
Improving Cahe E�etiveness through

Array Data Layout Manipulation in SAC

Clemens Grelk

University of Kiel

Department of Computer Siene and Applied Mathematis

24098 Kiel, Germany

e-mail: g�informatik.uni-kiel.de

Abstrat. Sa is a funtional array proessing language partiularly

designed with numerial appliations in mind. In this �eld the runtime

performane of programs ritially depends on the e�ient utilization of

the memory hierarhy. Cahe on�its due to limited set assoiativity are

one relevant soure of ine�ieny. This paper desribes the realization of

an optimization tehnique whih aims at eliminating ahe on�its by

adjusting the data layout of arrays to spei� aess patterns and ahe

on�gurations. Its e�et on ahe utilization and runtime performane is

demonstrated by investigations on the PDE1 benhmark.

1 Introdution

Sa is a funtional array proessing language, whih tries to ombine generi,

high-level program spei�ations with e�ient runtime behaviour [20, 21℄. Par-

tiularly in the �eld of numerial appliations, the e�ient utilization of the

memory hierarhy plays a key role in ahieving good performane [14℄. However,

for many numerial appliation programs it an be observed that small variations

in problem sizes may have a signi�ant impat on runtime performane. This

is due to systemati ahe on�its whih may our for unfavourable ombina-

tions of array aess patterns and array data layout in the presene of limited

ahe assoiativity [2℄.

Assuming the runtime performane of a program is poor for one problem

size, but turns out to be signi�antly better for a marginally larger problem size,

it is a rather straightforward idea to mimik the data layout assoiated with

the larger problem size when atually dealing with the smaller one. In doing

so, the originally dense representation of arrays is manipulated by the introdu-

tion of dummy elements in one or another dimension, so-alled array padding

[1℄. The array padding optimization implemented in Sa basially onsists of

three steps. First, Sa ode within with-loops, the predominant Sa language

onstrut for the spei�ation of aggregate array operations [7℄, is thoroughly

analysed for array aesses, and the arrays involved are assoiated with aurate

aess patterns. Seond, an inferene heuristi estimates the ahe utilization and

identi�es an appropriate amount of padding where neessary. Cahe phenomena

suh as spatial and temporal reuse are taken into aount. Third, the data lay-

out modi�ation proposed by the inferene heuristi is realized as a high-level

transformation on intermediate Sa ode.

The remainder of this paper is organized as follows. After a more detailed

problem identi�ation in Setion 2, Setions 3, 4, and 5 desribe the three steps

of the implementation. Their e�et on runtime performane is demonstrated by

means of the PDE1 benhmark in Setion 6. Setion 7 skethes some related

work while Setion 8 onludes.

2 Problem identi�ation

We have hosen the benhmark PDE1 as an example in order to investigate

and quantify the potential impat of the problem size on runtime performane.

PDE1 implements red/blak suessive over-relaxation on 3-dimensional grids.

The benhmark itself as well as various implementation opportunities for Sa

are disussed in [8℄. In our experiments we have systematially varied the size

of the 3-dimensional grid from 16

3

until 528

3

in uniform steps of 16 elements in

eah dimension. With double preision �oating point numbers, this involves array

sizes between 32KB and 1.1GB. All experiments have been done on a SUN Ultra

Enterprise 4000 system. Fig. 1 shows the average times required to re-ompute

the value of a single inner grid element. It an be observed that these times

signi�antly vary for the problem sizes investigated. While 155nse are su�ient

to update an inner element of a grid of size 16

3

, it takes up to 866nse to omplete

the same operation in a grid of size 256

3

. Although exatly the same sequene

of instrutions is exeuted for eah inner grid element regardless of the problem

size, the time required to do so varies by a fator of 5.6.

Suh extreme variations in runtime performane an only be attributed to

di�erent degrees of ahe utilization aused by varying data layouts introdued

by di�erent problem sizes. In order to substantiate laims like this, the Sa

ompiler and runtime system are equipped with a tailor-made ahe simulation

feature. On demand, a trae of all array aesses during program exeution is

generated. This allows for a omplete simulation of the ahe behaviour, yielding

statistial information regarding the e�etiveness of ahe utilization. Eah pro-

essor of the SUN Ultra Enterprise 4000 multiproessor system is equipped with

a 16KB L1 data ahe and a 1MB L2 uni�ed ahe. Both are diret-mapped and

use ahe lines of 32 and 64 bytes, respetively. Fig. 2 shows the perentage of

L1 ahe hits for the various problem sizes investigated as well as the perentage

of memory requests satis�ed by any of the two ahe levels. It atually turns out

that the extreme performane variations observed in Fig. 1 largely oinide with

similar variations in the simulated ahe hit rate.

The design of ahe memories is essentially based on two assumptions: tem-

poral loality and spatial loality [9℄. A program exhibits temporal loality if it

is likely that one a memory address is referened in the ode, it will be refer-

ened again soon. Therefore, data is loaded into the fast ahe memory in order

to satisfy subsequent requests without slow main memory interation. Spatial

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

T
im

e
to

 r
ec

om
pu

te
 o

ne
 in

ne
r

gr
id

 p
oi

nt
 in

 n
se

c

Problem size, edge length of cubic grid.

Fig. 1. PDE1: average time required to re-ompute a single grid element.

loality means that one a memory address is referened, adjaent addresses

are likely to be referened soon. For this reason, ahes are internally organized

in so-alled ahe lines, whih typially omprise between 16 and 128 bytes of

ontiguous memory. All data transfers between main memory and ahe involve

entire ahe lines rather than single bytes or words of memory. Appliation pro-

grams do only bene�t from ahes to the extent to whih they exhibit spatial

and temporal loality.

