
Coordinating Data Parallel SAC Programs with S-Net

Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko

University of Hertfordshire
{c.grelck, s.scholz, a.shafarenko}@herts.ac.uk

Abstract

We propose a two-layered approach for exploiting
different forms of concurrency in complex systems:
We specify computational components in our func-
tional array language SaC, which exploits data par-
allel properties of array processing code. The declar-
ative stream processing language S-Net is used to
orchestrate the collaborative behaviour of these com-
ponents in a streaming network. We illustrate our
approach by a hybrid implementation of a sudoku
puzzle solver as a representative for more complex
search problems.

1 Introduction

Data parallel languages like Sisal [5], Zpl [3], or
SaC [13, 10] are known to be particularly well suited
for utilising implicit parallelism effectively. For cer-
tain applications, predominantly numerical applica-
tions on large homogeneous data structures, these
languages can deliver parallel performance competi-
tive if not superior to that of hand-coded Fortran
programs [2, 4, 7, 9]. The beauty of this approach
is that it is completely implicit and thus avoids all
the usual pitfalls of concurrent programming such
as deadlocks or race conditions.

However, even for numerical applications, other
forms of concurrency are often required, which are
more directly under the the programmer’s control.
The main challenge here is to achieve a level of
explicit concurrency which is expressive enough to
describe the concurrency needed yet sufficiently re-
strictive to guarantee an orderly system behaviour.

Streams in Sisal were to achieve exactly that.
Unfortunately, the tight integration of the streams
into the language gave rise to several drawbacks.
The topology of streams is difficult to identify in
a given program, which makes reasoning about its
concurrent behaviour rather difficult. For the same

1-4244-0910-1/07/$20.00 c©2007 IEEE.

reason, debugging requires a holistic approach. Be-
sides these issues, there is an expressiveness con-
cern: in order to stay in the side-effect free world
of single assignments, impure features, which may
be essential for managing concurrency, e.g. non-
deterministic merge, cannot be specified.

In this paper, we propose a two-layered approach
for integrating stream processing (as a means for
making concurrency explicit) with the fully implicit,
data-parallel programming of SaC. In the outer
layer, we introduce a novel declarative stream pro-
cessing language, named S-Net [14, 8], which ex-
plicitly coordinates the asynchronous collaborative
behaviour of SaC-encoded components. S-Net
turns a SaC function into a stream processing com-
ponent; then a set of network combinators allows
us to connect various components into complex
streaming networks.

This approach has several advantages: the strict
separation between the two layers makes the ex-
plicit concurrency control imposed by the coordi-
nation layer easily identifiable. Although the in-
dividual SaC components are purely functional,
the S-Net layer supports impure features such as
non-deterministic merge. Debugging the concur-
rent behaviour becomes rather straightforward as
all streams can be observed individually. Despite its
impure features an orderly behaviour of the stream-
ing network can be assured.

We illustrate the potential of our approach by a
simple search problem: finding solutions to sudoku
puzzles. While sudokus are simple enough to be
explored in detail, they are computationally non-
trivial as they require search over an imbalanced
tree of theoretically up to 981 possibilities.

The remainder of this paper is organised as fol-
lows. Section 2 introduces SaC; we sketch out
a SaC-only implementation of the sudoku search
problem in Section 3. In Section 4 we explain the
design of S-Net and in Section 5 we illustrate our
approach by discussing hybrid SaC/S-Net sudoku
puzzle solvers. We discuss related work in Section
6 and finally present our conclusions.

2 Introducing SAC

Core SaC is a functional, side-effect free variant
of C: we interpret assignment sequences as nested
let-expressions, branches as conditional expressions
and loops as syntactic sugar for tail-end recursive
functions. The meaning of functional SaC code co-
incides with the state-based semantics of literally
identical C code (cf. [13]). This language kernel
is extended by n-dimensional state-less arrays: Any
expression may evaluate to an array, and arrays may
be passed between functions without restrictions.
Arrays in SaC are neither explicitly allocated nor
de-allocated. They exist as long as the associated
data is needed, just like scalars in conventional lan-
guages.

