 2]]

The index variable can be referred-to in the element ex-
pression, e.g. an expression of the form { iv -> a[iv]+1 |
iv < shape (a) } computes an array that has the same shape
as a given array a but whose elements have been incre-
ment by one. This notation is an extended version of the
set-expressions in [15]; it has been implemented in the latest
version of the SaC compiler and will be available in the next
release.

More on SaC. We capture the set of assumptions in SaC
that enable a compiler to generate efficient code. Firstly, SaC
is a first-order functional language. This means that all the
functions are pure, and all data is immutable. Conceptually,
every assignment copies its right hand side and every func-
tion call copies its arguments. Such an assumption makes
memory management completely transparent — there is no
way to force a memory allocation, and there is no way to
pass a pointer. The concept of pointers and references does
not exist as it would break the assumption about purity. This

makes all the optimisations much simpler as there is no need
to solve aliasing or ownership problems. At runtimewe avoid
copying data that can be shared with the help of reference
counting.
Secondly, the SaC compiler has multiple backends for

generating code for sequential, multi-threaded and CUDA
architectures from a single specification. No user annotations
are needed to indicate parallel regions, as the with-loop per
semantics exposes parallelism. Given that every iteration
can be run concurrently, the compiler chooses which array
comprehension will be run in parallel and generates either a
multi-threaded version of the code or a CUDA kernel.
Finally, SaC uses C-like syntax for functions and comes

with a rich standard library of pre-defined array operators
similar to those available in APL.

3 CNN

In this section we describe our implementation of a CNN
using [52] as a blueprint. It constitutes a typical CNN for
recognising handwritten images of digits. Figure 1 shows
the construction of the network which starts from a 28 × 28
pixel image of a digit and produces a 10-element 𝑦 through
a sequence of convolution and pooling layers. The vector 𝑦
contains the probabilities of the input actually depicting the
digits 0–9.

Convolution. In the first layer𝐶1, we compute six convo-
lutions of the input image 𝐼 with 5 × 5 matrices of weights
𝑘11,𝑖 producing six 24 × 24 arrays. One such convolution can
be implemented as:

float[*] conv(float[*] I, float[*] k) {

return { iv -> sum({ ov -> I[iv+ov] * k[ov]

| ov < shape(k) })

| iv < shape(I) - shape(k) + 1 };

}

The type float[*] denotes an array of floating point numbers
of arbitrary shape. For our image 𝐼 of shape [28, 28] and
any of the weights 𝑘11,𝑖 of shape [5, 5], the result is of shape
[28, 28] − [5, 5] + 1 = [24, 24]. Each element at the index
position iv is computed as a sum of 5 × 5 elements in I
multiplied with the corresponding weights in k.
Using conv we can define a function mconv to compute

the six convolutions and to add the individual biases 𝑏1𝑖 to
each convolution (denoted as ⊕ in Figure 1):

float[*] mconv(float[*] I, float[*] k, float[*] b) {

return { i -> conv(I, k[i]) + b[i]

| i < shape(b)};

}

This function is rank-polymorphic, and in the context of
the 𝐶1 layer we chose to store all 𝑘s in a 3D array of shape
[6, 5, 5]. One bias per convolution leads to the shape of b
being [6]. For every index in b, mconv computes the con-
volution of 𝐼 with k[ i ] that is adjusted by adding the bias
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Figure 1. CNN for digit recognition. The diagram is taken from [52]

b[ i ]. The expression k[ i ] selects a [5, 5] sub-array at the
corresponding index, and ‘+ b[ i ]’ adds the scalar to every
element of the [24, 24] array, resulting in the overall shape
[6, 24, 24].
The last step in𝐶1 is the application of the sigmoid activa-

tion function to all values. We define it with the overloaded
versions of mathematical functions provided in the standard
library of SaC:
float[*] sigmoid (float[*] in) {

return 1f / (1f + exp(-in));

}

This is a rank-polymorphic shape-preserving function, so its
application to the result of mconv of shape [6, 24, 24] yields
the desired result of the same shape.
Consider now the convolution layer 𝐶2. If we choose

to represent 𝑠 as a 3D array of shape [6, 12, 12], our rank-
polymorphic specification of mconv becomes immediately
applicable here. Intuitively, if 𝑠 is a single object, then all
the left hand sides of the arrows from 𝑆1 to 𝐶2 in Figure 1
will merge into a single point, similarly to the first convolu-
tion. Our new input to conv is of shape [6, 12, 12], so each
𝑠𝑖 should be of shape [6, 5, 5], producing a result of shape
[1, 8, 8]. As we have 12 𝑠𝑖 and 12 biases, the application of the
mconv would be of shape [12, 1, 8, 8]. Note that the second
element in the shape can be eradicated by a simple reshape,
which does not alter the data representation in memory or
its computational efficiency.

