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Abstra
t. Sa
 is a fun
tional array pro
essing language parti
ularly

designed with numeri
al appli
ations in mind. In this �eld the runtime

performan
e of programs 
riti
ally depends on the e�
ient utilization of

the memory hierar
hy. Ca
he 
on�i
ts due to limited set asso
iativity are

one relevant sour
e of ine�
ien
y. This paper des
ribes the realization of

an optimization te
hnique whi
h aims at eliminating 
a
he 
on�i
ts by

adjusting the data layout of arrays to spe
i�
 a

ess patterns and 
a
he


on�gurations. Its e�e
t on 
a
he utilization and runtime performan
e is

demonstrated by investigations on the PDE1 ben
hmark.

1 Introdu
tion

Sa
 is a fun
tional array pro
essing language, whi
h tries to 
ombine generi
,

high-level program spe
i�
ations with e�
ient runtime behaviour [20, 21℄. Par-

ti
ularly in the �eld of numeri
al appli
ations, the e�
ient utilization of the

memory hierar
hy plays a key role in a
hieving good performan
e [14℄. However,

for many numeri
al appli
ation programs it 
an be observed that small variations

in problem sizes may have a signi�
ant impa
t on runtime performan
e. This

is due to systemati
 
a
he 
on�i
ts whi
h may o

ur for unfavourable 
ombina-

tions of array a

ess patterns and array data layout in the presen
e of limited


a
he asso
iativity [2℄.

Assuming the runtime performan
e of a program is poor for one problem

size, but turns out to be signi�
antly better for a marginally larger problem size,

it is a rather straightforward idea to mimi
k the data layout asso
iated with

the larger problem size when a
tually dealing with the smaller one. In doing

so, the originally dense representation of arrays is manipulated by the introdu
-

tion of dummy elements in one or another dimension, so-
alled array padding

[1℄. The array padding optimization implemented in Sa
 basi
ally 
onsists of

three steps. First, Sa
 
ode within with-loops, the predominant Sa
 language


onstru
t for the spe
i�
ation of aggregate array operations [7℄, is thoroughly

analysed for array a

esses, and the arrays involved are asso
iated with a

urate

a

ess patterns. Se
ond, an inferen
e heuristi
 estimates the 
a
he utilization and

identi�es an appropriate amount of padding where ne
essary. Ca
he phenomena



su
h as spatial and temporal reuse are taken into a

ount. Third, the data lay-

out modi�
ation proposed by the inferen
e heuristi
 is realized as a high-level

transformation on intermediate Sa
 
ode.

The remainder of this paper is organized as follows. After a more detailed

problem identi�
ation in Se
tion 2, Se
tions 3, 4, and 5 des
ribe the three steps

of the implementation. Their e�e
t on runtime performan
e is demonstrated by

means of the PDE1 ben
hmark in Se
tion 6. Se
tion 7 sket
hes some related

work while Se
tion 8 
on
ludes.

2 Problem identi�
ation

We have 
hosen the ben
hmark PDE1 as an example in order to investigate

and quantify the potential impa
t of the problem size on runtime performan
e.

PDE1 implements red/bla
k su

essive over-relaxation on 3-dimensional grids.

The ben
hmark itself as well as various implementation opportunities for Sa


are dis
ussed in [8℄. In our experiments we have systemati
ally varied the size

of the 3-dimensional grid from 16

3

until 528

3

in uniform steps of 16 elements in

ea
h dimension. With double pre
ision �oating point numbers, this involves array

sizes between 32KB and 1.1GB. All experiments have been done on a SUN Ultra

Enterprise 4000 system. Fig. 1 shows the average times required to re-
ompute

the value of a single inner grid element. It 
an be observed that these times

signi�
antly vary for the problem sizes investigated. While 155nse
 are su�
ient

to update an inner element of a grid of size 16

3

, it takes up to 866nse
 to 
omplete

the same operation in a grid of size 256

3

. Although exa
tly the same sequen
e

of instru
tions is exe
uted for ea
h inner grid element regardless of the problem

size, the time required to do so varies by a fa
tor of 5.6.