Array types include arrays of fixed shape,
e.g. int[3,7], arrays of fixed rank, e.g. int[.,.]
and arrays of any rank, e.g. int[*]. The lat-
ter include scalars which in SaC are considered
rank-0 arrays with an empty shape vector. For
convenience and equivalence with C we use int
rather than the equivalent int[] as a type no-
tation for scalars. SaC provides a small set of
built-in array operations, basically primitives to re-
trieve data pertaining to the structure and contents
of arrays, e.g. an array’s rank (dim(array)) or its
shape (shape(array)); a selection facility provides
access to individual elements or entire subarrays:
(array[idx vec]).

Compound array operations are specified using
with-loop expressions, SaC-specific array compre-
hensions:
with { (lower bound <= idx vec < upper bound) :

expr;
}: genarray(shape, default)

where lower bound and upper bound are expres-
sions that must evaluate to integer vectors of equal
length. They define a rectangular (generally multi-
dimensional) index set. The identifier idx vec repre-
sents elements of this set, similar to loop variables in
for-loops. However, we deliberately do not define
any order on these index sets. We call the specifica-
tion of such an index set a generator and associate
it with an arbitrary, potentially complex expression.
By doing so we create a mapping between index
vectors and values, in other words an array. As an
example, consider the following with-loop

with { ([0,0] <= iv < [3,5]) : 42;
}: genarray([3,5], 0)

that defines a 3 × 5 matrix with all elements uni-
formly set to 42. The scope of idx vec is confined
to the expression associated with the generator. It
can be used to access the current index location.
For example, the with-loop

with { ([0] <= iv < [5]) : iv[0];
}: genarray([5], 0)

computes the vector [0,1,2,3,4]. Note that iv
denotes a 1-element vector rather than a scalar.
Therefore, we need to select the first (and only) el-
ement from iv to achieve the desired result. Actu-
ally, it is not the generator that defines the shape of
the resulting array, but the first expression following
the key word genarray. In our previous examples
they always coincided with the upper bound vec-
tors, but for example,

with { ([1] <= iv < [4]) : 42;
}: genarray([5], 0)

computes the vector [0,42,42,42,0]. We still cre-
ate a 5-element vector, but only the three inner el-
ements are defined as 42 while all others are set to
the default value, which is given by the second ex-
pression after the key word genarray. With-loops
are not limited to have a single generator only. For
example, the with-loop

with { ([1] <= iv < [4]) : 1;
([3] <= iv < [5]) : 2;

}: genarray([6], 0)

defines the vector [0,1,1,2,2,0]. Whenever the
index sets defined by the various generators are not
pairwise disjoint, the order of the generators mat-
ters: in the example the array’s value at index loca-
tion [3], which is covered by both generators is set
to 2 rather than to 1. SaC actually features several
variants of with-loops, e.g.

with { ([0] <= iv < [3]) : 3;
}: modarray(A)

Let us assume we have named the array defined by
the previous with-loop A. The modarray-with-loop
above then computes the vector [3,3,3,2,2,0].
More precisely, it computes a new array that has
exactly the same shape as the existing array re-
ferred to by the expression following the key word
modarray. The computation of those elements cov-
ered by one or more generators follows exactly the
same pattern as in the case of genarray-with-
loops. The remaining elements are defined by the
values of the corresponding elements in the referred
array.

One purpose of with-loops is to serve as an im-
plementation vehicle for universally applicable ar-
ray operations As a simple example, consider the
definition of the vector concatenation operator ++:
int[.] (++) (int[.] a, int[.] b)
{
rshp = shape(a) + shape(b);
res = with {([0] <= iv < shape(a)) : a[iv];

(shape(a) <= iv < rshp) : b[iv-shape(a)];
}: genarray(rshp, 0)

return(res);
}

We embed the with-loop within a function abstrac-
tion and use the built-in shape function to express
generator boundaries in a symbolic way.

3 Solving Sudokus with SAC

Sudokus are played on a 9 by 9 board of num-
bers. Starting out from a board with several given
numbers, the overall aim is to fill all empty posi-
tions with numbers so that the following conditions
hold: (i) each row contains the numbers 1 to 9 ex-
actly once, (ii) each column contains the numbers
1 to 9 exactly once, and (iii) each of the nine 3 by
3 sub-boards contains the numbers 1 to 9 exactly
once. Although in general we may have an arbi-
trary number of solutions or no solution at all, all
well-constructed sudokus have a unique solution.

