
On Generating Out-Of-Core GPU Code for Multi-Dimensional
Array Operations

Patrick van Beurden
patrick.vanbeurden@ru.nl

Radboud University
Nijmegen, Netherlands

Sven-Bodo Scholz
SvenBodo.Scholz@ru.nl
Radboud University

Nijmegen, Netherlands

ABSTRACT
This paper presents the first results of our experiments for generat-
ing CUDA code that streams array operations over the elements of
its array arguments from high-level specifications. We look at two
classes of memory-bound array operations: map-like operations and
iterative stencil computations. We investigate code patterns that
stream the arguments of these operations from the host through the
GPU and back taking the iterative nature of our experiments into ac-
count. We show that this setup does not only enable computations
on arrays that are so big that they do not fit into the device memory
of a single GPU (hence “out-of-core“), but we also demonstrate that
the proposed streaming code outperforms non-streaming code ver-
sions even for smaller array sizes. For both application patterns, we
observe memory throughputs that are beyond 80% of the hardware
capability, irrespective of the problem sizes.

KEYWORDS
code generation, GPUs, CUDA, streaming, memory management,
out-of-core computation

ACM Reference Format:
Patrick van Beurden and Sven-Bodo Scholz. 2022. On Generating Out-Of-
Core GPU Code for Multi-Dimensional Array Operations. In Symposium on
Implementation and Application of Functional Languages (IFL 2022), August
31–September 02, 2022, Copenhagen, Denmark. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3587216.3587223

1 INTRODUCTION
Functional array programming languages such as Futhark [8], Ac-
celerate [1], Lift [22], or SaC [17] are capable of generating high-
performance codes from abstract functional specifications. In their
context, it has been shown that code generation from functional
descriptions has several advantages over explicit low-level program-
ming:

Application programmers from domains such as financial analyt-
ics [15], computational science [16, 26], image processing [27], or
machine-learning [28] all benefit massively in term of programming
productivity. Without any modifications, the same programs can
be compiled to target various different architectures, ranging from

This work is licensed under a Creative Commons Attribution International
4.0 License.

IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9831-2/22/08.
https://doi.org/10.1145/3587216.3587223

shared-memory multi-core systems [4] over distributed memory
systems [13] to GPU-accelerated devices [1, 6, 8, 22].

In particular GPU-accelerated devices have recently inspired a
lot of work as they are ideally suited for inherently memory-bound
algorithms which are common-place in data-intensive array appli-
cations. Even in the context of GPUs alone, the benefits of code
generation have been widely demonstrated. Non-trivial code adap-
tations that adjust and optimise the code for any given particular
device have shown massive gains over individual, fixed-code ver-
sions [6, 23]. These transformations mainly focus on algorithmic
restructurings, trying to adjust which intermediate structures to
materialise in memory or how to map a given sequence of computa-
tions onto thread-spaces. Other work has looked at memory orches-
trations, trying to make device-specific and application-specific
choices to optimise the overall throughput [25].

However, to our knowledge, almost all of this work assumes
that all data of an array computation resides on the GPU device
once a kernel starts to execute. In case the size of argument ar-
rays exceeds the memory capability of the device, fully automated
code generation for the GPU so far has not been possible. To over-
come this size restriction, index-based specifications need to be
re-formulated in a streaming form and the streaming of data and
GPU kernel invocations needs to be orchestrated accordingly.While
map-like computations, in principle, can be easily segmented and
transformed into a streaming form, more sophisticated codes that
require non-local element accesses are more challenging.

This paper tackles the challenge of generating streaming codes
from array operations on arrays that cannot reside in their entirety
in the device memory. We identify two code patterns which are (i)
found inmany practical applications and (ii) can be transformed into
streaming codes that loop over data transfers and kernel invocations.
Our contributions are:

• The identification of two algorithmic patterns that can be
transformed into streaming code: map-like computations
and iterative stencil computations;

• CUDA code templates for streaming such algorithms that are
parameterised by the number of streaming chunks. These
allow the memory requirements of any given algorithm to
be adjusted to a suitable streaming granularity;

• A systematic performance evaluation demonstrating the ef-
fectiveness of the proposed streaming codes.

In Section 2, we give a brief introduction to SaC and its code
generator for GPUs as we use these as starting point for our investi-
gations. Section 3 provides the necessary background on streaming
support in CUDA. In Section 4, we discuss the two code patterns
that we investigate. Our suggested streaming templates for imple-
menting these patterns are presented in Section 5, followed by a

https://doi.org/10.1145/3587216.3587223
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3587216.3587223


IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Patrick van Beurden and Sven-Bodo Scholz

performance evaluation in Section 6. Section 7 puts our results into
perspective with related work before Section 8 concludes.

2 SAC
2.1 The language
SaC is an array language with N-dimensional arrays at its core. Its
design is based around a central data-parallel language construct
called tensor comprehension.1 It specifies a result array in terms of
mappings from indices to expressions for arbitrarily partitioned
index spaces. For example, the addition of two arrays a and b can
be specified as

1 { iv -> a[iv] + b[iv] }

Here, the shape (sizes in all dimensions) of the result is implicitly
determined by the shapes of a and b.

The rotation of a vector v by n >= 0 elements can be expressed
by a slightly more elaborate tensor comprehension:

1 { [i] -> v[shape(v)-n+i] | [i] < [n];
2 [i] -> v[i-n] | [n] <= [i] < shape(v) }

Line 1 here defines how to compute the first n elements, while line
2 defines all remaining elements of the result.

One of the key features of SaC is that almost all generic array
operations can be defined in terms of tensor comprehensions. In
fact, the entire standard library of SaC is defined through these,
providing operations such as take, drop, rotate, etc.

As a consequence of this design, program optimisation as well
as code generation for various architectures can focus on tensor
comprehensions as the key language construct. For more details on
these aspects see [17]. Within the context of this paper, this means
we can focus on code patterns that feature one tensor comprehen-
sion but may contain further tensor comprehensions at the inside
of it. For more details on SaC see [18].

2.2 Code generation for CUDA
CUDA code generation from SaC is based on an identification of suit-
able tensor comprehensions which are translated into a sequence
of host-to-device memory transfers for all arguments, a kernel call
for each part of the partition of the index space and a subsequent
device-to-host transfer for the result of the tensor comprehension.
Figure 1 shows this translation for the simple array addition exam-
ple from above. The CUDA function cudaMemcpy is a synchronous

1 a = { iv -> a[iv] + b[iv] };

⇓

(a) SaC code
1 cudaMemcpy (dev_a, a, n, h2d);
2 cudaMemcpy (dev_b, b, n, h2d);
3 dev_a = kernel<<< n >>> (dev_a, dev_b, n);
4 cudaMemcpy (a, dev_a, n, d2h);

(b) Generated CUDA code

Figure 1: Code generation for tensor comprehensions.

memory transfer between host and device: once initiated, both,
1Internally, all tensor comprehensions are mapped to a more explicit data-parallel
construct named with-loop (see [19] for details).

the host machine and the GPU device, wait until the transfer has
been completed before continuing their executions. The first argu-
ment denotes the destination, the second the source, and the third
argument defined the number of elements to be transferred. The
direction of the transfer is indicated by the last argument to that
function, h2d indicating a transfer from the host to the device and
d2h indicating the opposite direction. The notion kernel<<< n
>>> here indicates a kernel call using n independent threads, all
of which obtain the arguments provided in brackets.

Notice here that we simplified the presented code, leaving out
several details such as error handling, the kernel code itself as
well as the exact setup of the kernel parameters. For more detailed
descriptions see [5, 6].