However, spatial and temporal loality are mainly harateristis of a given

program, and hene, do not explain the observed performane variations. In

fat, it is a limitation in ahe memory hardware that is responsible for this:

very limited set assoiativity. In order to e�iently distinguish ahe hits from

ahe misses, any given memory address an only be mapped to one of very

few loations in the ahe, whih are diretly derived from the memory address

itself. Today's ahes usually provide set assoiativities between one and four.

As a onsequene, data may be �ushed from the ahe before potential reuse is

atually exploited, although the ahe is su�iently large to allow the reuse in

priniple. These so-alled on�it misses may seriously limit ahe utilization,

as an be seen in Figs. 1 and 2. Sine onrete memory addresses deide over

ahe on�its, they are extremely sensitive against memory layout variations,

in partiular, whenever regularly strutured data is aessed in regular patterns,

whih is typial for numerial odes involving large arrays.

40

50

60

70

80

90

100

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

C
ac

he
 h

it
ra

te
s

up
on

 r
ea

d
ac

ce
ss

es
.

Problem size, edge length of cubic grid.

Legend:
L1 cache
L1 & L2 cache

Fig. 2. PDE1: simulated ahe performane.

Various di�erent ahe e�ets have been identi�ed [22℄, e.g., a spatial reuse

on�it ours whenever not all array elements referened in a single iteration of

an inner loop an simultaneously be held in the ahe. The number of di�erent

array elements whih are mapped to the same ahe set exeeds the ahe's set

assoiativity and, hene, ahe lines are �ushed from the ahe before potential

reuse an be realized in the following iteration. A temporal reuse on�it ours

when potential reuse between two referenes to the same array element annot

be exploited beause another array referene interferes and auses the �rst one

to be �ushed from the ahe before the potential reuse atually ours. Con�its

are lassi�ed as either arising from referenes to the same array, so-alled self-

interferene on�its, or to di�erent arrays, so-alled ross-interferene on�its.

Thorough elimination of ahe on�its is ruial for keeping the runtime

performane onsistent over a range of problem sizes [13℄. This an be ahieved

by a well-aimed manipulation of the data layout of arrays. Self-interferene on-

�its an be eliminated by modifying the internal representation of arrays, ross-

interferene on�its by adjusting array base addresses. The latter approah is

very di�ult to realize in a language like Sa, whih alloates and de-alloates

all data strutures dynamially. Therefore, we onentrate on self-interferene

on�its in the following. One way to manipulate the internal representation of

arrays is array padding, a well-known optimization tehnique that adds dummy

elements to an array in one or another inner dimension [1℄. For example, an array

whose original shape is [100,100℄ may be transformed into an array of shape

[100,102℄ by adding two olumns of dummy elements. Padding an array alters

the memory addresses of di�erent elements in di�erent ways and, hene, allows

to indiretly manipulate their assoiated relative ahe loations.

However, applying array padding manually has some serious drawbaks. It

requires both a lot of e�ort and expert knowledge by programmers, who in this

ase are solely responsible to identify where whih amount of padding might

have a positive impat on runtime performane. Moreover, expliit array padding

inreases program omplexity and makes programs less readable and more error-

prone. Last but not least, array padding renders program spei�ations mahine-

dependent beause eah ombination of problem size, aess pattern, and ahe

on�guration typially requires a di�erent amount of padding.

In ontrast, array padding as a ompiler optimization may be well-suited

to ahieve more onsistent performane over a wide range of problem sizes and

ahe on�gurations. However, things are not as simple in low-level languages

suh as C or Fortran. Sine these languages' semantis guarantee a ertain

(unpadded) data layout, thorough program analysis is required in order to prove

that padding does not alter the meaning of a program. Here, the design of

high-level languages like Sa pays o�. Sine they ompletely abstrat from any

onrete data layout, language implementations are free to exploit the bene�ts

of varying data layouts as an additional optimization tehnique.

3 Array aess analysis

Aurate analysis of array aess patterns is one of the prerequisites for reasoning

about ahe on�its. Severe ahe on�its typially arise from regular array

referenes within loops, i.e., two or more referenes systematially on�it with

eah other in every iteration of the loop. Therefore, the analysis desribed in

this setion fousses on regular array referenes in with-loops. The with-loop

is a Sa-spei� language onstrut for the spei�ation of aggregate multi-

dimensional array operations; a thorough desription may, for instane, be found

in [7℄. An array referene is onsidered being regular if and only if it an be

written in the form

val = Array [s � i+ d ℄ ;

where s denotes a onstant stride vetor, d a onstant o�set vetor, and i the

with-loop's index variable. Note that * here denotes the elementwise produt of

two vetors. In other words, loations of regular array referenes are de�ned by

dimension-wise a�ne funtions of the with-loop's index variable. Fig. 3 shows

an example with-loop featuring a few di�erent regular array referenes. All

array referenes that annot be onverted to this a�ne pattern, are onsidered

irregular. They are likely not to on�it in a systemati way with other referenes,

irregular or regular. Therefore, they are just ignored in the sequel.

All array referenes in the example shown in Fig. 3 are regular with respet

to the above de�nition. This an be inferred during a rather simple bottom-up

int[100,100℄ A;

int[200,150℄ B;

int[120,120℄ C;

...