In this section we develop a SaC program for
solving sudokus. The central idea is to keep a 9
by 9 matrix of 9-element boolean vectors that rep-
resent the possible choices for each given position.
We start out from an array containing true values
only. Whenever we add a new number to the board,
we eliminate all those options that are affected due
to the 3 rules above, i.e., we set all corresponding
positions in the same column, row and sub-matrix
to false.

In SaC, this can be specified as a function:
1 int[*], bool[*] addNumber(int i, int j, int k,
2 int[*] board, bool[*] opts)
3 {
4 board[i,j] = k;
5 k = k-1; is = (i/3)*3; js = (j/3)*3;
6 opts = with {
7 ([i,j,0] <= iv <= [i,j,8]) : false;
8 ([i,0,k] <= iv <= [i,8,k]) : false;
9 ([0,j,k] <= iv <= [8,j,k]) : false;

10 ([is,js,k] <= iv <= [is+2,js+2,k]) : false;
11 } : modarray(opts);
12
13 return(board, opts);
14 }

which takes the following arguments: a position in
the board specified by two integer parameters i and
j, a number k to be placed at that position, a two-
dimensional board board holding all numbers set so
far, and a three-dimensional boolean array opts of
options. As a result, addNumber returns modified
versions of the board and the options which reflect
the insertion of the number k at position i,j.

While the modification of the board requires only
the manipulation of a single element of the board
(cf. line 4), the modification of the options is ex-
pressed by a with-loop which spans over the lines 6
to 11. The generator in line 7 sets all options in
position i,j to false, line 8 falsifies the option for
the given number k in row i, and line 9 falsifies the
option for the given number k in column j. Line 10
eliminates the option in the 3 by 3 sub-matrix where
i,j is located in. Note here that the decrement of k
is due to the fact that array indexing in SaC always
starts with 0, whereas the numbers to be placed in
the sudoku start with 1.

With this function at hand, after an initialisa-

tion phase which adds the pre-determined numbers,
solving sudokus boils down to a search algorithm
which successively adds numbers to all positions not
yet filled until it eithers gets stuck or is completed.
This can be specified as a function

1int[*], bool[*] solve(int[*] board, bool[*] opts)
2{
3if (! isStuck(board, opts)
4&& ! isCompleted(board)) {
5i,j = findFirst(0, board);
6mem_board = board;
7mem_opts = opts;
8for(k=1; (k<=9) && (!isCompleted(board)); k++) {
9if(mem_opts[i,j,k-1]) {
10board, opts = addNumber(i, j, k,
11mem_board, mem_opts);
12board, opts = solve(board, opts);
13}
14}
15}
16return(board, opts);
17}

It takes an actual board and an array of options as
arguments and computes the first solution it finds
or, if no solution exists, the board where the algo-
rithm got stuck. At the core of this function we find
a recursive call embedded into a for-loop which re-
alises the back-tracking of the search. For each valid
option at a given position i,j, we successively try
to solve the given board until it is completed.

Since this, in the worst case, can lead to a 9-fold
recursion for each of the numbers to be filled in,
the choice of i and j directly affects the breadth
of the search tree and, thus, has a vast impact on
the runtime performance of the overall program. So
far, we simply select the first occurrence of a zero
in the board, i.e., the first empty field. In order to
keep the potential need for back-tracking as small
as possible, we replace the call to findFirst by a
call of findMinTrues(opts) which selects a free
position with a minimum number of options left.

If we want to parallelise this application∗, we can
directly spot 2 potential sources for concurrency:
addNumber and findMinTrues can be executed in
a data-parallel fashion, and the recursive calls in
solve can be done concurrently effectively trans-
forming our depth-first search into a breadth-first
search. While in SaC the former comes for free,
i.e., it just requires multi-threaded code generation
to be enabled, the latter cannot be expressed easily.
Although, in principle, it is possible to use external
libraries such as Pvm or Mpi this would be contrary
to the declarative nature of SaC and would intro-
duce all the well-known difficulties of handling and
controlling concurrency explicitly.

We follow a different approach. We embed our

∗It should be mentioned here that this algorithm leads to
code that typically solves 9 by 9 sudokus in far less then a
second. However, as sudokus can be played on any board
of size n2 × n2 parallelisation becomes essential for bigger
puzzles.