After the basic code generation, a set of optimisations tries to
eliminate memory transfers as much as possible. These optimisa-
tions identify and eliminate redundant and complementary trans-
fers between host and device. This does not only include opti-
misations of static sequences of tensor comprehensions but also
optimisations between subsequent instances of sequential loops
that contain a GPU-suitable tensor comprehension.

1 for (i=0; i<k; i++) {
2 a = { iv -> a[iv] + b[iv] };
3 }

(a) SaC code

⇓
1 cudaMemcpy (dev_a, a, n, h2d);
2 cudaMemcpy (dev_b, b, n, h2d);
3 for (i=0; i<k; i++) {
4 dev_a = kernel<<< n >>> (dev_a, dev_b, n);
5 }
6 cudaMemcpy (a, dev_a, n, d2h);

(b) Generated and optimised CUDA code

Figure 2: Effect of memory transfer optimisations.

An example of the effect of these optimisations is shown in
Figure 2. Here we look at an embedding of the simple addition into
a sequential for loop. As we can see, all memory transfers have been
lifted out of the sequential loop avoiding the need for any memory
transfer between host and device during the loop execution. For
more details on the memory transfer optimisations see [5, 6].

3 STREAMING IN CUDA
GPUs do not only provide thousands of compute cores but they
also come with memory-transfer facilities that can operate indepen-
dently of the cores. Despite this high level of possible parallelism,
most GPU applications are rather synchronous as they follow a
sequential model of host-GPU interaction similar to the one de-
scribed in the previous section: They start with a synchronous
transfer from host to device, meaning that the host waits until all
data has been transferred before proceeding. Thereafter, the actual
GPU computation (kernel call) is being triggered before the host
initiates a synchronous transfer of results back to the host memory.

The advantage of this approach is that race conditions between
host and GPU, as well as between memory transfers and kernel



On Generating Out-Of-Core GPU Code for Multi-Dimensional Array Operations IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

executions can be easily avoided. Even though such synchronous
transfers typically are about a factor two slower than non-cached
host memory reads from the CPU and about a factor 20 slower than
non-cached device memory reads on the GPU, their impact on the
overall run-time in most cases can be tolerated due to memory-
management optimisations such as those shown in Figure 2, which
move the transfers out of performance-critical parts of applications.

However, as we are looking into application situations where
we can no longer fit all data on the GPU, we can no longer avoid
memory transfers within run-time critical sections. Consequently,
we can no longer afford to sacrifice opportunities for overlapping
communications and computations.

To enable such parallelism without sacrificing all timing guaran-
tees, CUDA supports the notion of streams. Each stream takes an
arbitrary sequence of memory transfers and kernel executions and
it guarantees a sequential execution within the stream. The default
programming model constitutes the special case where there is just
a single stream, the default (or null) stream.

By creating multiple such streams, the programmer can create
opportunities for overlapping operations from one stream with
operations from any other stream. That way, ample opportunity
for overlapping communication and computation can be created
without sacrificing a guaranteed order within each stream. The key
operations for utilising streams are cudaStreamCreate for creating
new streams, cudaMemcpyAsync for triggering an asynchronous
memory transfer in the specified stream, a stream argument in
CUDA kernel calls, and cudaDeviceSynchronize as a global syn-
chronisation means. Their slightly simplified signatures look like
this:

1 \\ creating a stream:
2 cudaStreamCreate (stream)
3

4 \\ asynchronous memory transfer:
5 cudaMemcpyAsync (mem_to, mem_from, amount, dir, stream);
6

7 \\ kernel execution:
8 kernel<<<num_threads, stream>>>(...);
9

10 \\ sync across all streams:
11 cudaDeviceSynchronize();

Figure 3 shows how these facilities can be used to implement
our addition example using two independent streams on the GPU.
For simplicity, we assume that we are dealing with a total of 2048
array elements within both arrays. First, in lines 1-2, we create
two streams. Thereafter, we have two blocks of code. The first
block (lines 4-7) inserts four operations into stream1, the second
block (lines 9-15) inserts four operations into stream2. While the
first block deals with the first 1024 elements, the second block
deals with the remaining 1024 elements. Both blocks consist of two
transfers from host to device, a kernel execution, and a transfer of
the result data back to the host. The transfers only relate to the
needed portions of the data, and the kernel calls obtain a fourth
parameter indicating the offset of the data to be operated upon.
Finally, we have a device synchronisation that ensures that both
streams have completed before continuing with the host code.

1 cudaStreamCreate (stream1);
2 cudaStreamCreate (stream2);
3

4 cudaMemcpyAsync (dev_a[0], host_a[0], 1024, h2d, stream1);
5 cudaMemcpyAsync (dev_b[0], host_b[0], 1024, h2d, stream1);
6 kernel<<< 1024, stream1>>> (dev_a, dev_b, 1024, 0);
7 cudaMemcpyAsync (host_a[0], dev_a[0], 1024, d2h, stream1);
8

9 cudaMemcpyAsync (dev_a[1024], host_a[1024],
10 1024, h2d, stream2);
11 cudaMemcpyAsync (dev_b[1024], host_b[1024],
12 1024, h2d, stream2);
13 kernel<<< 1024, stream2>>>(dev_a, dev_b, 1024, 1024);
14 cudaMemcpyAsync (host_a[1024], dev_a[1024],
15 1024, d2h, stream2);
16

17 cudaDeviceSynchronize();

Figure 3: Element-wise addition on two streams.

When comparing this code to the one from Figure 1, we can see
that the main difference is that in the streamed version computa-
tions on the first part of the arrays can start after only half of the
data has been transferred. Thereafter, these computations can be
overlapped with the loading of the second half of the data. Likewise,
the first half of the results in dev_a can be transferred back while
the second half is still being computed. This effect of overlapping
computation and communication is called latency hiding as it al-
lows the latency of the memory transfer to be hidden behind some
computation on another part of the data. More details on how to
leverage streams for overlapping communication and computation
in CUDA can be found in the literature [12, 20].

Note here, that this version of our addition still assumes that all
data at some point resides on the GPU. So it does not tackle the
problem of out-of-core computations on the GPU. Furthermore, this
kind of code transformation only works because we can guarantee
that both kernels do not need to access any data handled by the
corresponding other stream.

4 SUITABLE CODE PATTERNS
When looking at the streaming-based latency hiding technique
we explain in the previous section we can see a possible avenue
towards out-of-core computations on the GPU: All we need to do is
to come up with a way to re-use parts of the device memory when
it comes to loading later parts of the argument arrays.

While this sounds trivial in principle, it comes with several chal-
lenges. First of all, we need to make sure that a streaming approach
is possible at all. The key prerequisite for streaming is the ability
to statically guarantee that all data accesses lie within the partially
fetched data only, i.e., we need to have some form of guaranteed
access locality.

Looking at indirect indexing techniques such as a tensor com-
prehension of the form

1 { iv -> a[b[iv]] }

clearly show that this is not always possible. In this example, there
is no way of predicting the accesses within the array a unless
we have some very strong static guarantees regarding the values
within the array b. Without these, any attempt to stream this kind of



IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Patrick van Beurden and Sven-Bodo Scholz

computation would require at least the entire array a to be resident
on the GPU.

Even in some of the cases where access ranges can be statically
determined, it can be rather challenging to partition all arguments
in ways that can be compiler generated. As an example, consider
matrix multiply:

1 { [i,j] -> sum (a[i,.] * b[.,j]) };

Here, we would have to chunk array a row-wise, while having to
chunk the array b column-wise.