A = with ([1,1℄ <= iv < [100,100℄)

{

a = B[iv - 1℄;

b = C[iv℄;

 = B[iv + 2℄;

d = C[[42, 42℄℄;

e = B[[2, 1℄ * iv℄;

tmp = iv + [1, 1℄;

f = B[[2, 1℄ * tmp℄;

val = a + b + + d + e + f;

}

genarray([100,100℄, val);

Fig. 3. Examples of regular array referenes in a with-loop.

traversal of the with-loop body. Compat array aess information is aumu-

lated, as outlined in Fig. 4. The array aess pattern AP is a set of triples;

eah triple represents exatly one regular array referene found in the with-

loop body. The aess triples themselves onsist of the name of the referened

array, the stride vetor s and the o�set vetor d.

As already pointed out, the tehnique presented in this paper fousses on self-

interferene ahe on�its, i.e. on�its between referenes to the same array.

Referenes to di�erent arrays, although ourring in a single with-loop, may be

handled separately. Furthermore, only array referenes whih are haraterized

by idential stride vetors smay atually interfere with eah other in a systemati

and, hene, expensive manner. These onsiderations lead to the division of an

aess pattern into disjoint so-alled on�it groups. Eah on�it group then

ontains exatly one subset of array referenes whih are likely to systematially

interfere with eah other.

The example aess pattern AP in Fig. 4 results in the introdution of four

on�it groups, as outlined in Fig. 5. Eah on�it group is represented by a pair

onsisting of the type of the referened array and a sequene of o�set vetors. The

stride vetors are no longer needed. Whether or not two referenes of the same

AP = f < B, [1, 1℄, [-1,-1℄ > ,

< C, [1, 1℄, [0, 0℄ > ,

< B, [1, 1℄, [2, 2℄ > ,

< C, [0, 0℄, [42,42℄ > ,

< B, [2, 1℄, [0, 0℄ > ,

< B, [2, 1℄, [2, 1℄ > g

Fig. 4. Array aess pattern derived from example with-loop in Fig. 3.

CG

1

= < int[200,150℄ , < [-1,-1℄, [2, 2℄ > >

CG

2

= < int[120,120℄ , < [0, 0℄ > >

CG

3

= < int[120,120℄ , < [42,42℄ > >

CG

4

= < int[200,150℄ , < [0, 0℄, [2, 1℄ > >

Fig. 5. Con�it groups derived from aess pattern AP in Fig. 4.

on�it group ause a ahe on�it solely depends on their relative distane in

memory, whih is invariant against their strides. Last but not least, no ahe

on�its may our in on�it groups onsisting of a single array referene only.

As a onsequene, all suh on�it groups, e.g. CG

2

and CG

3

in Fig. 5, are simply

ignored. The number of on�it groups an further be redued by the elimination

of multiple ourrenes of idential ones and of those that are subsets of others.

4 Padding inferene heuristi

This setion presents the entral padding inferene algorithm. It assoiates eah

array type ourring in a Sa program or module with a padding reommenda-

tion appropriate for avoiding spatial and temporal self-interferene ahe on-

�its. The basi idea is to pad all arrays of a given type (onsisting of base type

and shape) in a uniform way if at all. This helps to avoid ostly transforma-

tions between unpadded and padded or even di�erently padded representations

of arrays whih originally had idential types and, hene, data layouts. Suh

transformations are limited to module boundaries, providing programmers with

some means of ontrol over array padding.

In addition to the on�it groups impliitly derived from Sa ode, as de-

sribed in Setion 3, the inferene sheme presented here is based on the spei�-

ation of a ahe on�guration, whih must expliitly be stated at ompile time.

It onsists of the ahe size and the ahe line size, both in bytes, as well as the

ahe's set assoiativity. Furthermore, an upper limit must be set on memory

onsumption overhead aused by array padding.

When foussing on a single array type, whih onsists of a salar base type

and an original shape SHP , we may easily ompute the ahe size CS and the

ahe line size CLS in array elements. These �gures, rather than the external

spei�ations in bytes, are used by the inferene sheme. Moreover, we om-

pute the number of ahe sets, NSET := CS=(CLS � CA) where CA denotes

the ahe's set assoiativity. With this internal ahe spei�ation at hand, all

on�it groups assoiated with the array type under onsideration are then su-

essively analysed with respet to potential ahe on�its. Padding reommen-

dations are aumulated in a vetor PAD, whih is initially set to 0, i.e., we

start out with reommending no padding at all.

First, spatial reuse on�its are addressed. Let us onsider a on�it group

CG representing array referenes R

1

; : : : ; R

n

. For eah referene R

i

, the o�set

vetor D

i

is onverted into a salar o�set with respet to the array shape SHP

extended by the padding vetor PAD reommended so far:

8 i 2 f1; : : : ; ng : OFFSET

i

:= ADDR(D

i

; SHP + PAD) ;

where ADDR(ve; shp) is a funtion that omputes the o�set of ve in the row-

major unrolling of an array with shape shp, i.e.

ADDR(ve; shp) :=

jshpj

X

k=0

(ve

k

�

jshpj

Y

m=k+1

shp

m

) :

For reasons of simpliity it is desirable to avoid negative o�sets. Sine our interest

is also limited to relative distanes of ahe loations, omputed o�sets an easily

be shifted by a onstant value. The easiest way to avoid negative o�sets is to

generally arrange the elements of a on�it group in asending lexiographial

order with respet to their o�set vetors, and to subtrat OFFSET

0

from eah

salar o�set, i.e.