SaC-program into the stream processing framework
S-Net. It serves as a coordination layer on top
of SaC and allows us to define which parts of the
program we want to be executed concurrently in a
declarative way.

4 Introducing S-Net

S-Net is a coordination language based on
stream processing. It turns SaC functions
into asynchronously executed, stateless stream-
processing components, named boxes. Each box is
connected to the rest of the network by two typed
streams: an input stream and an output stream.
Messages on these typed streams are organised as
non-recursive records, i.e. label-value pairs. Labels
are subdivided into fields and tags. Fields are as-
sociated with values from the SaC domain that
are entirely opaque to S-Net; tags are associated
with integer numbers that are accessible both on
the S-Net and the SaC level. Tag labels are dis-
tinguished from field labels by angular brackets.

A box expects a record on its input stream to
which it applies its associated SaC function (the
box function). An S-Net box may yield multiple
output records on the output stream in response
to a single input record. Therefore, we cannot use
the value of the function application as a result.
Instead, the SaC function itself calls, potentially
repeatedly, an interface function snet out to pro-
duce a dynamic number of output records that are
immediately sent to the output stream. As soon as
the evaluation of the SaC function is complete, the
S-Net box is ready to receive and process the next
input record.

The functionality of a box is declared on the
S-Net level by a box signature: a mapping from
an input type to a disjunction of potential output
types. For example,

box foo (a,) -> (c) | (c,d,<e>)

declares a box that expects records with a field la-
beled a and a tag labeled b. The box responds with
an unspecified number of records that either have
just a field c or fields c and d as well as tag e. The
associated SaC function foo is supposed to be of
arity two: the first argument may be of any array
type while the second argument must be of type
int. During its evaluation the function foo is sup-
posed to call the interface function snet out to send
records to the output stream. For example,

snet_out(1, x);

yields a record according to the first output variant
of the above type signature while

snet_out(2, x, y, 42);

yields a record according to the second output vari-
ant, as defined by the first argument to snet out;

the following arguments are used to construct the
output record according to the box signature spec-
ification. In the latter case, for example, we con-
struct a record with two fields c and d associated
with the values referred to by the SaC variables x
and y, respectively, and a tag <e> paired with the
integer value 42. We use uniqueness typing in SaC
to enforce a certain execution order on applications
of snet out.

The box signature naturally induces a type sig-
nature. Whereas a concrete sequence of fields and
tags is essential for the proper specification of the
box interface, we drop the ordering when reasoning
about boxes in the S-Net domain and turn tuples
of labels into sets of labels. The type signature of
box foo, hence, is

{a,} -> {c} | {c,d,<e>}

We call the left hand side of this type mapping the
input type and the right hand side the output type.
To be precise, this type signature makes foo accept
any input record that has at least field a and tag
, but may well contain further fields and tags.
The formal foundation of this behaviour is struc-
tural subtyping on records: Any record type t1 is a
subtype of t2 iff t2 ⊆ t1. This subtyping relation-
ship extends nicely to multivariant types, e.g. the
output type of box foo: A multivariant type x is
a subtype of y if every variant v ∈ x is a subtype
of some variant w ∈ y. Again, the variant v is a
subtype of w iff every label λ ∈ v also appears in w.

Subtyping on input types of boxes raises the
question what happens to the excess fields and tags.
Subtyping relations would be satisfied if we sim-
ply ignored them. Instead, we retrieve excess fields
and tags from incoming records and extend any out-
put record produced in response to this very input
record by these fields and tags, unless some label is
already present in the output record, in which case
the field or tag is discarded. We call this behaviour
flow inheritance. Note that due to the presence of
subtyping, flow inheritance is type-safe as it pro-
duces subtypes of the output type, which cannot vi-
olate type constraints. As an example let us assume
the box foo receives a record {a,,d}. While a
and are given as arguments to the associated
box function, field d is kept by the runtime system.
This is essential as the implementation of the box
function is completely unaware of any potential ex-
cess fields and tags. The field d is attached to any
output record of foo that follows the first output
type variant; output records produced according to
the second output type variant are left untouched
as they already feature a field d.

Type inference algorithms developed for S-Net
take full account of subtyping and flow inheritance,
which can be dealt with statically. In conjunction

record subtyping and flow inheritance prove to be
indispensable when it comes to making boxes that
were originally unaware of each other cooperate in
a streaming network.