Looking at Gauss-Jordan elimination, things get even more in-
volved:

1 for (i = 0; i < n; i++) {
2 a[[i]] = a[[i]] / a[[i,i]];
3 a = { [j] -> a[j] | i == j;
4 [j] -> a[j] - a[i] * a[j,i] };
5 }

Here we see that for iteration i of the surrounding sequential loop,
we always need two rows in order to compute a row j of the result:
the current row (j) of a and the i𝑡ℎ row of a as well.

In the context of this paper, we restrict ourselves to a set of
simpler code patterns, where we can build on the idea of slicing all
argument arrays along the first dimension. Examples like matrix
multiply or Gauss-Jordan elimination are left as possible future
work.

4.1 Map-like computations
The most obvious group of tensor comprehensions suitable for the
kind of streaming we propose in the previous section are computa-
tions where all array accesses are strictly local. We refer to these
computations as map-like computations. More formally, we say that
all array accesses within a tensor comprehension of the form

1 { iv -> expr_1(iv) | constraints_1;
2 ...
3 iv -> expr_n(iv) | constraints_n }

are strictly local, if and only if all sub-expressions within the result-
defining expressions expr_1(iv), ..., expr_n(iv) that contain a
reference to a relatively free array-variable a are of the form a[iv].

Clearly, our addition example from the previous sections consti-
tutes such a map-like computation.

4.2 Stencil-computations
While map-like operations are frequently used, a much larger group
of operations exposes a more relaxed form of locality which we call
stencil locality. The idea here is to allow for constant offsets. We call
all array accesses within a tensor comprehension like the one above
stencil local, if and only if all references to relatively free variables a
are of the form a[iv+off] and there exist two constants cl and cu
such that for all off we have cl <= off < cu on all components
of off.

With this relaxed notion of locality, our work becomes applica-
ble to a very large set of applications ranging from convolutions
for image processing, over numerical methods for approximating
PDEs to implementations of deep learning techniques. The price for
allowing constant offsets is a need for more sophisticated streaming
as for any chunk of results a slightly bigger chunk of input data is
needed.

To reflect typical application scenarios, we look for a slightly
more complex application pattern. We want to capture situations
where such a computation is embedded into a sequential loop, i.e.,
we call a code pattern stencil-computation if it is of the form:

1 for (i=start; i<stop; i++) {
2 a = { iv -> expr_1(a, iv) | constraints_1;
3 ...
4 iv -> expr_n(a, iv) | constraints_n };
5 }

However, we also include occurrences of standalone tensor com-
prehensions with stencil-local accesses. We simply consider them
special cases with only one iteration.

5 IMPLEMENTATION
5.1 General strategy
For both algorithmic patterns, we leverage CUDA’s streams and
CUDA’s asynchronous communications. As we describe in Sec-
tion 3, these framework features can be combined to run multiple
streams enabling transfers between host and device to happen con-
currently to kernel executions. Key to this approach is that we
can identify independently executable sets of inputs, outputs and
kernel invocations. Once they are identified, we can task several
independent streams to handle these sets: Each individual stream
is tasked to transfer a portion of the host buffer to the device buffer
(1), launch a kernel on that subset of the data (2) and then transfer
the computed results back to the host (3).

In contrast to Section 3, where it is all about latency hiding,
we now want to look at an extension of this idea that enables
dealing with out-of-core computations, i.e., computations whose
arguments or results do not fit onto the device in their entirety.
The key observation is that a streaming setup ideally suits this
demand. All that is needed is to envision the device memory to act
as a sliding window that can be moved along the larger host buffer.
After partitioning the host data, we assign a stream to each chunk
and initiate the aforementioned workflow. While the device starts
executing, the sliding window is moved to the right until all data is
processed. Since each stream is essentially a queue of operations,
we can for each stream already queue up the workflow for another
equally or smaller-sized region on the host. This process is then
repeated until the entire host data is partitioned and each partition
assigned to a stream.

5.2 Map-like computations
Figure 4 shows our general strategy applied to map-like computa-
tions with a single argument. The host buffer is partitioned into four
chunks, each indicated with a different colour, and two streams are
used to process two chunks on the device at a time. The unmarked
colours indicate initial values and the colours marked with a cross
are finished values produced by a kernel invocation. Since by def-
inition map-like computations make only strictly local accesses
into their arguments (see Section 4), there can be no dependencies
between streams, allowing for completed chunks to be evicted from
the device.

Figure 5 shows the main code pattern we propose for map-like
computations. First, it is necessary to calculate the number of rounds
that are required to compute the entire host buffer. Each round



On Generating Out-Of-Core GPU Code for Multi-Dimensional Array Operations IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

Figure 4: An abstract visualisation of the streamed map-like
implementation.

consists of a host-to-device (H2D) memory transfer phase, a ker-
nel invocation phase and a device-to-host (D2H) memory transfer
phase. Looking back at Figure 4, the first round for stream 0 would
then be the loading, computing and unloading of the green chunk,
and for stream 1 the loading, computing and unloading of the blue
chunk.

Line 1 shows how, given buffer sizes host_n and dev_n, we de-
termine the total number of rounds r. We then compute the chunk
size chunk_n by dividing the device-buffer size by the number of
streams ns that we want to run concurrently. For readability of
the paper, we assume that the host buffer is divisible by the device
buffer, and the device buffer is divisible by the number of streams.
However, our full templates do not build on these assumptions but
handle the edge cases appropriately.

Also note here, that we need a minimum of two streams to
enable overlapping of communication and computation; however,
in practice, higher numbers are needed to maximise the latency
hiding effect.

1 r = (host_n + dev_n - 1) / dev_n; \\ number of rounds
2 chunk_n = dev_n / ns; \\ size of individual chunks
3 for (r_j = 0; r_j < r; r_j++){
4 \\ H2D memory transfers
5 \\ kernel invocations
6 \\ D2H memory transfers
7 }
8 cudaDeviceSynchronize();

Figure 5: Implementing the sliding window for ns streams

In the sequel, we pick up on our addition example from Section 2
and Section 3 again, to show what the code looks like for the three
different phases in case of a two argument map. We start with the
host-to-device transfers; they are shown in Figure 6. In Figure 6a,
we see the original, non-streamed version, transferring both ar-
guments in their entirety synchronously to the device. Figure 6b
shows the streamed code for host-to-device transfers in current
round r_j, which replaces line 4 in Figure 5. The depicted for-loop
starting on line 1 iterates over all streams and initiates two transfers
per stream.

1 cudaMemcpy(dev_a, a, host_n, h2d);
2 cudaMemcpy(dev_b, b, host_n, h2d);

(a) Non streamed H2D

⇓
1 for (i = 0; i < ns; i++){
2 cudaMemcpyAsync(dev_a[i * chunk_n],
3 a[r_j * dev_n + i * chunk_n],
4 chunk_n, h2d, stream[i]);
5 cudaMemcpyAsync(dev_b[i * chunk_n],
6 b[r_j * dev_n + i * chunk_n],
7 chunk_n, h2d, stream[i]);
8 }

(b) Streamed H2D

Figure 6: H2D transformations for map-like computations

1 dev_a = kernel<<< host_n >>>(dev_a, dev_b, host_n);

(a) Non streamed kernel invocation

⇓
1 for (i = 0; i < ns; i++){
2 kernel<<< chunk_n, stream[i] >>> (dev_a, dev_b, chunk_n,
3 i*chunk_n);
4 }

(b) Streamed kernel invocation

Figure 7: Kernel invocation transformations for map-like
computations

Figure 7 shows how the non-streamed kernel invocation is trans-
formed into its streaming counterpart. Again, we use a for-loop that
iterates over the number of streams to insert kernel invocations on
the chunks within each stream (Figure 7b). Note that we pass the
chunk size and the offset with respect to the first index as param-
eters instead of the entire host-buffer size. In the corresponding
kernel code, shown in Figure 8, these parameters are being used to
identify the data that needs to be computed with.