8 i 2 f1; : : : ; ng : OFFSET

i

:= OFFSET

i

�OFFSET

0

:

With the shifted o�sets at hand, we now determine the respetive ahe sets

8 i 2 f1; : : : ; ng : SET

i

:= (OFFSET

i

=CLS) mod NSET :

For eah referene R

i

, we ompute the number NPSC

i

of potential spatial reuse

on�its with other referenes. Two referenesR

i

and R

j

potentially on�it with

eah other if and only if

((jSET

i

� SET

j

j < 2 _ (jSET

i

� SET

j

j = NSET � 1))

^ (jOFFSET

i

�OFFSET

j

j > 2 � CLS) ;

i.e., they referene non-adjaent memory addresses whih are mapped to idential

or diretly adjaent ahe sets. The latter serves as an additional bu�er that

allows to ompletely abstrat from relative plaements of referenes within ahe

lines. In a diret-mapped ahe (CA = 1), any potential on�it atually is a real

on�it. However, in general, a on�it ours whenever the number of potential

on�its equals or exeeds the ahe's set assoiativity CA, i.e., the number of

spatial reuse on�its assoiated with eah array referene is de�ned as

8 i 2 f1; : : : ; ng : NSC

i

:= max(0; NPSC

i

� CA+ 1) ;

the total number of spatial reuse on�its within the on�it group is de�ned as

NSC :=

n

X

i=0

NSC

i

:

If there are no on�its, i.e., NSC = 0, we are done and PAD is the re-

ommended padding for this on�it group with respet to spatial reuse. If the

number of on�its is redued relative to the best padding found so far, the

urrent padding and the number of spatial reuse on�its assoiated with it are

stored as new urrently best solution. As long as there are still on�its, we try

to solve them with additional padding, i.e., the padding vetor PAD is to be up-

dated. For this purpose, we �rst identify dimensions that are eligible for padding.

Assigning the index 0 to the outermost dimension and ounting upwards, the

minimum padding dimension is determined as MINPADDIM := d+ 1, where

d is the outermost dimension with D

i

[d℄ 6= D

j

[d℄ for any pair of on�iting ar-

ray referenes R

i

and R

j

. The maximum padding dimension is simply hosen

asMAXPADDIM := jSHP j � 1. Among all eligible dimensions the outermost

one is hosen, where (SHP + PAD)[d℄ is maximal. This hoie of PADDIM

guarantees that padding overhead grows in minimal steps. Padding is preferably

applied to outer dimensions in order to redue the negative impat of the loop

overhead introdued by it.

The padding vetor PAD is inremented by 1 in dimension PADDIM and,

assuming this additional padding does not exeed the given limit on mem-

ory onsumption overhead, the ahe behaviour is re-evaluated with this new

padding vetor as desribed so far. Otherwise, SHP is reset to 0 in dimen-

sion MINPADDIM and, provided that MINPADDIM < MAXPADDIM ,

padding in the next dimension is inreased by 1. The entire proess is repeated

until either all spatial reuse on�its are eliminated or all padding vetors eligible

with respet to the memory onsumption overhead limit have been investigated.

In the latter ase, the best padding found during the proess is stored as reom-

mended padding.

With spatial reuse on�its eliminated as far as possible, we may now fous

on temporal reuse on�its. As a �rst step, we determine for eah referene R

i

if there is a hane for temporal reuse from referene R

i+1

in the presene of

simple ahe apaity onstraints. This is the ase if and only if

OFFSET

i+1

�OFFSET

i

< (NSET � 2) � CLS :

Note here that all referenes are sorted with inreasing o�sets. For eah pair

of adjaent referenes R

i

and R

i+1

whih may bene�t from temporal reuse, we

then ompute the number of potential temporal reuse on�its NPTC. An array

referene R

j

, j 6= i ^ j 6= i+ 1 represents a potential temporal reuse on�it if

it is mapped to a ahe set �in between� those assoiated with R

i

and R

i+1

, i.e.

(SET

i

� SET

j

) ^ (SET

j

� SET

i+1

) () SET

i

� SET

i+1

;

(SET

i

� SET

j

) _ (SET

j

� SET

i+1

) () SET

i

> SET

i+1

:

In analogy to spatial reuse on�its, the term �potential� is to be understood with

respet to set assoiativity, i.e., the number of atual temporal reuse on�its

NTC is de�ned as

8 i 2 f1; : : : ; ng : NTC

i

:= max(0; NPTC

i

� CA+ 1)

for eah referene and in total as

NTC :=

n

X

i=0

NTC

i

:

Whenever the urrent padding fails to eliminate all temporal reuse on�its,

a new padding vetor andidate is determined in a similar way as for resolving

spatial reuse on�its. However, eligible padding dimensions are restrited in

a slightly di�erent way. The minimum eligible padding dimension is de�ned

as MINPADDIM := d+ 1, where d denotes the outermost dimension with

D

i

[d℄ 6= D

j

[d℄ 6= D

i+1

[d℄ for any triple of on�iting array referenes R

i

, R

j

, and

R

i+1

. The maximum eligible padding dimension MAXPADDIM is given as

the outermost dimension d where D

i

[d℄ 6= D

i+1

[d℄ holds for the same referenes

R

i

and R

i+1

as above. The basi idea behind these hoies for MINPADDIM

andMAXPADDIM is to selet a padding dimension whih, on the one hand, is

su�iently large so that the relative ahe loations of adjaent referenes with

potential temporal reuse remain untouhed, but, on the other hand, is su�iently

small, so that padding atually alters the relative ahe loations between these

adjaent referenes and the on�iting referene in between.

In ontrast to the hoie of a padding dimension for the elimination of spatial

reuse on�its, an eligible padding dimension to avoid temporal reuse on�its

not neessarily exists. In this ase, array padding does not resolve this on�it,

and the inferene heuristi stops at this point. Otherwise, a new padding vetor

andidate is hosen exatly as in the ontext of solving spatial reuse on�its and

temporal reuse on�its are re-evaluated iteratively until either all are eliminated

or the padding overhead onstraint is exhausted.