Applying the same reasoning to the 𝐹𝐶 layer, we conclude
that we can use mconv again. Without additional reshapes,
the shape of the layer 𝑆2 would be [12, 1, 4, 4]. A fully con-
nected layer is a convolution with the weight that is identical
to the shape of the input array. Therefore, as we intend to
compute ten weighted sums of all the elements,𝑊 now has
shape of [10, 12, 1, 4, 4]. This yields mconv to return a result
of shape [10, 1, 1, 1, 1]. With these observations it becomes

clear that the only parts of Figure 1 left to complete the
implementation are the pooling layers.

Average Pooling. The pooling layer 𝑆1 can be constructed
in a two step process similarly to the convolution layers. An
average pooling of a single image can be implemented as:

float[.,.] avgpool(float[.,.] in) {

return { iv -> average({ ov -> in[iv*2+ov]

| ov < [2,2] })

| iv < shape(in) / 2 };

}

We select sub-arrays of shape [2, 2] and compute their indi-
vidual average, resulting in a matrix of half as many rows
and columns as the input. Based on this definition, a generic
version that applies avgpool to the two innermost axes of
an 𝑛-dimensional array can be expressed as:

float[*] avgpool(float[*] in) {

return { iv -> avgpool(in[iv])

| iv < drop([-2], shape(in)) };

}

Note that for convenience we overload the name avgpool.
With these few functions, we are now ready to define the
whole network from Figure 1 as

float[10,1,1,1,1] forward(

float[28,28] I,

float[6,5,5] k1, float[6] b1,

float[12,6,5,5] k2, float[12] b2,

float[10,12,1,4,4] fc, float[10] b) {

c1 = sigmoid(mconv(I, k1, b1));

s1 = avgpool(c1);

c2 = sigmoid(mconv(s1, k2, b2));

s2 = avgpool(c2);

return sigmoid(mconv(s2, fc, b));

}
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Explicit shapes in forward are given for documentation pur-
poses, and they can be replaced with more generic shapes in
case of more abstract networks.

The implementation so far suffices for using the network
in forward mode, i.e. once suitable weights and biases are
known, we can classify images. To adjust the weights, we use
training inputs where we know the correct answer for every
input image. The error in recognition is our cost function
that we minimise by using stochastic gradient descent to
adjust the weights.

Backpropagating Convolution. Our loss function has a
form 1

2
∑ (𝑦 − 𝑓 (𝑥,𝑤))2, so its derivatives for𝑤𝑖 will have a

form 𝜕𝑓

𝜕𝑤𝑖
𝑓 (𝑥,𝑤)∑𝑦 − 𝑓 (𝑥,𝑤) according to the chain rule.

That is, to adjust the weights, we multiply the error with the
derivative of the network with respect to the weights. The
linear nature of the convolution implies that the derivatives
are constants, namely the input of the convolution itself.
Consequently, we can approximate the error in the weights
as a convolution of the input with the error:
float[*] backweights(float[*] d_out, float[*] in) {

return conv(in, d_out);

}

The resulting deltas then can be used to adjust the corre-
sponding weights for the next forward run. To cater for
the imprecision, this is done by applying a factor, usually
referred-to as rate.
...

weights = weights - rate*backweights(d_out,in);

...