1 kernel(dev_a, dev_b, n){
2 tid = blockIdx.x * blockDim.x + threadIdx.x;
3

4 if(tid < n)
5 dev_a[tid] = fn(dev_a[tid], dev_b[tid]);
6 }

(a) Non streamed kernel

⇓
1 kernel(dev_a, dev_b, n, offset){
2 tid = blockIdx.x * blockDim.x + threadIdx.x + offset;
3

4 if(tid < n + offset)
5 dev_a[tid] = fn(dev_a[tid], dev_b[tid]);
6 }

(b) Streamed kernel

Figure 8: Kernel transformations for map-like computations



IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Patrick van Beurden and Sven-Bodo Scholz

Finally, we have to transform the device-to-host transfers. Fig-

1 cudaMemcpy(a, dev_a, host_n, d2h);

(a) Non streamed D2H

⇓
1 for (i = 0; i < ns; i++){
2 cudaMemcpyAsync(a[r_j * dev_n + i * chunk_n],
3 dev_a[i * chunk_n],
4 chunk_n, d2h, stream[i]);
5 }

(b) Streamed D2H

Figure 9: D2H transformations for map-like computations

ure 9 shows this transformation. The streamed code for D2H mem-
ory transfers is similar to the code for the H2D transformations
from Figure 6. Given the number of streams ns, it is possible to
produce the desired streamed transfers using a for-loop.

5.3 Stencil computations
When moving from map-like computations to stencil computations,
we lose the property that all array accesses are strictly local. This
means that when computing a chunk of the result we typically need
more input data than just the corresponding chunk of all inputs.

From our characterisation of stencil operations in Section 4, we
know that for each computation of a result position iv, we need
a neighbourhood of a fixed size around that position. To cater for
that situation, we create buffers on the device that are larger than
the chunks of the results and we load overlapping portions from
the input into them.

To illustrate our approach for stencil computations, we will con-
sider a very simple form of stencil computation, a three-point stencil
operation, where we compute a vector from an existing one by the
average of a value and both its neighbours. A corresponding SaC
code would be:

1 { i -> (a[i-1] + a[i] + a[i+1]) / 3.0 | [1] <= i < [n-1];
2 i -> a[i] };

For this example, we can see that for computing all but the first
and last chunk we need exactly one element from the previous
chunk and one element from the subsequent chunk in order to be
able to compute all elements for the given chunk. This observation
gives rise to a variant of our map-like scheme as shown in Figure 10.
Using the same colouring and marking of chunks as in the map-like
approach, we now can see that our device-buffer chunks not only
take the values from the corresponding input chunk but also one
element from a chunk to the left (if present) and one element from
the chunk to the right (if present). Only the elements corresponding
to the chunk are being computed within each individual stream,
writing back exactly that portion to the host.

While this approach is rather simple to implement it has a very
high level of communication in relation to the amount of computa-
tion needed. To ameliorate the situation, it is well-known from code
generators for stencil codes [7, 24] that it is advantageous to im-
prove temporal locality through tiling in case the stencil operations
are applied repeatedly.

Figure 10: An abstract visualisation of how a single three-
point stencil operation can be streamed.

5.4 Iterative stencil computations
Again, we look at a three-point stencil computation but now em-
bedded into a sequential loop:

1 for (t=0; t<t_max; t++)
2 a = { i -> (a[i-1] + a[i] + a[i+1]) / 3.0
3 | [1] <= i < [n-1];
4 i -> a[i] };

To improve temporal locality in the streaming version, the basic
idea is to perform several iterations on each chunk before evicting
the chunk from the device buffer. Given that for each stencil opera-
tion we need more input than we can produce output, this implies
that we can compute fewer and fewer elements as we progress in
the iterations. If we consider the iterations an additional axis of the
computation, then such a computation in the three-point stencil
case forms a trapezoidal shape of values, shrinking by one element
per iteration on each side of the chunk.

Depending on the number of iterations we plan to perform on
each chunk before moving on to the next one, this increases the
extra space required in the buffer from 2 elements for a single step
to 2*n for n steps. Besides the increase in size, it also implies the loss
of partial computations on the extra elements as the neighbouring
chunk will require exactly the same computations. While this might
be acceptable in the case of a three-point stencil on a 1-dimensional
array, the space and compute overhead becomes quickly untenable
in case of stencils on higher-dimensional arrays. To avoid such
overhead for high numbers of n, we use a more elaborate scheme.

The key idea is to keep all partial computations and to alter-
nate between phases that compute trapezoidal shapes and inverted
trapezoidal shapes that compute the missing values between them.
We refer to the trapezoids in the first phase as even trapezoids and
to the inverted trapezoids of the elements between them as odd
trapezoids as they correspond to the even and odd chunks of overall
computations, respectively. Figures 11 and 12 demonstrate these
two phases.

Figure 11 shows the first phase of computing the even trapezoids.
In the host data, we mark the even chunks in green, blue, red, and
yellow. In between, we have the starting values of the odd chunks,
coloured in purple. The discrepancy in size between the odd and



On Generating Out-Of-Core GPU Code for Multi-Dimensional Array Operations IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

Figure 11: An abstract visualisation of how even trapezoids
are computed in the streamed stencil implementation.

even chunks reflects that the former will shrink in size over the
cause of iterations, whereas the latter will grow.

Again, we utilise the idea of a sliding window, but this time every
other chunk of data is skipped depending on the current phase.
After loading the first chunk (green fields in Figure 11) into the
device buffer dev_in, we start executing three iterations of the three-
point-stencil computation. While doing so, we alternate between
dev_in and dev_out. The next block in Figure 11 shows the computed
intermediate values in fields with bold edges and the computed final
values additionally marked with a cross. We put numbers 1 and 2
into the fields corresponding to intermediate values to indicate the
iteration they belong to. Once the three iterations are performed,
both device buffers are being transferred back to the corresponding
host buffers. As can be seen in the host buffers in the bottom of the
figure, both buffers contain values from different iterations.

While the three iterations are being computed on chunk 0, chunk
2 (blue fields in Figure 11) is being loaded into the next stream’s
device buffers. Likewise, these are being computed while the results
from the first stream are being transferred back to the host, and so
forth. The bottom of the figure shows the final state after the first
phase is completed. At this point, a global synchronisation ensures
completion of the entire phase before computation of the second
phase commences.

As shown on top of Figure 12, the results from the first phase
serve as starting point for the second phase. When loading chunk
number 1 of both the in- and output buffer, we see that we do not
only load the purple elements of the chunk itself, but also some
of the partially computed fields of the neighbouring chunks; some
green values from chunk 0 and some blue values from chunk 2.
A closer look at the loaded values and their inscribed iteration

Figure 12: An abstract visualisation of how odd trapezoids
are computed in the streamed stencil implementation.

numbers reveals that different values are being utilised at different
iterations, allowing the next purple values of the chunk to be com-
puted without re-computing any values of the first phase. While
the computation takes place, the next chunk (chunk number 3) is
being loaded. During the computation of that chunk, we evict both
device buffers from the first stream back to the host, now leading
to a vector whose values consist exclusively of values with three
stencil operations performed on them.

Once the second phase is finished, we once again perform a
global synchronisation before potentially restarting all over again.

Despite being conceptually rather different from the streaming
of map-like operations described in Section 5.2 the proposed code
for streaming iterative stencil-computations looks rather similar.