An alternative implementation di�erent from the above inferene heuristi is

to evaluate all potential padding vetors eligible with respet to the given on-

straint on additional memory onsumption. For eah suh padding vetor, the

number of spatial and temporal reuse on�its as well as the assoiated over-

head are omputed. Afterwards, the padding vetor whih auses the minimal

number of on�its is seleted. If there are several equally suitable padding ve-

tors, the one whih auses the least overhead is hosen. If there are still multiple

andidates, the one whih inurs the least padding in inner dimensions is taken

eventually. While this alternative implementation is guaranteed to �nd the most

suitable padding with respet to the number of ahe on�its, memory on-

sumption overhead, and loop overhead, it generally requires onsiderably more

omputational e�ort. However, sine this e�ort is made at ompile time rather

than at runtime, it may be tolerable in many situations.

5 Padding transformation

The padding inferene algorithm desribed in the previous setion results in

the de�nition of a funtion PadT ype, whih for eah array type found in the

program or module under onsideration yields the reommended padded type.

Types for whih a manipulation of the internal data layout is not reommended

are simply returned by PadT ype as they are. This setion fousses on the atual

realization of the padding reommendation, whih in the sequel will be formalized

by means of a transformation sheme APT . It de�nes a high-level soure-to-

soure transformation on simpli�ed and type-annotated intermediate Sa ode.

APT [[rettypes fun (args) { vardes instrs } Rest ℄℄

=) APT [[rettypes ℄℄ fun (APT [[args ℄℄) {

RepArgs[[args ℄℄ APT [[vardes ℄℄

APT [[instrs ℄℄

} APT [[Rest ℄℄

APT [[type , Rest ℄℄

=) PadT ype[[type ℄℄ , APT [[Rest ℄℄

APT [[type argname , Rest ℄℄

=) PadT ype[[type ℄℄ argname , APT [[Rest ℄℄

RepArgs[[type argname , Rest ℄℄

=) type _argname ; RepArgs[[Rest ℄℄ | T oBePadded[[type ℄℄

=) RepArgs[[Rest ℄℄ | otherwise

APT [[type varname ; Rest ℄℄

=) PadT ype[[type ℄℄ varname ;

type _varname ; APT [[Rest ℄℄

| T oBePadded[[type ℄℄

=) type varname ; APT [[Rest ℄℄ | otherwise

Fig. 6. Transformation sheme APT on funtion de�nitions.

The former means that nested expressions are lifted to separate assignments to

temporary variables; the latter provides a funtion T ype, whih assoiates eah

variable with a Sa data type. The transformation sheme APT is based on two

additional auxiliary funtions: Shape[[type ℄℄ yields the shape part of an array

data type type as a vetor, and T oBePadded[[type ℄℄ deides whether or not a

padding is reommended for a given type, i.e.

T oBePadded[[type ℄℄ := PadT ype[[type ℄℄ 6= type .

Fig. 6 shows the e�et of the ompilation sheme APT on funtion de�ni-

tions. The formal parameters of a funtion are traversed, and whenever padding

is reommended for a return or argument type, the original type spei�ation is

replaed by the respetive padded type. A similar transformation is applied to

the loal variable delarations. As already pointed out in Setion 4, the trans-

formation of a padded array into its unpadded representation is neessary in

ertain situations, e.g. at module boundaries. Sine we do not have any a priori

knowledge as to whether or not suh a transformation will atually be required,

additional variable delarations are introdued for eah padded original loal

variable.

1

The same is done for padded formal parameters by means of the

auxiliary ompilation sheme RepArgs.

The e�et of APT on appliations of user-de�ned and of built-in funtions

is de�ned in Fig. 7. Whereas nothing is to be done in the ase of loally de�ned

funtions, the appliation of an imported funtion may require a hange in the

1

Super�uous variable delarations are eliminated by subsequent optimization steps.

APT [[vars = fun (args); Rest ℄℄

=) vars = fun (args); APT [[Rest ℄℄

APT [[vars = module:fun (args); Rest ℄℄

=) UnPad[[args ℄℄

Rename[[vars ℄℄ = module:fun (Rename[[args ℄℄);

Pad[[vars ℄℄ APT [[Rest ℄℄

APT [[var = dim(array); Rest ℄℄

=) var = dim(array); APT [[Rest ℄℄

APT [[var = shape(array); Rest ℄℄

=) var = Shape[[T ype[[array ℄℄ ℄℄ ;

APT [[Rest ℄℄

| T oBePadded[[T ype[[array ℄℄ ℄℄

=) var = shape(array); APT [[Rest ℄℄ | otherwise

APT [[var = psi(array , ve); Rest ℄℄

=) var = psi(array , ve); APT [[Rest ℄℄

APT [[var = modarray(array , ve , val); Rest ℄℄

=) var = modarray(array , ve , val); APT [[Rest ℄℄

APT [[var = reshape(ve , array); Rest ℄℄

=) UnPad[[array ℄℄

Rename[[var ℄℄ = reshape(ve , Rename[[array ℄℄);

Pad[[var ℄℄ APT [[Rest ℄℄

Fig. 7. Transformation sheme APT on funtion appliations.

representations of argument as well as of result arrays. This is desribed by the

three auxiliary ompilation shemesRename, Pad, and UnPad de�ned in Fig. 8.