Su
h extreme variations in runtime performan
e 
an only be attributed to

di�erent degrees of 
a
he utilization 
aused by varying data layouts introdu
ed

by di�erent problem sizes. In order to substantiate 
laims like this, the Sa



ompiler and runtime system are equipped with a tailor-made 
a
he simulation

feature. On demand, a tra
e of all array a

esses during program exe
ution is

generated. This allows for a 
omplete simulation of the 
a
he behaviour, yielding

statisti
al information regarding the e�e
tiveness of 
a
he utilization. Ea
h pro-


essor of the SUN Ultra Enterprise 4000 multipro
essor system is equipped with

a 16KB L1 data 
a
he and a 1MB L2 uni�ed 
a
he. Both are dire
t-mapped and

use 
a
he lines of 32 and 64 bytes, respe
tively. Fig. 2 shows the per
entage of

L1 
a
he hits for the various problem sizes investigated as well as the per
entage

of memory requests satis�ed by any of the two 
a
he levels. It a
tually turns out

that the extreme performan
e variations observed in Fig. 1 largely 
oin
ide with

similar variations in the simulated 
a
he hit rate.

The design of 
a
he memories is essentially based on two assumptions: tem-

poral lo
ality and spatial lo
ality [9℄. A program exhibits temporal lo
ality if it

is likely that on
e a memory address is referen
ed in the 
ode, it will be refer-

en
ed again soon. Therefore, data is loaded into the fast 
a
he memory in order

to satisfy subsequent requests without slow main memory intera
tion. Spatial
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Fig. 1. PDE1: average time required to re-
ompute a single grid element.

lo
ality means that on
e a memory address is referen
ed, adja
ent addresses

are likely to be referen
ed soon. For this reason, 
a
hes are internally organized

in so-
alled 
a
he lines, whi
h typi
ally 
omprise between 16 and 128 bytes of


ontiguous memory. All data transfers between main memory and 
a
he involve

entire 
a
he lines rather than single bytes or words of memory. Appli
ation pro-

grams do only bene�t from 
a
hes to the extent to whi
h they exhibit spatial

and temporal lo
ality.

However, spatial and temporal lo
ality are mainly 
hara
teristi
s of a given

program, and hen
e, do not explain the observed performan
e variations. In

fa
t, it is a limitation in 
a
he memory hardware that is responsible for this:

very limited set asso
iativity. In order to e�
iently distinguish 
a
he hits from


a
he misses, any given memory address 
an only be mapped to one of very

few lo
ations in the 
a
he, whi
h are dire
tly derived from the memory address

itself. Today's 
a
hes usually provide set asso
iativities between one and four.

As a 
onsequen
e, data may be �ushed from the 
a
he before potential reuse is

a
tually exploited, although the 
a
he is su�
iently large to allow the reuse in

prin
iple. These so-
alled 
on�i
t misses may seriously limit 
a
he utilization,

as 
an be seen in Figs. 1 and 2. Sin
e 
on
rete memory addresses de
ide over


a
he 
on�i
ts, they are extremely sensitive against memory layout variations,

in parti
ular, whenever regularly stru
tured data is a

essed in regular patterns,

whi
h is typi
al for numeri
al 
odes involving large arrays.
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Fig. 2. PDE1: simulated 
a
he performan
e.

Various di�erent 
a
he e�e
ts have been identi�ed [22℄, e.g., a spatial reuse


on�i
t o

urs whenever not all array elements referen
ed in a single iteration of

an inner loop 
an simultaneously be held in the 
a
he. The number of di�erent

array elements whi
h are mapped to the same 
a
he set ex
eeds the 
a
he's set

asso
iativity and, hen
e, 
a
he lines are �ushed from the 
a
he before potential

reuse 
an be realized in the following iteration. A temporal reuse 
on�i
t o

urs

when potential reuse between two referen
es to the same array element 
annot

be exploited be
ause another array referen
e interferes and 
auses the �rst one

to be �ushed from the 
a
he before the potential reuse a
tually o

urs. Con�i
ts

are 
lassi�ed as either arising from referen
es to the same array, so-
alled self-

interferen
e 
on�i
ts, or to di�erent arrays, so-
alled 
ross-interferen
e 
on�i
ts.

Thorough elimination of 
a
he 
on�i
ts is 
ru
ial for keeping the runtime

performan
e 
onsistent over a range of problem sizes [13℄. This 
an be a
hieved

by a well-aimed manipulation of the data layout of arrays. Self-interferen
e 
on-

�i
ts 
an be eliminated by modifying the internal representation of arrays, 
ross-

interferen
e 
on�i
ts by adjusting array base addresses. The latter approa
h is

very di�
ult to realize in a language like Sa
, whi
h allo
ates and de-allo
ates

all data stru
tures dynami
ally. Therefore, we 
on
entrate on self-interferen
e


on�i
ts in the following. One way to manipulate the internal representation of

arrays is array padding, a well-known optimization te
hnique that adds dummy

elements to an array in one or another inner dimension [1℄. For example, an array

whose original shape is [100,100℄ may be transformed into an array of shape



[100,102℄ by adding two 
olumns of dummy elements. Padding an array alters

the memory addresses of di�erent elements in di�erent ways and, hen
e, allows

to indire
tly manipulate their asso
iated relative 
a
he lo
ations.