Figure 13 shows the basic setup. Again we start by computing
the number of rounds needed. This is followed by a for-loop that
iterates over the rounds performing the typical triplet of actions
within each stream: host-to-device transfers, kernel executions, and
device-to-host transfers. The key difference here being that we
have two of these sliding window implementations, one for the
even chunks and one for the odd chunks, separated by a full device
synchronisation. To improve readability, we omit handling the edge
cases that involve the very first and very last value of the host
buffer, and in terms of divisibility we make the same assumption
as for the map-like computation.

The necessary adaptations of the kernel are shown in Figure 14.
Again similar to the map-like computations, we use an offset to
identify the elements that need to be computed. However, since we
need to compute ranges that varywith the iteration that we perform,
we now use two offsets: offset-l for identifying the starting point
and offset_r for identifying the end point of our kernel execution.

As a consequence of the offset approach, the key steering of the
computation happens in the code that launches the kernels. It is
depicted in Figure 15. Here, we can see how the offsets are being
computed from the current stream index i, the current iteration k,



IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Patrick van Beurden and Sven-Bodo Scholz

1 r_n = dev_n - ns * (t + 2);
2 r = (host_n + r_n - 1 ) / r_n;

(a) Shared constants
1 for(i = 0; i < r; i++){
2 for(j = 0; j < ns; j++)
3 if(i % 2 == j % 2)
4 \\ h2d
5 \\ kernels
6 \\ d2h
7 }
8 cudaDeviceSynchronize();

(b) Even trapezoids
1 for(i = 0; i < r; i++){
2 for(j = 0; j < ns; j++)
3 if(i % 2 != j % 2)
4 \\ h2d
5 \\ kernels
6 \\ d2h
7 }
8 cudaDeviceSynchronize();

(c) Odd trapezoids

Figure 13: Code structure for streamed stencil computations

1 kernel(dev_in, dev_out, n){
2 tid = blockIdx.x * blockDim.x + threadIdx.x;
3

4 if(tid > 0 && tid < n - 1)
5 dev_out[tid] = fn(dev_in[tid-1], dev_in[tid],
6 dev_in[tid+1]);
7 }

(a) Non streamed kernel

⇓
1 kernel(dev_in, dev_out, offset_l, offset_r){
2 tid = blockIdx.x * blockDim.x + threadIdx.x + offset_l;
3

4 if(tid < offset_r)
5 dev_out[tid] = fn(dev_in[tid-1], dev_in[tid],
6 dev_in[tid+1]);
7 }

(b) Streamed kernel

Figure 14: Kernel transformations for stencil computations

the total number of iterations per pair of phases t, and the chunk
size chunk_n. We also see the explicit swapping of device input and
output buffers dev_in and dev_out.

Finally, we have the code for copying the device buffers back
to the host in Figure 16. Note that in contrast to the map-like
operations, here, we have to copy the content of both device buffers
back to the corresponding host buffers.

6 EXPERIMENTAL EVALUATION
6.1 Experimental setup
The key question we try to answer is: can we hope to achieve a
reasonable performance when moving from an in-core problem size

1 for (k = 1; k <= t; k++){
2 for (i = 0; i < ns; i++){
3 if(r_j % 2 == i % 2)
4 kernel<<< chunk_n, stream[i] >>> (dev_in, dev_out,
5 i*(chunk_n + t + 2) + k,
6 (i+1)*(chunk_n + t + 2) - 2 - k);
7 }
8

9 if(k < t)
10 swap(dev_in, dev_out);
11 }

(a) Even trapezoids

Figure 15: Kernel invocations for streamed stencils

1 for (i = 0; i < ns; i++){
2 if(r_j % 2 == i % 2){
3 \\ send final and intermediate values to host out
4 cudaMemcpyAsync(out[r_j * r_n + i * chunk_n + 1],
5 dev_out[i * (chunk_n + t + 2) + 1],
6 chunk_n + t - 2, d2h, stream[i]);
7

8 \\ send intermediate values to host in
9 cudaMemcpyAsync(in[r_j * r_n + i * chunk_n + 1],
10 dev_in[i * (chunk_n + t + 2) + 1],
11 t, d2h, stream[i]);
12

13 cudaMemcpyAsync(in[r_j * r_n + (i+1) * chunk_n + 1],
14 dev_in[(i+1) * (chunk_n + t + 2) - t - 3],
15 t, d2h, stream[i]);
16 }
17 }

(a) Even trapezoids

Figure 16: D2H transfers for streamed stencils

to an out-of core problem size? If so, does this work for all kinds
of map-like and iterative stencil operations, or does it only work
for certain classes of applications? Further questions are: Does it
make sense to use streaming for some in-core cases as well? If so,
for which kind of applications? How does the choice of the number
of streams affect the overall performance?

To tackle these questions, we first have to identify how we can
possibly quantify ‘reasonable’ performance. An out-of-core im-
plementation requires the orchestration and handling of many
transfers and kernel invocations rather than just a single triplet
of host-to-device transfer, kernel invocation, and device-to-host
transfer as it is needed for the in-core counterpart. This overhead
can possibly be offset by gains in latency hiding whose effect de-
pends on the computation to communication ratio of the problem
investigated.

Looking at both, map-like computations and iterative stencil
computations, we conduct the following experiments: We take
C++ implementations for both, the streamed and the non-streamed
version of our two examples from Section 5. Both of these have a
very low ratio between computation and communication between
host and device as can be seen from Table 1.



On Generating Out-Of-Core GPU Code for Multi-Dimensional Array Operations IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

Kernel # FLOPs mem. reads mem. writes
map-like 1 2 1
3-point 5 3 1

Table 1: An overview of the number of floating-point op-
erations, memory reads and memory writes in each kernel
execution of the different algorithms.

We run different problem sizes ranging from vector sizes of 20MB
up to 25GB and we compare the overall performance between the
non-streamed version (for all sizes possible) and the streamed ver-
sion. To judge the overall performance in absolute terms, we do
not only look at the GFLOPS/sec, but we also look at the effective
memory bandwidth between GPU and device memory that we
achieve. In particular the latter measure is crucial here, given that
both, vector additions and three-point-stencils are memory bound.
In order to increase the ratio of computation to communication
between host and device, we also look at increasing numbers of
iterations over each of the two computations ranging from 1 to 3883
iterations. Note here, that for the map-like operation we intention-
ally do not move the iteration into the kernel as that would shift
our kernel from being memory bound to being compute bound and,
thus, would take away the effective memory bandwidth between
GPU and device memory as upper physical bound that we can
compare against irrespective of the computation to communication
ratio between host and device.

All combinations of parameters are performed ten times each
and the combined run-time of the memory transfers and kernel exe-
cutions is measured using CUDA events. Essentially, the measured
run-time covers the precise moment the first host-to-device transfer
is initiated until the final device-to-host transfer has completed.

Most of the time, the standard deviation of these runs is between
0.01%-2%, so we use the mean value to calculate the performance
metrics. However, there can occasionally be one outlier within a
set of ten runs. In that case, the value is removed and the mean
of the remaining nine values is used instead. The experiments are
done on a shared cluster, which consists of two separate nodes on
one of which a combination of CPU and GPU is used. The details
of the hardware and software of the test system are shown in table
2. Note that the theoretical peak bandwidth of the GPU, which is
based on the memory clock frequency, is equal to 616 GB/s.

Test system
Hardware Software
Intel(R) Xeon(R) Silver 4214 Ubuntu 20.04.4 LTS
12 cores, 2 threads per core @ 2.20GHz 5.13.0-28-generic (kernel)
min. 1.0 GHz, max 3.2 GHz NVIDIA driver 510.47.03
NVIDIA GeForce RTX 2080 Ti CUDA 11.6
11GB GDDR6 gcc 9.4.0
616 GB/s (peak bandwidth)
13.45 TFLOP/s (max. perf. float)
PCI-e 3.0 x16 (15.75 GB/s)

Table 2: An overview of the system used for the experiments.