Sa supports only a very limited number of built-in operations on arrays. For

instane, dim and shape retrieve an array's dimensionality and shape, respe-

tively. Sine padding has no e�et on dimensionality, any appliation of dim may

simply remain as it is. In ontrast, an appliation of shape must be replaed by

the shape orresponding to the original type of the argument array. The funtion

psi selets the element of array spei�ed by the index vetor ve. The o�set in

memory spei�ed by ve is omputed using the funtion ADDR(ve; shp) de-

�ned in Setion 4. However, this funtion also omputes the orret o�set of

an array element in a padded array representation when providing the padded

shape as seond argument. Hene, no ode transformation is required for the se-

letion of elements regardless of whether or not an array is padded. The built-in

funtion modarray yields an array that is idential to its �rst argument exept

for the element denoted by the seond argument, whih is replaed by the third

argument. Sine T ype[[var ℄℄ = T ype[[array ℄℄ and hene

PadT ype[[T ype[[var ℄℄ ℄℄ = PadT ype[[T ype[[array ℄℄ ℄℄ ,

modarray an be applied to padded arrays without additional measures. The last

remaining built-in funtion is reshape, whih reates an array that onsists of

the same elements as the argument array, but is assoiated with the new shape

de�ned by the argument ve. Appliations of reshape are restrited to argu-

ments where the given array's original shape and the new shape are ompatible,

i.e., they refer to arrays with the same number of elements. However, as soon as

one of the two shapes is padded, this restrition is violated. Even if both shapes

are padded, it is rather unlikely that the padded shapes omply with the om-

patibility restrition. As a way out, both the argument array as well as the result

array have to be onverted between padded and unpadded representations.

The transformation of an array from a padded into an unpadded representa-

tion or vie versa is subjet to the three auxiliary ompilation shemes Rename,

Pad, and UnPad de�ned in Fig. 8. Whenever a padded array is enountered

where an unpadded representation is required, it is transformed by means of a

prede�ned generi funtion UnPad. In a similar way, arrays whih are reated in

an unpadded representation for some reason, but whose types are reommended

to be padded aording to PadT ype, are transformed into the orresponding

padded representation using the prede�ned generi funtion Pad.

Aggregate array operations are de�ned in one way or another by means of

with-loops in Sa itself. The e�et of the ompilation sheme APT on with-

loops is desribed in Fig. 9. Apart from reursively applying APT to the in-

strutions within the body of a with-loop, only a single ode transformation is

atually required. The expression that de�nes the shape of the result array in a

genarray-With-loop is replaed by the orresponding padded shape.

Assuming a generator depends in one way or another on the shape of a

padded array, all appliations of the built-in funtion shape would have been

Rename[[var , Rest ℄℄

=) _var , Rename[[Rest ℄℄ | T oBePadded[[T ype[[var ℄℄ ℄℄

=) var , Rename[[Rest ℄℄ | otherwise

Rename[[onst , Rest ℄℄

=) onst , Rename[[Rest ℄℄

Pad[[var , Rest ℄℄

=) var = Pad(_var); Pad[[Rest ℄℄ | T oBePadded[[T ype[[var ℄℄ ℄℄

=) Pad[[Rest ℄℄ | otherwise

UnPad[[var , Rest ℄℄

=) _var = UnPad(var); Pad[[Rest ℄℄ | T oBePadded[[T ype[[var ℄℄ ℄℄

=) Pad[[Rest ℄℄ | otherwise

UnPad[[onst , Rest ℄℄

=) Pad[[Rest ℄℄

Fig. 8. Auxiliary shemes Rename, Pad, and UnPad.

APT [[var = with (generator) { instrs } genarray(shp , val); Rest ℄℄

=) var = with (generator) { APT [[instrs ℄℄ }

genarray(Shape[[T ype[[var ℄℄ ℄℄ , val); APT [[Rest ℄℄

APT [[var = with (generator) { instrs } modarray(old , iv , val); Rest ℄℄

=) var = with (generator) { APT [[instrs ℄℄ }

modarray(old , iv , val); APT [[Rest ℄℄

APT [[var = with (generator) { instrs } fold(fun , neutral , val); Rest ℄℄

=) var = with (generator) { APT [[instrs ℄℄ }

fold(fun , neutral , val); APT [[Rest ℄℄

Fig. 9. Transformation sheme APT on with-loops.

abstrated out of the generator itself. These appliations are then replaed by

the original shapes of the arrays they refer to (see Fig. 7). As a onsequene,

array padding does not alter the generators of with-loops in any way. Should

padding apply to the result array of a genarray-With-loop or modarray-With-

loop, the additional dummy elements are automatially initialized aording to

the default rule of the with-loop without any additional measures required.

While the padding transformation of with-loops, as outlined in Fig. 9, is

simple and elegant on a oneptual level, it unfortunately introdues super�uous

and avoidable runtime overhead. Initializing dummy array elements aording

to the with-loop's default rule leads to additional memory aesses that, by

de�nition, do not ontribute to the program result. This observation gives way

to an additional optimization whih distinguishes between dummy and regular

array elements in the intermediate representation of with-loops. The internal

format of multi-generator with-loops, as desribed in [7℄, provides a suitable

framework for this purpose.