However, applying array padding manually has some serious drawba
ks. It

requires both a lot of e�ort and expert knowledge by programmers, who in this


ase are solely responsible to identify where whi
h amount of padding might

have a positive impa
t on runtime performan
e. Moreover, expli
it array padding

in
reases program 
omplexity and makes programs less readable and more error-

prone. Last but not least, array padding renders program spe
i�
ations ma
hine-

dependent be
ause ea
h 
ombination of problem size, a

ess pattern, and 
a
he


on�guration typi
ally requires a di�erent amount of padding.

In 
ontrast, array padding as a 
ompiler optimization may be well-suited

to a
hieve more 
onsistent performan
e over a wide range of problem sizes and


a
he 
on�gurations. However, things are not as simple in low-level languages

su
h as C or Fortran. Sin
e these languages' semanti
s guarantee a 
ertain

(unpadded) data layout, thorough program analysis is required in order to prove

that padding does not alter the meaning of a program. Here, the design of

high-level languages like Sa
 pays o�. Sin
e they 
ompletely abstra
t from any


on
rete data layout, language implementations are free to exploit the bene�ts

of varying data layouts as an additional optimization te
hnique.

3 Array a

ess analysis

A

urate analysis of array a

ess patterns is one of the prerequisites for reasoning

about 
a
he 
on�i
ts. Severe 
a
he 
on�i
ts typi
ally arise from regular array

referen
es within loops, i.e., two or more referen
es systemati
ally 
on�i
t with

ea
h other in every iteration of the loop. Therefore, the analysis des
ribed in

this se
tion fo
usses on regular array referen
es in with-loops. The with-loop

is a Sa
-spe
i�
 language 
onstru
t for the spe
i�
ation of aggregate multi-

dimensional array operations; a thorough des
ription may, for instan
e, be found

in [7℄. An array referen
e is 
onsidered being regular if and only if it 
an be

written in the form

val = Array [ s � i+ d ℄ ;

where s denotes a 
onstant stride ve
tor, d a 
onstant o�set ve
tor, and i the

with-loop's index variable. Note that * here denotes the elementwise produ
t of

two ve
tors. In other words, lo
ations of regular array referen
es are de�ned by

dimension-wise a�ne fun
tions of the with-loop's index variable. Fig. 3 shows

an example with-loop featuring a few di�erent regular array referen
es. All

array referen
es that 
annot be 
onverted to this a�ne pattern, are 
onsidered

irregular. They are likely not to 
on�i
t in a systemati
 way with other referen
es,

irregular or regular. Therefore, they are just ignored in the sequel.

All array referen
es in the example shown in Fig. 3 are regular with respe
t

to the above de�nition. This 
an be inferred during a rather simple bottom-up



int[100,100℄ A;

int[200,150℄ B;

int[120,120℄ C;

...

A = with ([1,1℄ <= iv < [100,100℄)

{

a = B[ iv - 1℄;

b = C[ iv℄;


 = B[ iv + 2℄;

d = C[ [42, 42℄℄;

e = B[ [2, 1℄ * iv℄;

tmp = iv + [1, 1℄;

f = B[ [2, 1℄ * tmp℄;

val = a + b + 
 + d + e + f;

}

genarray([100,100℄, val);

Fig. 3. Examples of regular array referen
es in a with-loop.

traversal of the with-loop body. Compa
t array a

ess information is a

umu-

lated, as outlined in Fig. 4. The array a

ess pattern AP is a set of triples;

ea
h triple represents exa
tly one regular array referen
e found in the with-

loop body. The a

ess triples themselves 
onsist of the name of the referen
ed

array, the stride ve
tor s and the o�set ve
tor d.

As already pointed out, the te
hnique presented in this paper fo
usses on self-

interferen
e 
a
he 
on�i
ts, i.e. 
on�i
ts between referen
es to the same array.