It is a distinguishing feature of S-Net that we do
not explicitly introduce streams as objects. Instead,
we use algebraic formulae to define connectivity in
streaming networks. The restriction of boxes to a
single input and a single output stream (SISO) is
essential for this. S-Net provides 4 different net-
work combinators: static serial and parallel com-
position of two networks and dynamic serial and
parallel replication of a single network. These four
combinators preserve the SISO property, i.e., any
network, regardless of its complexity, can be used
as an SISO component.

Let A and B denote two S-Net networks or boxes.
Serial combination (A..B) constructs a new network
where the output stream of A is directed to the in-
put stream of B, and the input stream of A and the
output stream of B become the input and output
streams of the combined network, respectively. As
a consequence, A and B operate in a pipeline mode.

Parallel combination ((A||B) constructs a net-
work where all incoming records are either sent to A
or to B and the resulting record streams are merged
to form the overall output stream of the combined
network. Each network is associated with a type
signature. However, unlike box signatures they are
inferred by the compiler. Network types control the
flow of records in the case of parallel combination.
Any incoming record is directed towards the sub-
network whose input type better matches the type
of the record itself. If both branches in the stream-
ing network match equally well, one is selected non-
deterministically.

The parallel and serial combinators have their
infinite counterparts: serial and parallel replica-
tors for a single subnetwork. The serial replicator
A**(type) constructs an infinite chain of replicas
of A connected via serial combination. The chain is
tapped before every replica to extract records that
match the type specified as second operand. These
records are merged into the overall output stream.
The unfolding of the chain of networks is demand-
driven.

The parallel replicator A!!<tag > also replicates
network A infinitely far, but this time the replicas
are connected in parallel. However, the best-match
rule of the parallel combinator does not apply when
it comes to choosing the proper replica branch for an
incoming record because all replicas trivially have
the same type, which would immediately lead to a
non-deterministic choice. Instead, the parallel repli-
cator comes with an additional tag specification. All
incoming records must have the tag specified and

the value of this tag decides to which replica a record
is sent. Output records are non-deterministically
merged into a single output stream, just as with
the parallel combinator. While the actual number
of replicas is adjusted by the runtime system on de-
mand, it is guaranteed that any two records whose
replication tags have the same (integer) value are
sent to the same replica.

As pointed out before, the parallel combina-
tor as well as the serial and parallel replicators
merge the output streams of the subnetworks non-
deterministically, i.e., any record produced proceeds
as soon as possible. This behaviour makes it possi-
ble to write S-Net programs that adapt to the load
distribution in a concurrent system. In case the or-
der of the records in a stream is essential for the
network, S-Net provides deterministic versions of
all (but the serial) combinators: |,*,!, using single
rather than double symbols.

In practice, we often see boxes that mostly or en-
tirely serve housekeeping purposes, such as renam-
ing, duplication or elimination of fields and tags or
simple arithmetic operations on tag values. While
all this can be easily accomplished using a SaC-
implemented box, it is often more convenient to do
this housekeeping on the S-Net level as it directly
affects network construction. The construct we in-
troduce for these purposes is called a filter and it
looks as follows:

[pattern → record1; record2; . . . recordn] .

the type pattern on the left is a set of labels while
each of the record specifiers on the right is a set of
items of the following kinds:

• a field name occurring in the pattern: it is
copied to the new record;

• newfield = oldfield, where oldfield occurs in
the pattern: its value is associated with the
label newfield and included in the new record.
The field newfield may or may not occur in
the pattern.

• newtag = expression, where the expression is
composed from tag labels and arithmetic oper-
ators. Each tag label occurring in the expres-
sion must also occur in the pattern. The cor-
responding tag values are fetched, a new tag
value is calculated according to the expression
and the result is associated with the tag newtag
in the new record. The initialisation of new
tags is optional, tag values are set to zero by
default.