6 Performane evaluation

Fig. 10 shows the e�et of applying the array padding optimization outlined in

Setions 3, 4, and 5 to the PDE1 benhmark. Given the same problem sizes as in

the initial investigations desribed in Setion 2 and the upper limit on memory

onsumption overhead set to 10%, the padding inferene heuristi deides to

pad 25 out of the total of 33 problem sizes under onsideration. In 16 ases,

it reommends a padding of [0,1,0℄ (32

3

, 96

3

, 160

3

, 224

3

, 272

3

, 288

3

, 304

3

,

336

3

, 368

3

, 400

3

, 416

3

, 432

3

, 464

3

, 480

3

, 496

3

, 528

3

) and in 7 ases a padding

of [0,2,0℄ (64

3

, 128

3

, 192

3

, 256

3

, 320

3

, 384

3

, 448

3

). For the problem size 352

3

a padding of [0,22,0℄ and for 512

3

a padding of [0,5,1℄ is hosen. Fig. 10

shows the e�et of array padding on the simulated ahe performane of the

PDE1 benhmark. In fat, array padding sueeds in keeping the L1 ahe hit

rate on a onsistently high level between 84% and 88% aross all problem sizes.

It also manages to avoid the sharp drops in the overall ahe hit rate, whih an

be observed for the problem sizes 256

3

and 512

3

in the original �gures.

40

50

60

70

80

90

100

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

C
ac

he
 h

it
ra

te
s

up
on

 r
ea

d
ac

ce
ss

es
.

Problem size, edge length of cubic grid.

Legend:
original, L1 cache
original, L1 & L2 cache
with padding, L1 cache
with padding, L1 & L2 cache

Fig. 10. PDE1: simulated ahe performane with and without array padding.

Fig. 11 shows the e�et of array padding on the runtime performane of the

PDE1 benhmark. First of all, it an be observed that for none of the problem

sizes the padding heuristi yields a performane degradation. In ontrast, im-

provements an be observed whenever the padding transformation atually is

applied, some of them being quite onsiderable. In partiular, for the problem

sizes 64

3

, 256

3

, and 512

3

the average time needed to re-ompute a single grid

element an be redued by 53%, 64%, and 63%, respetively. Also, the variane

in runtimes is signi�antly dereased. With array padding onsistent runtimes

are ahieved over the whole range of problem sizes investigated.

7 Related work

In most funtional programming languages, lists rather than arrays are the pre-

dominantly used data struture. The most prominent exeption is the language

Sisal. However, Sisal represents arrays as vetors of vetors rather than as on-

tiguous data, and this storage format renders optimizations like array padding

obsolete. So, we are not aware of any similar optimization tehnique in the area

of funtional languages.

In high-performane omputing based on imperative languages, still predom-

inantly Fortran, data loality has long been identi�ed as an important issue

[23℄. Muh researh has been foussed on program transformations that reorder

the sequene in whih single iterations within a nesting of loops are atually

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

T
im

e
to

 r
ec

om
pu

te
 o

ne
 in

ne
r

gr
id

 p
oi

nt
 in

 n
se

c

Problem size, edge length of cubic grid.

Legend:
original
with padding

Fig. 11. PDE1: average time required to re-ompute a single grid element.

exeuted [5, 19, 12℄. Loop transformations suh as permutation, reversal, or in-

terhange, are used to adjust the iteration order to a given array data layout

in order to ahieve unit stride memory aesses in inner loops and, hene, to

exploit spatial loality. Loop tiling, also alled loop bloking, is a ombination

of loop skewing and subsequent loop permutation. It seeks to improve temporal

loality in loop nestings by reduing the iteration distane between subsequent

aesses to the same array element [10, 4, 18℄. Moreover, loop fusion allows to

exploit loality of referene aross multiple adjaent loop nestings [11℄.

Often, superior ahe performane an be ahieved if both the iteration order

as well as the memory layout are subjet to ompiler transformations. Examples

are the ombination of array transposition with loop permutation [3℄ or that of

array padding with tiling in order to inrease tile sizes and, thus, to redue the

additional loop overhead in�ited by tiled ode [15℄. Whereas these approahes

mostly fous on apaity misses, on�it misses due to limited set assoiativity

have been identi�ed as another important soure of performane degradation

[22℄. Their quanti�ation has been ahieved by so-alled ahe miss equations,

i.e. linear Diophantine equations, that speify the ahe line to whih an array

referene in a loop will be mapped [6℄. Due to the omplexity and expense of suh

aurate investigations, simpler heuristis that address both self-interferene as

well as ross-interferene ahe on�its in Fortran loop nestings, have been

proposed reently [16, 17℄.

8 Conlusion

This paper presents an algorithm that suessfully eliminates spatial and tem-

poral reuse on�its in Sa programs by impliitly adjusting array data layouts

to aess patterns and ahe on�gurations. Cahe simulation as well as runtime

performane investigations on the PDE1 benhmark show that this optimiza-

tion tehnique allows for substantial redutions in program runtimes for ertain

problem sizes and, moreover, ahieves a deidedly more onsistent runtime per-

formane over a wide range of problem sizes.

Referenes

1. D.F. Baon, S.L. Graham, and O.J. Sharp. Compiler Transformations for High-

Performane Computing. ACM Computing Surveys, vol. 26(4), pp. 345�420, 1994.

2. B. Bershad, D. Lee, T. Romer, and B. Chen. Avoiding Con�it Misses in Large

Diret-Mapped Cahes. In Proeedings of the 6th International Conferene on Ar-

hitetural Support for Programming Languages and Operating Systems (ASPLOS-

VI), San José, California, USA, 1994.

3. M. Cierniak andW. Li. Unifying Data and Control Transformations for Distributed

Shared-Memory Mahines. In Proeedings of the ACM SIGPLAN Conferene on

Programming Design and Implementation (PLDI'95), La Jolla, California, USA,

1995.

4. S. Coleman and K. MKinley. Tile Size Seletion Using Cahe Organization and

Data Layout. In Proeedings of the ACM SIGPLAN Conferene on Programming

Language Design and Implementation (PLDI'95), La Jolla, California, USA, pp.

279�290, 1995.