Similarly, we can approximate the error of the bias as a sum
of the error since the derivative of the bias is constant 1:
float[*] backbias(float[*] d_out) {

return sum(d_out);

}

The trickiest bit of implementation is the propagation of the
error back to the inputs of the convolution, which we need
to feed into the computation of the next backpropagation
layer. Mathematically, the derivatives are simply the weights.
The challenge arises from the fact that the outer elements
of the result are influenced by fewer weights than the inner
elements. This distinction between inner elements and outer
elements can be expressed by checking against out-of-bound
accesses:
float[*] backin(float[*] d_out,

float[*] k, float[*] in) {

return {

iv -> sum({ ov -> all(iv-ov >= 0)

&& all(iv-ov < shape(d_out))

? k[ov] * d_out[iv-ov] : 0f

| ov < shape(k) })

| iv < shape(in) };

}

All inner elements of the result are computed by summing up
valid k[ov] * d_out [iv-ov]where ov ranges overweights
and iv ranges over in. Recall that shape(d_out) is the same
as shape(in) - shape(k) + 1. The iv-ov index may
become negative when iv = 0 and ov != 0, or larger
than shape(d_out) when iv is maximal index and ov =
0. Therefore, for each summand, we check the validity of
d_out[iv-ov] and replace out-of-bound elements with zero,
that is a neutral element of the summation. While this code
snippet is easy to understand, it computes a conditional at
every index, which is harmful for performance. Fortunately,
there is a standard technique to move such conditionals from
the body into boundary expressions. Application of this tech-
nique to backin can be found in [39].

BackpropagatingAverage Pooling. Average Pooling usu-
ally is backpropagated by evenly spreading out the error
across the indices that we have averaged across in the for-
ward mode. In our example, we can express this as:

float[.,.] backavgpool(float[.,.] d_out) {

return { iv -> d_out[iv/2] / 4f

| iv < shape(d_out) * 2 };

}

float[*] backavgpool(float[*] d_out) {

return { iv -> backavgpool(d_out[iv])

| iv < drop([-2], shape(d_out)) };

}

With these main building blocks, the backpropagation can
be implemented in a way very similar to that of the forward
function shown above. Details can be found in the source
code provided in [39].

4 Evaluation

Provided is an evaluation of the CNN implementation in
SaC, comparing it to semantically identical implementations
in TensorFlow and PyTorch3. We discuss programming
productivity reflecting our implementation experience, de-
scribe our experimental setup for runtime evaluation, and
provide a performance analyses of the implementations.

4.1 Effect on Programming Productivity

Programmer productivity is a very personalised topic as
the background in tool familiarity influences the experience.
The tools that we are comparing are of a different nature:
SaC is a general-purpose language, whereas TensorFlow
and PyTorch are specifically designed for machine learning
purposes, both highly performance tuned and optimised for
algorithms like the CNN. Neither of these tools executes the
specification directly. Instead, the specification is analysed
and translated into code that executes on parallel architec-
tures.

3All three versions can be found in [39].
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Figure 2. CPU only results for SaC vs. TensorFlow and PyTorch implementations using up to 64 Opteron cores, training 10
epochs on 10k images and classifying 10k images.

All three implementations of the CNN in SaC, Tensor-
Flow and PyTorch are very similar. In all versions about
150 lines of code are needed to specify the network and
to orchestrate the reading of inputs and data initialisation.
In all three versions, the programmer needs to understand
the abstractions used; in TensorFlow and PyTorch, the
programmer needs to learn the semantics of the available
components; in SaC, the programmer needs to understand
the building blocks that we described in Section 2. Another
difference is that SaC does not have any built-in support for
automatic differentiation.

Further experience is based on having to write the building
blocks ourselves in SaC. We found the conciseness of the
building blocks very satisfying. The key components are
described in Section 3 and can be implemented in about 150
lines of code. For someone with reasonable familiarity in
SaC, this can be achieved within a few hours, depending on
the familiarity with the underlying algorithm. Overall, the
time we spent on the SaC implementation was considerably
smaller than the time we needed to understand sufficient
details about the TensorFlow and PyTorch frameworks. Of
course this experience is hard to generalise, but we are rather
sure that in cases where the hardware architecture and the
machine learning algorithm is fixed, figuring out the details
about the frameworks and implementing the algorithm from
scratch is very likely to take comparable time.

4.2 Setup

Our machine is equipped with 4𝑥 AMD Opteron 6376 CPUs
(for a total of 64 cores) and an NVIDIA K20 GPU (CUDA
driver version 410.79). We use GCC 7.2.0, sac2c 1.3.3, CUDA
10.1, Python 3.6.6, TensorFlow 2.2.1 and PyTorch 1.6.0 for
all applications.