For example, the following filter consumes a record
with fields a,b and the tag c and which creates two

new records: The first record has field a with the
original value, field z with the same value and a
tag 〈t〉 set to zero. The second record has fields b
with the original value, a with the same value as b
and the tag 〈c〉, whose value is incremented by 1:
[{a,b,<c>} -> {a,z=a,<t>};
{b,a=b,<c>=<c>+1}]

5 Solving Sudokus with SAC and S-
Net

As we have discussed in Section 3, the pure SaC
approach does not allow us to exploit concurrency
between recursive calls to the sudoku solver. In this
section we show how embedding the solver into an
S-Net network not only enables us to execute these
recursive calls asynchronously, but also to control
the dynamic unfolding of processes/threads within
the S-Net-layer itself.

Our first step is to shift the recursion from
the SaC level to the level of S-Net. This can
be achieved by transforming the recursive calls
into S-Net-records and by embedding the function
solve into an S-Net box which then serves as an
argument to a serial replicator. Fig. 1 shows the

{<done>}*

box computeOpts

{board} −> {board, opts}
{board, opts} −> {board, opts}

box solveOneLevel

 | {board, <done>}

1 void solveOneLevel(int[*] board, bool[*] opts)
2 {
3 if (!isStuck(board, opts)
4 && !isCompleted(board)) {
5 i,j = findMinTrues(opts);
6 mem_board = board;
7 mem_opts = opts;
8 for(k=1; (k<=9) && !isCompleted(board); k++) {
9 if(mem_opts[i,j,k-1]) {

10 board, opts = addNumber(i, j, k,
11 mem_board, mem_opts);
12 if (isCompleted(board)) {
13 snet_out(1, board, opts);
14 } else {
15 snet_out(2, board, 0);
16 }
17 }
18 }
19 }
20 }

Figure 1. Embedding the solver in a net-
work.

network and the modified version of the function
solve named solveOneLevel. Instead of a recur-
sive call solveOneLevel tries to place one further
number at the selected position i,j. For each pos-
sible number at that position it outputs a record
containing either the new board and its options or

the final board and a tag <done>, which signals the
completion of the puzzle.

For the purpose of illustration we use a graph-
ical representation of the S-Net in Fig. 1. The
SaC function solveOneLevel is represented as a
box with type signature inscription. The box itself
is embedded into a serial replicator with the termi-
nation pattern specified in the upper right corner.
The replicator dynamically unfolds into a pipeline
of solveOneLevel boxes. As soon as one of these
boxes produces a record containing the tag <done>,
that record leaves the conceptually infinite pipeline.

It should be noted here that in our sudoku ex-
ample this unfolding cannot lead to pipelines longer
than 81 replicas of the solveOneLevel box. This is
due to the fact that each solveOneLevel box only
emits a record if it can add a number to the board.
Otherwise, it either emits no record at all (search
is stuck) or it emits a record that contains <done>
(solution is found). Left to the serial replicator we
have another box named computeOpts, which takes
the incoming board and realises the initialisation of
the options arrays by repeatedly calling the function
addNumber from Section 3.

If we assume that each box creates a separate
process/thread the crucial question now is: to what
extend do we exploit the possibility to concurrently
examine different choices of the nth number? If p is
the number of pre-defined numbers, the nth number
is set by the (n−p)th replica of the solveOneLevel
box. For each option k, it emits a record to the next
replica. As a consequence, the (n + 1)th number
for each of these alternatives is placed sequentially.
However, the placement of the (n + 2)th number
can happen concurrently with the placement of the
(n+1)th number of the next alternative and so forth.

In order to be able to place the (n + 1)th num-
ber concurrently we need to extend our network
slightly. Effectively, we have to make sure that there
are as many parallel replicas of the solveOneLevel
box as we have options on each level, i.e., up to 9.
This can be achieved by putting a parallel replica-
tor around the solveOneLevel box within the serial
replicator. Fig. 2 shows the modified S-Net. We

box computeOpts

{<done>}

{board} −> {board, opts}

filter

*

!<k>

box solveOneLevel{} −> {<k>=1}

{board, opts} −> {board, opts, <k>}

 | {board, <done>}

Figure 2. Refined S-Net with full unfold-
ing.

use a new tag <k> for controlling the parallel split-

ting. Within the serial replicator, this tag can be
conveniently generated by extending the output of
the solveOneLevel box: whenever the board is not
yet completed, we simply output the SaC-variable
k along with the board and the options. Since k
within each level represents the number that is be-
ing examined, this achieves the desired effect. How-
ever, we do not want to change our initialisation
box computeOpts. Therefore, we need to insert a
filter between the computeOpts box and the start
operator which adds a tag <k> to each record. Note
that the filter has the desired effect on records of
the type {board, opts} although its fields do not
occur in the filter. This is one of the benefits of the
flow-inheritance of S-Net.