6.2 Performance results
In Figure 17, the effect of input size on the performance of the map-
like computation in terms of GFLOP/s and bandwidth is shown.

The left y-axis shows the GFLOP/s and the right y-axis shows the

Figure 17: The effect of input size on the performance of an
in-core, streamed and out-of-core map-like computation at
different iterations

bandwidth. Looking at the top-left chart, we can see that for one
iteration, i.e., in the extreme case regarding the computation to
communication ratio, the streamed version outperforms the non-
streamed version by almost 30%. This is clearly an effect of the
latency hiding that stems from the streaming. Interestingly, the
overall performance actually increases as we transition from in-
core to out-of-core. We can also observe that the entire computation
is very much dominated by the transfers between host and device as
our kernel performance only achieves an effective device memory
bandwidth of roughly 16 GB/s.

As we start shifting the computation to communication ratio by
increasing the number of iterations, we can see how the dominance
of the host-device communication slowly diminishes. From roughly
64 iterations onward, we see that we reach about 80% of the effec-
tive device memory bandwidth. Interestingly, we still see that the
latency hiding of the streamed version outweighs any overheads
caused by the use of streaming as the streamed version yields about
30% better performance.

We look at further shifts towards computations to see whether
we at some point reach a situation where the non-streamed version
outperforms the streamed version due to streaming overheads. At
3883 iterations, the non-streamed version almost catches up, but is
still slightly less performing.

From these findings, we can see that the overhead of stream-
ing is negligible in comparison to the gains in latency hiding. For
map-like computations, streaming does not only provide excellent
out-of-core performance, it also outperforms the in-core version
due to latency hiding of the communication between the host and
the device. Furthermore, it turns out that these effects seem to be
independent of the problem size.



IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Patrick van Beurden and Sven-Bodo Scholz

Figure 18: The effect of input size on the performance of an in-
core, streamed and out-of-core 3-point stencil computation
at different iterations.

Figure 18 shows the same experiments for the three-point stencil
codes. Overall, we see the same effects: the streaming version out-
performs the non-streaming version due to latency hiding, an effect
that slowly diminishes as we increase the number of iterations.
Even with 3883 the non-streaming version has not fully caught up
with the streaming version. From roughly 64 iterations onward, we
see that the streaming version reaches its maximum of 80% of the
memory bandwidth

Notice here though, that this onlyworks out since in all examples
we only communicate the entire vector once from host to device
and once back. While that is trivial in the map case, in the stencil
case, this requires the elaborate trapezoidal scheme from Section 5.3.
To demonstrate this aspect, we have added the green bars referred
to as naive out-of-core. This implementation is based on a single
step at a time as sketched in Figure 10. For this implementation we
see competitive performance for one iteration but no improvements
for multiple iterations as there are complete transfers between host
and device and back for each single iteration.

6.3 Impact of streaming granularity
We conduct several experiments to identify the impact of the num-
ber of streams used on the overall performance achieved. We use a
subset of the experiments from the previous subsection varying the
numbers of streams from 2 to 128. Figure 19 shows our findings in
the context of our vector addition experiments. The figure contains
four rows of plots. Each row pertains to a vector size, starting from
small to large. While the top two rows show measurements for
in-core streaming, the bottom two rows shows the measurements
of our out-of-core experiments. Furthermore, the first column of

Figure 19: The effect of number of streams choice on the
performance of the map-like computation.

plots shows our results at one iteration and the second column of
plots show our results for 3883 iterations.



On Generating Out-Of-Core GPU Code for Multi-Dimensional Array Operations IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

We can see that several aspects impact the performance of the
algorithm. Smaller arrays and fewer iterations favour a larger num-
ber of streams, unless the resulting chunks get too small (see top-
left plot of Figure 19). This observation suggests that, when the
transfer-to-compute ratio is low, there are multiple opportunities
for overlapping communication and computation rather than ex-
clusively at the very first and very last chunk. On the other hand,
larger arrays and iterations perform better with a small number of
streams, which is particularly visible in the bottom two rows and
the second column of Figure 19.

Notice here that the importance of the number of streams dimin-
ishes at a high number of iterations, since the discrepancy between
the extremes is below 1% (except when the chunk size gets too small).
Overall, we observe that the choice for the number of streams is
not significant.

Similar to the map-like computation, the performance impact
of the choice of streams is measured for the stencil computation,
which is shown in Figure 20.

The layout of the figure is identical to that of Figure 19, contain-
ing four rows and two columns of plots, where the rows vary in
input size and the columns in number of iterations.

Interestingly, our measurements for the stencil computation
paint a nearly identical picture to the measurements of the map-like
computation. Clearly, the choice regarding the number of streams
again matters more for a lower number of iterations. On top of that,
we see once more that a low number of iterations in combination
with smaller arrays benefit from eight or more streams, whereas
larger arrays and iterations prefer a smaller number.

7 RELATEDWORK
The differences in performance between CUDA’s communication
models in the context of code generation has been studied before.
In [25], the authors look at different communication models and
their performance impact for a range of different GPU architec-
tures. The authors find that the choice of communication model
is hardware specific and that making the right choices becomes
increasingly important as the compute-to-communication ratio
gets lower. Streaming or even out-of-core computations are not
considered in that work. In this paper, we look exclusively at appli-
cations with a low compute-to-communication ratio. We observe
that streaming generally improves the overall performance but has
the most pronounced effect on smaller problem sizes and when
being performed only a few times.

A lot of research has been done on optimizing specifically stencil
computations on the GPU. In particular, [20] and [21] share similar-
ities with our work since the authors look at stencil computations
utilising multiple GPUs. In [20], multiple CUDA streams are used to
overlap the communication of border regions between neighbour-
ing GPUs with the computation of the regular non-border regions
on each GPU. Additionally, the authors use several CPU threads to
reduce the overhead from kernel launches. [21] builds on this ap-
proach by letting the CPU take part in the computations, which led
to a reduced solution time on two different GPU clusters. However,
the authors of [20] and [21] do not stream chunks of data on the
individual GPUs and are not directly targeting general out-of-core
execution.

Figure 20: The effect of number of streams choice on the
performance of the three point stencil computation.

Research on the automation of streaming arrays through the
GPU exists. Both [2] and [14] look at extensions for the embedded
array language Accelerate [1], which allow the programmer to
explicitly choose to stream a limited set of operations through the
GPU. [14] is most closely related to our paper, as it specifically



IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Patrick van Beurden and Sven-Bodo Scholz

looks at arrays similar to arrays in SaC; namely so-called regular
arrays in the context of Accelerate, which are arrays that do not
contain other arrays as elements. The authors use a similar chunk-
based approach to scheduling the streams, but communication and
computation are not overlapped.

Furthermore, the benchmarks presented in [14] exhibit a corre-
lation between the chunk size and the achieved performance. For
example, a dot product operation reaches optimal performance at
approximately sixteen million elements per chunk. On the other
hand, we find that eight streams give optimal performance for a
vector addition of five million elements, which is a chunk size of
approximately six-hundred-fifty thousand. This difference may be
explained by the fact that we try to overlap as much communication
and computation as possible. This matches the authors’ suggestion
in [14] that, in general, there could be a significant improvement
in performance by overlapping communication and computation
as done in this paper.

Besides our specific context of automating the streaming of ar-
rays through GPUs, there is a much broader related body of research
out there that looks at stream programming in general. One exam-
ple of that is [11], here the authors present the fundamentals of Arc,
which supports the expression and compilation of long-running
stream operators in the context of hardware accelerated continuous
batch and stream analytics.