We compile both frameworks from sources to make sure
that the architecture specific flags like -march=native
-mtune=native are passed to the C/C++ compilers so that
we get proper vectorisation and cost models. Secondly, Ten-
sorFlow and PyTorch can make use of the oneDNN4 li-
brary [19] to accelerate linear algebra operations on various
architectures and provide a significant speedup. It is not com-
piled in by default for TensorFlow, and though we could
make our comparison without it, we would not deem it a
fair comparison. Therefore, we have verified that oneDNN
version 1.6.0 is correctly included in both frameworks, which
has led to a noticeable difference in runtime. To further en-
sure that we compare against the best possible TensorFlow
configuration, we provide figures for both, with and with-
out oneDNN activated (indicated by the -MKL postfix), and
we implement the CNN using both the Python and C++
interface (indicated by the Cxx postfix). The latter is to check
whether static compilation has an impact on performance.
Additionally, TensorFlow can make use of XLA which gen-
erates a sequence of computation kernels from the network
graph [11]. Unlike oneDNN, the kernels are generated specif-
ically from the graph meaning information specific to the
model can be used to optimise the kernels, such as fusing
kernels together. It can be activated in two ways, either by
explicitly marking functions or by activating it for the entire
program. We evaluate these two forms of XLA as well, in-
dicated in the figures by postfixes -XLA for explicit use and
-AC for whole program use (e.g. auto-clustering). This gives
us seven framework-based implementations, plus the one in
SaC. We run these on both the CPU and GPU, and measure
the wall-clock runtime of the entire application.

4Formally known as Intel MKL Library
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Table 1. Best wall-clock runtimes (seconds) on the given hardware for each framework.

Framework SaC TF-Py TF-Py-MKL TF-Cxx TF-Cxx-MKL PT-Py-MKL TF-Py-XLA TF-Py-AC

Configuration Opteron
50 threads

NVIDIA K20 NVIDIA K20 NVIDIA K20 NVIDIA K20 NVIDIA K20 NVIDIA K20 NVIDIA K20

Runtime 7.8 17.06 18.26 17.68 14.1 24.32 21.41 22.36

With non-oneDNNTensorFlow versions we set the num-
ber of threads via the session variables; for the oneDNN ver-
sion, as the library uses OpenMP, setting the TensorFlow
threads this way can quickly oversubscribe the system, so per
our experiments the best TensorFlow-oneDNN runtime
is achieved when TensorFlow threads are set to 1 and the
OMP_NUM_THREADS environment variable is set to the chosen
thread count. With SaC we control the number of threads by
passing the -mt flag to the binary file; this flag is automati-
cally created by the compiler when using the multi-threaded
backend.

The applications are run using the following parameters:
10 epochs, 100 images batch size, 10000 training images and
labels, and 10000 test images and labels. The backpropagation
has a learning rate factor of 0.05, and we do not use any
momentum.

4.3 Results and Analysis

Figure 2a shows speedup compared to the fastest sequential
runtime and Figure 2b shows the runtimes in seconds. From
Figure 2b we can see that there are big differences in the se-
quential execution time of the versions tested. The oneDNN
enabled versions provide the fastest sequential time, the non-
oneDNN versions are a factor of roughly 2 slower, SaC is a
factor of 3 slower, whereas the XLA-enabled versions are a
factor of roughly 5 slower.
In terms of scaling, the picture is different. Here, the

oneDNN versions stop scaling at around 10 cores with a
speedup of roughly 2 over their sequential runtime. The
XLA versions stop scaling at 20 cores with a 5 fold speedup
over their sequential version, reaching the same performance
as the sequential oneDNN versions. The SaC version scales
up to 50 cores with a speedup of 20 over the sequential SaC
runtime which equates a speedup of 6.4 over the sequential
oneDNN time.

The relatively poor absolute performance of the XLA ver-
sionmost likely can be attributed to the size of our network as
XLA is optimised for larger and more complex networks [10].