Another interesting feature of this network is
that both replicators unfold dynamically. How-
ever, since the subsequent records with the same
tag <k> are being processed by the same box, we
know that on each stage no more than 9 replicas of
the solveOneLevel box will be created as the value
of k is always between 0 and 8. This guarantees a
maximum of 9×81 = 729 of solveOneLevel boxes.

While 729 replicas of the solveOneLevel box
might be acceptable, for bigger sudokus or in situa-
tions where we cannot derive proper upper limits for
the unfoldings from the application itself, we usu-
ally want to control the unfolding of the replicators.
This can be done by manipulating the control tags,
in our case the tag <k> for the parallel unfolding
and the tag <done> for the serial one. For example,
we can control the number of parallel instances by
a filter of the form

{<k>} -> {<k>=<k>\%4}

which we put into the serial replicator in front of the
parallel replicator. By using the modulo operation
represented by the % symbol, we reduce all potential
values for <k> to the range 0 to 3, which implicitly
limits the parallel unfolding to a maximum of 4 in-
stances.

In order to be able to control the unfolding of the
serial replicator, we need to communicate the cur-
rent level of unfolding, i.e., the number of numbers
placed already, rather than a boolean flag indicat-
ing completion. After changing the tag <done> to a
tag <level> that contains this information, we can
use a more elaborate predicate for leaving the serial
replicator such as {<level>} | level > 40. This
leads to a situation where non-completed sudokus
exit the serial replicator. Therefore, we need to link
up yet another box which calls the full solver func-
tion from Section 3 resulting in the S-Net shown
in Fig. 3.

box computeOpts

{board} −> {board, opts}

box solve

{board, opts} −> {board, opts}

filter

{<k>} −> {<k>=<k>%4}

{<level>} | <level> > 40

!<k>

filter

{} −> {<k>=1}

box solveOneLevel

{board, opts} −> {board, opts, <k>, <level>}

*

Figure 3. S-Net with throttled unfolding.

6 Related Work

The coordination aspect of the proposed stream
processing language is related to a large body of
work in so-called data-driven coordination, see [12].
Unlike most data-driven coordination languages,
here we have a complete separation of coordination
and computation. This is achieved by using SaC
boxes as SISO stream transformers and treating the
output purely declaratively.

The earliest related proposal, to our knowl-
edge, is the coordination language HOPLa from the
Utrecht University’s Areadne project [6]. It is a
Linda-like coordination language, which uses record
subtyping (which they call “flexible records”) in a
manner similar to S-Net, but does not handle vari-
ants as we do, and has no concept of flow inher-
itance. Also, HOPLa has no static “wiring” and
does not use type to establish a stream configura-
tion.

Another early source to mention is the language
Sisal [5], which pioneered high-performance func-
tional array processing with stream communication.
Sisal was not intended as a coordination language,
though, and no attempt at the separation of com-
munication and computation was made in it. Still
it is important to acknowledge the stream variables
of Sisal as an early example of task decomposition
using streams.

Among more recent papers, we cite the work on
the language Eden [11] as related to our effort, since
it is based on the concept of stream communication.
Here streams are lazy lists produced by processes
defined in Haskell using a process abstraction and
explicitly instantiated, which are coordinated using
a functional-style coordination language. Also, like
S-Net, Eden defines a connection topology for the
processing entities; it however deploys the processes
completely dynamically and even allows completely
dynamic channels. Eden has no provision for sub-
typing and does not integrate topology with types.

Another recent advancement in coordination
technology is the language Reo[1], whose focus

is on streams but which concerns itself primarily
with issues of channel and component mobility and
which does not exploit static connectivity and type-
theoretical tools for network analysis.

7 Conclusion

This paper demonstrates the advantages of a
strict separation of concerns in using coordination
as a vehicle for distributed parallel computing. The
peculiarity of our approach is in the combination of
an unmodified functional data-parallel language and
a coordination language that cannot compute in the
application domain. Put simply we use a clean com-
putational language that cannot communicate and
a clean coordination language that cannot compute
but supports communication and nondeterminism.
The combination in question has been exemplified
by the array language SaC and the stream-based
coordination language S-Net. The example ap-
plication used was the search algorithm for solv-
ing sudoku puzzles, which offered an opportunity
to demonstrate both data parallelism and a more
general form of concurrency.