More recently, a few studies related to out-of-core stencil compu-
tations on the GPU have been published. For instance, [9] looks at
stencil computations on input data larger than the device memory
with a single GPU. The authors split the problem domain in sev-
eral sub-domains and use temporal locality improving techniques
combined with memory-saving optimizations and communication
overlap to achieve higher performance. The sub-domains are com-
puted sequentially and the border region dependencies are resolved
with redundant computations.

In contrast, we calculate several sub-domains concurrently by
streaming them through the GPU and this is done without redun-
dant computations. [9] also mentions that the performance falls
when the problem sizes increases, which is not the case in this study
and may be partially explained by the lack of redundant compu-
tations. However, do note that the authors of [9] experiment with
3D stencils and also utilise additional disk memory from the host
in scenarios where the RAM capacity is not sufficient, so a direct
comparison cannot be made.

Moreover, [10] follows up on [9] by extending the out-of-core
implementation to multiple GPUs. In [10], MPI is used to split
the problem domain in sub-domains to be handled by separate
GPUs, which each then utilise the approach from [9]. Therefore,
this method does calculate several sub-domains concurrently, but
only between the GPUs, not within an individual GPU. The authors
mention in future work that it would be promising to introduce
their algorithm into a domain specific language, but do not yet
provide rewriting schematics or code generation examples.

Finally, [3] introduces a library (HHRT) that functions as a wrap-
per around MPI and CUDA to assists the programmer with the
non-trivial memory swapping process in [9, 10]. On top of that,
multiple MPI processes can now be assigned to one device to further
reduce the cost of memory swaps. However, memory consumption

is increased due to the usage of dedicated swap buffers on the host
and CUDA’s asynchronous communication model is not utilised.

8 CONCLUSION
This paper tackles the problem of mapping data-parallel array com-
putations that operate on data larger than the device memory space
of a GPU into out-of-core computations on these accelerators. As
GPUs do not support virtual memory spaces such transformations
are exclusively possible through a transformation of the array codes
into streaming codes.

We identify two algorithmic patterns that can be transformed
into streaming codes, provide CUDA code templates for streaming
such algorithms and demonstrate the effectiveness of the streaming
codes through a systemic performance evaluation. Given that such
a streaming limits the opportunities for reusing data on the device,
it implicitly also lowers the overall compute to communication ratio.
We tackle this problem by leveraging CUDA streams to overlap
kernel executions with concurrent memory transfers.

We systematically vary the computation to communication ratio
and the problem sizes in order to investigate how the streamed code
compares to non-streamed counterparts. We can not only show
that the out-of-core computations in all cases achieve the same
relative performance, but they even outperform the non-streamed
versions in case all data fits into the device memory of the GPU.
We can identify clearly that latency hiding of the transfer between
host and device is the key factor here.

The optimal number of streams depends on several factors, the
size of the data as well as the number of iterations over all data have
an impact on this parameter. In general, we can see that smaller
arrays and fewer iterations benefit larger numbers of threads (typi-
cally 8 or more) whereas large numbers of iterations favour fewer
streams. However, the number of streams chosen turns out to only
have a rather small effect on the overall run-time.

The overall drive of this research is to identify code patterns
suitable for code generation that can process arrays that are larger
than the memory that is available on the GPU without an over-
whelming loss of performance. Surprisingly, we find that it is not
only possible to create competitive streaming code, but that this
code also considerably outperforms the non-streaming code in case
the device memory is big enough to hold all data.

These insights suggest that the code generation for languages
such as SaC should make use of the proposed templates irrespec-
tive of the size of arrays that are involved. While our hand-coded
examples only implemented rather specific cases, the templates can
directly be used for code generation for the full generality of the
patterns identified in Section 4. Even the fact that our template for
the stencil operation only operates on one-dimensional arrays is
not a limiting factor since the code generated from SaC is based on
a flattened internal representation. Multi-component indices into
multi-dimensional arrays are anyways being translated into offsets
in the unrolling of the array elements.

An interesting direction for further research clearly is an ex-
tension of the set of code pattern that can be handled. A straight-
forward candidate are reduction operations, in particular when
being fused with map-like operations.



On Generating Out-Of-Core GPU Code for Multi-Dimensional Array Operations IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

REFERENCES
[1] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and

Vinod Grover. 2011. Accelerating Haskell Array Codes with Multicore GPUs. In
Proceedings of the SixthWorkshop on Declarative Aspects of Multicore Programming
(Austin, Texas, USA) (DAMP ’11). Association for Computing Machinery, New
York, NY, USA, 3–14. https://doi.org/10.1145/1926354.1926358

[2] Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty, and
Gabriele Keller. 2017. Streaming Irregular Arrays. In Proceedings of the 10th
ACM SIGPLAN International Symposium on Haskell (Oxford, UK) (Haskell 2017).
Association for Computing Machinery, New York, NY, USA, 174–185. https:
//doi.org/10.1145/3122955.3122971

[3] Toshio Endo and Guanghao Jin. 2014. Software technologies coping with memory
hierarchy of GPGPU clusters for stencil computations. In 2014 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, New-York, 132–139. https:
//doi.org/10.1109/CLUSTER.2014.6968747

[4] Clemens Grelck. 2005. Shared memory multiprocessor support for functional
array processing in SAC. J. Funct. Program. 15 (05 2005), 353–401. https://doi.
org/10.1017/S0956796805005538

[5] Jing Guo. 2012. Fully automated transformation of hardware-agnostic, data-parallel
programs for host-driven executions on GPUs. Ph. D. Dissertation. University of
Hertfordshire, UK. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.630034

[6] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. 2011. Breaking
the GPU Programming Barrier with the Auto-Parallelising SAC Compiler. In
Proceedings of the SixthWorkshop on Declarative Aspects of Multicore Programming
(Austin, Texas, USA) (DAMP ’11). Association for Computing Machinery, New
York, NY, USA, 15–24. https://doi.org/10.1145/1926354.1926359

[7] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and
Christophe Dubach. 2018. High Performance Stencil Code Generation with
Lift. In Proceedings of the 2018 International Symposium on Code Generation and
Optimization (Vienna, Austria) (CGO 2018). Association for Computing Machin-
ery, New York, NY, USA, 100–112. https://doi.org/10.1145/3168824

[8] Troels Henriksen. 2017. Design and Implementation of the Futhark Programming
Language. Ph. D. Dissertation. Department of Computer Science, Faculty of
Science, University of Copenhagen.