5. D. Gannon, W. Jalby, and K. Gallivan. Strategies for Cahe and Loal Memory

Management by Global Program Transformation. Journal of Parallel and Dis-

tributed Computing, vol. 5(5), pp. 587�616, 1988.

6. S. Ghosh, M. Martonosi, and S. Malik. Cahe Miss Equations: A Compiler Frame-

work for Analyzing and Tuning Memory Behavior. ACM Transations on Pro-

gramming Languages and Systems, vol. 21(4), pp. 703�746, 1999.

7. C. Grelk, D. Kreye, and S.-B. Sholz. On Code Generation for Multi-Generator

WITH-Loops in SAC. In P. Koopman and C. Clak, editors, Proeedings of the 11th

International Workshop on Implementation of Funtional Languages (IFL'99),

Lohem, The Netherlands, seleted papers, Leture Notes in Computer Siene,

vol. 1868, pp. 77�94. Springer-Verlag, 2000.

8. C. Grelk and S.-B. Sholz. HPF vs. SAC� A Case Study. In A. Bode, T. Ludwig,

W. Karl, and R. Wismüller, editors, Proeedings of the 6th International Euro-

Par Conferene on Parallel Proessing (Euro-Par'00), Munih, Germany, Leture

Notes in Computer Siene, vol. 1900, pp. 620�624. Springer-Verlag, 2000.

9. J. L. Hennessy and D. A. Patterson. Computer Arhiteture: A Quantitative Ap-

proah, Seond Edition. Morgan Kaufmann, 1995.

10. M.S. Lam, E.E. Rothberg, and M.E. Wolf. The Cahe Performane of Bloked

Algorithms. In Proeedings of the 4th International Conferene on Arhitetural

Support for Programming Languages and Operating Systems (ASPLOS-IV), Palo

Alto, California, USA, pp. 63�74, 1991.

11. N. Manjikian and T.S. Abdelrahman. Fusion of Loops for Parallelism and Loality.

IEEE Transations on Parallel and Distributed Systems, vol. 8(2), pp. 193�209,

1997.

12. K. MKinley, S. Carr, and C.-W. Tseng. Improving Data Loality with Loop

Transformations. ACM Transations on Programming Languages and Systems,

vol. 18(4), pp. 424�453, 1996.

13. K. MKinley and O. Temam. A Quantative Analysis of Loop Nest Loality. In Pro-

eedings of the 8th International Conferene on Arhitetural Support for Program-

ming Languages and Operating Systems (ASPLOS-VIII), Boston, Massahusetts,

USA, 1996.

14. T. Mowry, M. Lam, and A. Gupta. Design and Evaluation of a Compiler Algorithm

for Prefething. In Proeedings of the 5th International Conferene on Arhitetural

Support for Programming Languages and Operating Systems (ASPLOS-V), Boston,

Massahusetts, USA, pp. 62�73, 1992.

15. P.R. Panda, H. Nakamura, N.D. Dutt, and A.Niolau. A Data Alignment Teh-

nique for Improving Cahe Performane. In Proeedings of the International Con-

ferene on Computer Design VLSI in Computers and Proessors, Austin, Texas,

USA, pp. 587�592. IEEE Computer Soiety Press, 1997.

16. G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Con�it Misses.

In Proeedings of the ACM SIGPLAN International Conferene on Programming

Language Design and Implementation (PLDI'98), Montréal, Canada, ACM SIG-

PLAN Noties, vol. 33(5), pp. 38�49. ACM Press, 1998.

17. G. Rivera and C.-W. Tseng. Eliminating Con�it Misses for High Performane

Arhitetures. In Proeedings of the ACM International Conferene on Superom-

puting (ICS'98), Melbourne, Australia. ACM Press, 1998.

18. G. Rivera and C.-W. Tseng. A Comparison of Compiler Tiling Algorithms. In Pro-

eedings of the 8th International Conferene on Compiler Constrution (CC'99),

Amsterdam, The Netherlands, Leture Notes in Computer Siene, vol. 1575, pp.

168�182. Springer-Verlag, 1999.

19. V. Sarkar and R. Thekkath. A General Framework for Iteration-Reordering Loop

Transformations. In Proeedings of the ACM SIGPLAN Conferene on Program-

ming Language Design and Implementation (PLDI'92), San Franiso, California,

USA, pp. 175�187, 1992.

20. S.-B. Sholz. On De�ning Appliation-Spei� High-Level Array Operations by

Means of Shape-Invariant Programming Failities. In S. Pihi and M. Mioi,

editors, Proeedings of the International Conferene on Array Proessing Languages

(APL'98), Rome, Italy, pp. 40�45. ACM Press, 1998.

21. S.-B. Sholz. A Case Study: E�ets of WITH-Loop Folding on the NAS Benh-

mark MG in SAC. In K. Hammond, T. Davie, and C. Clak, editors, Proeedings

of the 10th International Workshop on Implementation of Funtional Languages

(IFL'98), London, UK, seleted papers, Leture Notes in Computer Siene, vol.

1595, pp. 216�228. Springer-Verlag, 1999.

22. O. Temam, C. Friker, and W. Jalby. Cahe Interferene Phenomena. In Pro-

eedings of the ACM SIGMETRICS Conferene on Measurement and Modeling of

Computer Systems, Nashville, Tennessee, USA, pp. 261�271. ACM Press, 1994.

23. M. E. Wolf and M. S. Lam. A Data Loality Optimizing Algorithm. In Proeed-

ings of the ACM SIGPLAN Conferene on Programming Language Design and

Implementation (PLDI'91), pp. 30�44, 1991.