The main advantage of the separation mentioned
above is the potential to reasoning about program
units in isolation: while we may ignore the exis-
tence of a streaming network when reasoning about
SaC components, we may likewise abstract from the
computational properties of components when rea-
soning on the level of S-Net. The latter is helped
by S-Net’s highly developed type abstraction: the
knowledge of a type signature is normally sufficient
for reasoning about data paths and patterns of con-
currency in an S-Net-encoded network; application
data itself does not have to be analysed. In our ex-
ample, we can control the dynamic unfolding exclu-
sively by tag manipulations on the level of S-Net,
without knowledge of communicated data fields.
Furthermore, the S-Net layer provides us with fea-
tures such as non-determinism which prove essential
on the stream processing layer, but would immedi-
ately destroy invariant properties on the SaC level,
which are essential for code optimisation. The typ-
ical downside of separating the coordination layer
from the computation layer so much is the need to
code in different languages and employ an intricate
interface model between layers that are not aware of
each other. It is our hope that interfacing on the ba-
sis of dual mapping: S-Net type signatures along-
side SaC parameter tuples is convenient enough for
the programmer, as would be using the housekeep-
ing primitive filter in S-Net in order to adjust
program units to any interface specifications that
may be expected by S-Net networks.

References

[1] F. Arbab. Reo: a channel-based coordination
model for component composition. Mathematical.
Structures in Comp. Sci., 14(3):329–366, 2004.

[2] D. Cann. Retire Fortran? A Debate Rekindled.
Communications of the ACM, 35(8):81–89, 1992.

[3] B. Chamberlain, S.-E. Choi, E. Lewis, C. Lin,
L. Snyder, and W. Weathersby. ZPL: A Machine
Independent Programming Language for Parallel
Computers. IEEE Transactions on Software Engi-
neering, 26(3):197–211, 2000.

[4] B. Chamberlain, S. Deitz, and L. Snyder. A Com-
parative Study of the NAS MG Benchmark across
Parallel Languages and Architectures. In Proceed-
ings of the ACM/IEEE Supercomputing Confer-
ence on High Performance Networking and Com-
puting (SC’00), Dallas, Texas, USA. ACM Press
and IEEE Computer Society Press, 2000.

[5] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A
report on the sisal language project. J. Parallel
Distrib. Comput., 10(4):349–366, 1990.

[6] G. Florijn, T. Bessamusca, and D. Greefhorst. Ari-
adne and hopla: Flexible coordination of collabo-
rative processes. In Proc. Coordination’96. LNCS
1061, Springer-Verlag, 1996.

[7] C. Grelck. Implementing the NAS Benchmark MG
in SAC. In Proc. IPDPS’02. IEEE Press, 2002.

[8] C. Grelck, S. Scholz, and A. Shafarenko. S-
Net: A Typed Stream Processing Language. In
Proc. IFL’06. Eötvös Loránd University, Budapest,
2006.

[9] C. Grelck and S.-B. Scholz. Towards an Efficient
Functional Implementation of the NAS Benchmark
FT. In Proc. PaCT’03, LNCS 2763. Springer-
Verlag, 2003.

[10] C. Grelck and S.-B. Scholz. SAC: A functional
array language for efficient multithreaded execu-
tion. International Journal of Parallel Program-
ming, 34(4):383–427, 2006.

[11] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı.
Parallel Functional Programming in Eden. Journal
of Functional Programming, 15(3):431–475, 2005.

[12] G. A. Papadopoulos and F. Arbab. Coordination
models and languages. In Advances in Computers,
volume 46. Academic Press, 1998.

[13] S.-B. Scholz. Single Assignment C — efficient
support for high-level array operations in a func-
tional setting. Journal of Functional Programming,
13(6):1005–1059, 2003.

[14] A. Shafarenko, S. Scholz, and C. Grelck. Streaming
networks for coordinating data-parallel programs.
In Perspectives of System Informatics, (PSI’06),
LNCS 4378. Springer-Verlag, 2006.