According to [48], the speedup plateauing that we see for
the TensorFlow and PyTorch applications is likely due due
to how the nodes within the network graph are translated to
threads. Some nodes have dependencies on outputs of other
nodes, and so are scheduled differently to nodes that have
no dependencies. This limits the degree to which work can
be distributed across the threads, affecting the maximum
amount of scaling possible. Changes to the design of the

network, or using a completely different neural network can
lead to different scaling. As SaC only translates with-loops
to threads, and with-loops are guaranteed to be side-effect
free, this leads to better scaling.
With TensorFlow we have two levels of parallelism, as

the oneDNN operations spawn their own threads indepen-
dently of the TensorFlow scheduler. We tried different
combinations of threading configurations looking for the
best possible performance. Using the default configuration,
where TensorFlow and oneDNN use all cores, leads to over-
subscription and degraded performance. Using combinations
of values that match the number of logical cores on the sys-
tem, such as 16 oneDNN threads and 4 TensorFlow threads,
did not lead to better performance compared to just setting
TensorFlow thread number to 1 and having oneDNN scale
to all 64 logical cores. In any case we were not able to resolve
the scaling plateau by this means.
Table 1 shows the best runtimes per application and the

hardware configuration this was achieved on. The best run-
time for SaC is 7.8 seconds using 50 CPU threads. All other
applications have their best runtime on the GPU, with the
TensorFlow C++ oneDNN implementation having the best
runtime at 14.01 seconds. The SaC on the GPU performed
poorly compared to the other applications, running 9× slower.

In addition to a runtime evaluation, we also tried to mea-
sure FLOP/s for the SaC and TensorFlow implementations.
For SaC we achieved 22.9 GFLOP/s using 50 CPU threads.
For TensorFlow we could not make a reliable measurement
as both the CPU counters and our hand-counting of opera-
tions did not match up, with orders of magnitude difference.
After closer inspection, looking for instances of aggressive
vectorisation and other optimisations, we could not deter-
mine the cause for this discrepancy and so leave out any
measurement for TensorFlow.

4.4 Source of Performance in SaC

The SaC compiler is quite sophisticated, employing hundreds
of optimisation that run in a cycle. Explaining what exactly
the compiler is doing to make the code run well is challeng-
ing. All we can do here is identify a few key components, in
order to potentially apply the demonstrated capabilities in
the context of other compilers and programming languages.
After looking at the intermediate states of the code, we

identify the following necessary optimisations: with-loop
folding [32], with-loop fusion [14], memory reuse [16, 46],
and statically scheduled multi-threaded execution [13].
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With-Loop Folding. Themain idea behindwith-loop fold-
ing is the list equalitymap 𝑓 ◦map𝑔 = map (𝑓 ◦𝑔), which can
eliminate the creation of intermediate arrays. In the tensor
comprehension notation this equality enables the following
transformation:

a = {iv -> f (iv) | iv < u};

b = {iv -> g (a[𝐾 (iv)]) | iv < v}

⇒ b = {iv -> g (f (𝐾 (iv))) | iv < v}

where 𝐾 is an index mapping from the legal index set of b
into the legal index set of a. In case u=v and 𝐾 is the identity,
we get exactly the above equality. However, very often u
and v do not coincide. Nevertheless, the transformation is
still valid. As long as 𝐾 is injective and the array a is not
needed anywhere else, the transformation always improves
the performance of the generated code. Even in cases where
𝐾 is only partially injective, the transformation is typically
beneficial due to decreased pressure on the memory system.
For more details see [32].
In the case of our CNN example, the most prominent ap-

plication of with-loop folding is the merging of the addition
of biases and the computation of sigmoid functions in layers
𝐶1, 𝐶2 and 𝐹𝐶 .

With-Loop Fusion. Here we apply a variant of the classi-
cal loop fusion optimisation to tensor comprehensions. The
optimisation combines the body of two subsequent compre-
hensions with an identical iteration space. In the list-based
setting this is also referred to as Tupling [6]; we can capture
the transformation in our map-based analogy as:

(map 𝑓 𝑎,map 𝑔 𝑎) = unzip (map (𝑓 Δ𝑔) 𝑎)
where (𝑓 Δ𝑔) 𝑥 = (𝑓 𝑥, 𝑔 𝑥)

This formulation exposes how the traversal of 𝑎 is being
shared for the computation of the two results. Key to an
efficient implementation in the context of lists is an opti-
misation of map ◦ unzip to avoid the creation of a list of
tuples.

In terms of the tensor-comprehensions in SaC, this trans-
formation can be stated as:

a = {iv -> f (iv) | iv < u};

b = {iv -> g (iv) | iv < u};

⇒ a, b = {iv -> f (iv), g (iv) | iv < u}

Again, we can see the sharing of the traversal, i.e. the iter-
ation of iv. As with lists we need to avoid the creation of
an array of tuples. However, the direct access nature of the
array context renders this a trivial task; the SaC compiler
ensures that the results are directly written into two separate
arrays a and b.