[9] Guanghao Jin, Toshio Endo, and Satoshi Matsuoka. 2013. A Multi-Level Opti-
mization Method for Stencil Computation on the Domain that is Bigger than
Memory Capacity of GPU. In 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum. IEEE, New-York, 1080–1087.
https://doi.org/10.1109/IPDPSW.2013.58

[10] Guanghao Jin, Toshio Endo, and Satoshi Matsuoka. 2013. A parallel optimization
method for stencil computation on the domain that is bigger than memory
capacity of GPUs. In 2013 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, New-York, 1–8. https://doi.org/10.1109/CLUSTER.2013.6702633

[11] Lars Kroll, Klas Segeljakt, Paris Carbone, Christian Schulte, and Seif Haridi.
2019. Arc: An IR for Batch and Stream Programming. In Proceedings of the 17th
ACM SIGPLAN International Symposium on Database Programming Languages
(Phoenix, AZ, USA) (DBPL 2019). Association for Computing Machinery, New
York, NY, USA, 53–58. https://doi.org/10.1145/3315507.3330199

[12] Hao Li, Di Yu, Anand Kumar, and Yi-Cheng Tu. 2014. Performance modeling
in CUDA streams — A means for high-throughput data processing. In 2014
IEEE International Conference on Big Data (Big Data). Insitute of Electrical and
Electronics Engineers, New York, NY, USA, 301–310. https://doi.org/10.1109/
BigData.2014.7004245

[13] Thomas Macht and Clemens Grelck. 2019. SAC Goes Cluster: Fully Implicit Dis-
tributed Computing. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, New York, 996–1006. https://doi.org/10.1109/IPDPS.
2019.00107

[14] Frederik M. Madsen, Robert Clifton-Everest, Manuel M. T. Chakravarty, and
Gabriele Keller. 2015. Functional Array Streams. In Proceedings of the 4th ACM
SIGPLAN Workshop on Functional High-Performance Computing (Vancouver, BC,
Canada) (FHPC 2015). Association for Computing Machinery, New York, NY, USA,
23–34. https://doi.org/10.1145/2808091.2808094

[15] Wojciech Michal Pawlak. 2021. Derivative Pricing and Risk Management Applica-
tions. Ph. D. Dissertation. University of Copenhagen, Universitetsparken 5, 2100
Kobenhavn.

[16] Daniel Rolls, Carl Joslin, Alexei Kudryavtsev, Sven-Bodo Scholz, and Alex Sha-
farenko. 2009. Numerical Simulations of Unsteady Shock Wave Interactions
Using SaC and Fortran-90. In Parallel Computing Technologies, Victor Malyshkin
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 445–456.

[17] Sven-Bodo Scholz. 2003. Single Assignment C: Efficient Support for High-Level
Array Operations in a Functional Setting. J. Funct. Program. 13, 6 (Nov. 2003),
1005–1059. https://doi.org/10.1017/S0956796802004458

[18] Sven-Bodo Scholz, Stephan Herhut, Frank Penczek, Clemens Grelck, Artem
Shinkarov, and Hans-Nikolai Viessmann. 2021. Single assignment C tutorial.
https://sac-home.org/_media/docs:tutorial.pdf.

[19] Sven-Bodo Scholz and Artjoms Šinkarovs. 2019. Tensor Comprehensions in SaC.
In Proceedings of the 31st Symposium on the Implementation and Application of

Functional Programming Languages (Singapore) (IFL ’19). ACM, New York, NY,
USA, Article 15, 13 pages. https://doi.org/10.1145/3412932.3412947

[20] Mohammed Sourouri, Tor Gillberg, Scott B. Baden, and Xing Cai. 2014. Effective
multi-GPU communication using multiple CUDA streams and threads. In 2014
20th IEEE International Conference on Parallel and Distributed Systems (ICPADS).
Insitute of Electrical and Electronics Engineers, New York, NY, USA, 981–986.
https://doi.org/10.1109/PADSW.2014.7097919

[21] Mohammed Sourouri, Johannes Langguth, Filippo Spiga, Scott B. Baden, and
Xing Cai. 2015. CPU+GPU Programming of Stencil Computations for Resource-
Efficient Use of GPU Clusters. In 2015 IEEE 18th International Conference on
Computational Science and Engineering. IEEE, New York, 17–26. https://doi.org/
10.1109/CSE.2015.33

[22] Michel Steuwer. 2015. Improving programmability and performance portability
on many-core processors. Ph. D. Dissertation. University of Münster. https:
//www.lift-project.org/publications/2015/steuwer15phdthesis.pdf

[23] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. LIFT: A
functional data-parallel IR for high-performance GPU code generation. In 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE, New-York, 74–85. https://doi.org/10.1109/CGO.2017.7863730

[24] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and
Charles E. Leiserson. 2011. The Pochoir Stencil Compiler. In Proceedings of the
Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures (San Jose, California, USA) (SPAA ’11). Association for Computing Machin-
ery, New York, NY, USA, 117–128. https://doi.org/10.1145/1989493.1989508

[25] Hans-Nikolai Vießmann and Sven-Bodo Scholz. 2020. Effective Host-GPU Mem-
ory Management Through Code Generation. In IFL 2020: Proceedings of the 32nd
Symposium on Implementation and Application of Functional Languages (Canter-
bury, United Kingdom) (IFL 2020). Association for Computing Machinery, New
York, NY, USA, 138–149. https://doi.org/10.1145/3462172.3462199

[26] Hans-Nikolai Viessmann, Sven-Bodo Scholz, Artjoms Sinkarovs, Brian Bain-
bridge, Brian Hamilton, and Simon Flower. 2015. Making Fortran Legacy Code
More Functional: Using the BGS Geomagnetic Field Modelling System As an Ex-
ample. In Proceedings of the 27th Symposium on the Implementation and Application
of Functional Programming Languages (Koblenz, Germany) (IFL ’15). ACM, New
York, NY, USA, Article 11, 13 pages. https://doi.org/10.1145/2897336.2897348

[27] V. Wieser, C. Grelck, P. Haslinger, J. Guo, F. Korzeniowski, R. Bernecky, B. Moser,
and S.B. Scholz. 2012. Combining High Productivity and High Performance in
Image Processing Using Single Assignment C onMulti-core CPUs and Many-core
GPUs. Journal of Electronic Imaging 21, 2 (2012). https://doi.org/10.1117/1.JEI.21.
2.021116

[28] Artjoms Šinkarovs, Hans Viessmann, and Sven-Bodo Scholz. 2021. Array Lan-
guages Make Neural Networks Fast. In Proceedings of the 6th ACM SIGPLAN
International Workshop on Libraries, Languages and Compilers for Array Pro-
gramming (Virtual,Canada) (ARRAY 2021). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3315454.3464312

https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1145/3122955.3122971
https://doi.org/10.1145/3122955.3122971
https://doi.org/10.1109/CLUSTER.2014.6968747
https://doi.org/10.1109/CLUSTER.2014.6968747
https://doi.org/10.1017/S0956796805005538
https://doi.org/10.1017/S0956796805005538
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.630034
https://doi.org/10.1145/1926354.1926359
https://doi.org/10.1145/3168824
https://doi.org/10.1109/IPDPSW.2013.58
https://doi.org/10.1109/CLUSTER.2013.6702633
https://doi.org/10.1145/3315507.3330199
https://doi.org/10.1109/BigData.2014.7004245
https://doi.org/10.1109/BigData.2014.7004245
https://doi.org/10.1109/IPDPS.2019.00107
https://doi.org/10.1109/IPDPS.2019.00107
https://doi.org/10.1145/2808091.2808094
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1145/3412932.3412947
https://doi.org/10.1109/PADSW.2014.7097919
https://doi.org/10.1109/CSE.2015.33
https://doi.org/10.1109/CSE.2015.33
https://www.lift-project.org/publications/2015/steuwer15phdthesis.pdf
https://www.lift-project.org/publications/2015/steuwer15phdthesis.pdf
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1145/1989493.1989508
https://doi.org/10.1145/3462172.3462199
https://doi.org/10.1145/2897336.2897348
https://doi.org/10.1117/1.JEI.21.2.021116
https://doi.org/10.1117/1.JEI.21.2.021116
https://doi.org/10.1145/3315454.3464312

	Abstract
	1 Introduction
	2 SaC
	2.1 The language
	2.2 Code generation for CUDA

	3 Streaming in CUDA
	4 Suitable Code Patterns
	4.1 Map-like computations
	4.2 Stencil-computations

	5 Implementation
	5.1 General strategy
	5.2 Map-like computations
	5.3 Stencil computations
	5.4 Iterative stencil computations

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Performance results
	6.3 Impact of streaming granularity

	7 Related Work
	8 Conclusion
	References