Memory Reuse. This memory analysis makes it possi-
ble to do array operations in-place. For example, when we
increment all the elements by a constant:

𝑏 = { 𝑖𝑣 -> 𝑎[𝑖𝑣] + 1 | 𝑖𝑣 < shape (𝑎) }

we can avoid allocating new memory and reuse 𝑎, even in
a parallel execution, provided that 𝑎 is not used further in
the program. The analysis becomes challenging when we
consider reusing existing, but no longer referenced, arrays
within the current scope [46]. The analysis needs to handle
conditionals within the set expression or the access patterns
of candidate arrays.

Statically-Scheduled Parallelism. Finally, our tensor
comprehensions are data parallel by design. Therefore, it is
relatively straight forward to generate the code that parti-
tions the index space into chunks and runs each chunk in
parallel. Unfortunately, there is a plethora of small details
that makes it very hard to implement this efficiently [12].
First of all, one needs to choose the operations we want to
run in parallel, and their granularity. Secondly, choosing a
schedule even for a single array operation is challenging.
Finally, thread synchronisation and memory management
make a significant difference. By default we use static sched-
uling, a custom memory allocator and for each operation we
decide to run in parallel we try to choose the chunking that
maximises the work each active thread is doing.

5 Related Work

5.1 Array Languages

Directly or indirectly, APL [20] has influenced all existing
array languages. At its core, APL provides a set of operators
with a number of rules on how they can be composed. All
operators are either unary or binary, first- or second-order
functions, expressed with a single symbol, which gives a lot
of expressiveness. For example, all the building blocks of our
CNN can be expressed in 10 lines of code [47]. APL is an
untyped language, so all errors will occur at runtime only.
It comes only with an interpreter and all the operators are
implemented as library functions, limiting cross-operator op-
timisations. That setup typically inhibits performance com-
petitive with the performance presented in this paper as
shown by the performance figures presented in [47].
Other array languages can be roughly divided into three

groups: direct descendants of APL, grandchildren and fur-
ther relatives. Direct descendants are languages like: J [37],
K [49] or Nial [25]. They treat every object as an array (ex-
cept maybe functions) and provide a large subset of APL
operators. Typically, these languages come only with in-
terpreters which, again, limits the optimisation space and
performance.

The grandchildren like SaC, Futhark [17], Remora [35],
Qube [42] are still array-oriented languages, but instead of
providing built-in APL operators natively, they offer a few
low-level constructs from which the operators can be imple-
mented as library functions. All the mentioned languages
are functional and come with compilers that are focused on
generating high-performance code. All these languages have
strong static type systems. Futhark and SaC are capable
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of generating GPU code automatically. All these languages
should be suitable to generate high-performance codes from
CNN specifications such as the one we looked at in this pa-
per. Tran et al. [41] describe how to compose deep learning
algorithms in Futhark. They demonstrate excellent perfor-
mance competitive with that obtained in Tensorflow as well.
While this may seem to be a very similar contribution as the
one made in this paper, there is a key difference. The paper
focuses on the use of a Futhark library, not its construction.
Furthermore, in Futhark, a shape-invariant formulation as
the one presented in this paper is not possible. Instead, indi-
vidual versions for fixed ranks have to be provided by the
library. In case the provided ranks are insufficient, manual
extensions are required as needed. As shown in Section 3,
our simple network already involves dealing with arrays of
rank five.
Finally, further relatives like MATLAB [40], Julia [4],

Python [44] with NumPy [27] have some notion of multi-
dimensional arrays and a subset of APL operators, both of
which are embedded in the context of the general purpose
language. All the mentioned languages come with inter-
preters only and rarely provide exceptional levels of perfor-
mance other than by relying on the use of highly optimised
external libraries. Yet these languages are very useful for
prototyping.

5.2 Machine Learning DSLs

Machine Learning DSLs provide a way to express neural
networks using high-level specifications. Typically, the high-
level specification is either handled by a machine learning
framework, or transformed into machine code for perfor-
mance reasons.
TypedFlow [2] is embedded in Haskell and provides a

number of dependently-typed primitives that can be used to
define a network. Later this specification is translated into
TensorFlow calls. This approach provides type safety and
a powerful syntax, but performance-wise it still relies on
the underlying framework. The tensorflow-ocaml [23] and
ocaml-torch [24] are similar wrappers for TensorFlow and
PyTorch in OCaml.
DEFIne [8] mainly focuses on liberating data scientists

from the necessity to deal with general-purpose languages,
such as Python, when describing the networks. The pro-
posed syntax focuses exclusively on the machine learning
primitives, and the accompanying tools take care of perfor-
mance and portability, still using state of the art machine
learning frameworks as a backend.
DeepDSL [53], OptiML [38] and Latte [43] focus on op-

timisations that are specific to machine learning such as
kernel-fusion and parallelisation. They generate code to C++
and CUDA, using highly-optimised libraries.

The XLA [11] is a domain-specific compiler that focuses on
accelerating linear algebra operations in machine-learning
applications. The compiler is a part of the TensorFlow

framework, and it works by analysing dataflow graph of
the network and turning it into fast machine code by fus-
ing pipelined nodes, inferring tensor shapes and performing
memory optimisations based on these data sizes.
Tensor Comprehensions [45] has a very similar idea: it

is a DSL that is integrated into existing machine learning
frameworks and it provides a common ground to implement
machine learning operators for further cross-optimisation. A
distinctive feature for this approach is the use of the polyhe-
dral model to perform the actual fusion, blocking, non-trivial
scheduling and parallelisation. In a way the approach is very
similar to Halide [30], except the domain is different and
the number of optimisations is larger.

6 Conclusions

This paper makes an argument for an alternative design
of machine learning frameworks. Instead of using a large
number of interconnected specialised libraries, we consider
using a compiled array-oriented language to host both the
framework and the specification of the actual networks. To
justify the viability of the proposed approach, we imple-
ment a minimalistic framework in SaC without building on
any pre-existing libraries and use it to define a state of the
art CNN. We compare its performance and expressiveness
against implementations in TensorFlow and PyTorch.
Our solution is concise: about 150 lines of code to define

the building blocks of the network, and another 150 lines to
define the network itself — which is about the same amount
as is needed for the network definition in both TensorFlow
and PyTorch. The basic building blocks in SaC are rank-
polymorphic functions that can be easily reused in other
contexts. Rank polymorphism is a key to expressiveness
here.

Our performance experiments on a 64-core machine with
an NVIDIA K20 GPU show that the SaC implementation of
the CNN is on par with that of TensorFlow and PyTorch.
The TensorFlow and PyTorch implementations perform
well on the GPU, but they did not make good use of the
multi-core CPU. SaC performed poorly on the GPU, but the
multi-threaded version outperforms both the CPU the GPU
versions of TensorFlow and PyTorch by a factor between
2 and 3.

As for productivity, Python-based setups, with a large set
of readily available libraries, are more elaborate thanmost ex-
isting array languages. The dynamic nature of the language
gives rise to powerful abstractions, but poses challenges for
getting good performance from native code. Performance is
typically achieved by using special-purpose libraries imple-
mented in low-level languages. When the number of such
libraries grows, correct system setup turns into a daunting
task, as we have experienced in our multiple runtime ex-
periments with TensorFlow and PyTorch. By expressing
frameworks and algorithms in the same array language, it
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is possible to eliminate complex dependencies, reducing the
setup time, and helping compilers to achieve competitive
performance.
There seems to be no conceptual problem in bringing

Python-level experience to an array language of choice.
In the case of SaC, besides generating a proper machine
learning library, two system improvements would be de-
sirable: interactive behaviour and automatic differentiation.
As a compiled language, SaC does not offer the same inter-
activity as Python. However, there exists a Jupyter-based
frontend5 that mimics REPL interactivity. Adding automatic
differentiation to a compiler is a well-understood problem,
as demonstrated by Stalin∇ [29]. Bringing it to the context
of SaC is mainly an implementation task.
By no means do we suggest that existing machine learn-

ing frameworks can be readily replaced by array languages.
However, a clean design that eliminates a number of abstrac-
tion layers, supported by the fact that a prototypical research
compiler can significantly outperform two industrial frame-
works suggests that the proposed approach is interesting
enough to be further investigated.
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