Referen
es to di�erent arrays, although o

urring in a single with-loop, may be

handled separately. Furthermore, only array referen
es whi
h are 
hara
terized

by identi
al stride ve
tors smay a
tually interfere with ea
h other in a systemati


and, hen
e, expensive manner. These 
onsiderations lead to the division of an

a

ess pattern into disjoint so-
alled 
on�i
t groups. Ea
h 
on�i
t group then


ontains exa
tly one subset of array referen
es whi
h are likely to systemati
ally

interfere with ea
h other.

The example a

ess pattern AP in Fig. 4 results in the introdu
tion of four


on�i
t groups, as outlined in Fig. 5. Ea
h 
on�i
t group is represented by a pair


onsisting of the type of the referen
ed array and a sequen
e of o�set ve
tors. The

stride ve
tors are no longer needed. Whether or not two referen
es of the same

AP = f < B, [ 1, 1℄, [-1,-1℄ > ,

< C, [ 1, 1℄, [ 0, 0℄ > ,

< B, [ 1, 1℄, [ 2, 2℄ > ,

< C, [ 0, 0℄, [42,42℄ > ,

< B, [ 2, 1℄, [ 0, 0℄ > ,

< B, [ 2, 1℄, [ 2, 1℄ > g

Fig. 4. Array a

ess pattern derived from example with-loop in Fig. 3.



CG

1

= < int[200,150℄ , < [-1,-1℄, [ 2, 2℄ > >

CG

2

= < int[120,120℄ , < [ 0, 0℄ > >

CG

3

= < int[120,120℄ , < [42,42℄ > >

CG

4

= < int[200,150℄ , < [ 0, 0℄, [ 2, 1℄ > >

Fig. 5. Con�i
t groups derived from a

ess pattern AP in Fig. 4.


on�i
t group 
ause a 
a
he 
on�i
t solely depends on their relative distan
e in

memory, whi
h is invariant against their strides. Last but not least, no 
a
he


on�i
ts may o

ur in 
on�i
t groups 
onsisting of a single array referen
e only.

As a 
onsequen
e, all su
h 
on�i
t groups, e.g. CG

2

and CG

3

in Fig. 5, are simply

ignored. The number of 
on�i
t groups 
an further be redu
ed by the elimination

of multiple o

urren
es of identi
al ones and of those that are subsets of others.

4 Padding inferen
e heuristi


This se
tion presents the 
entral padding inferen
e algorithm. It asso
iates ea
h

array type o

urring in a Sa
 program or module with a padding re
ommenda-

tion appropriate for avoiding spatial and temporal self-interferen
e 
a
he 
on-

�i
ts. The basi
 idea is to pad all arrays of a given type (
onsisting of base type

and shape) in a uniform way if at all. This helps to avoid 
ostly transforma-

tions between unpadded and padded or even di�erently padded representations

of arrays whi
h originally had identi
al types and, hen
e, data layouts. Su
h

transformations are limited to module boundaries, providing programmers with

some means of 
ontrol over array padding.

In addition to the 
on�i
t groups impli
itly derived from Sa
 
ode, as de-

s
ribed in Se
tion 3, the inferen
e s
heme presented here is based on the spe
i�-


ation of a 
a
he 
on�guration, whi
h must expli
itly be stated at 
ompile time.

It 
onsists of the 
a
he size and the 
a
he line size, both in bytes, as well as the


a
he's set asso
iativity. Furthermore, an upper limit must be set on memory


onsumption overhead 
aused by array padding.

When fo
ussing on a single array type, whi
h 
onsists of a s
alar base type

and an original shape SHP , we may easily 
ompute the 
a
he size CS and the


a
he line size CLS in array elements. These �gures, rather than the external

spe
i�
ations in bytes, are used by the inferen
e s
heme. Moreover, we 
om-

pute the number of 
a
he sets, NSET := CS=(CLS � CA) where CA denotes

the 
a
he's set asso
iativity. With this internal 
a
he spe
i�
ation at hand, all


on�i
t groups asso
iated with the array type under 
onsideration are then su
-


essively analysed with respe
t to potential 
a
he 
on�i
ts. Padding re
ommen-

dations are a

umulated in a ve
tor PAD, whi
h is initially set to 0, i.e., we

start out with re
ommending no padding at all.

First, spatial reuse 
on�i
ts are addressed. Let us 
onsider a 
on�i
t group

CG representing array referen
es R

1

; : : : ; R

n

. For ea
h referen
e R

i

, the o�set



ve
tor D

i

is 
onverted into a s
alar o�set with respe
t to the array shape SHP

extended by the padding ve
tor PAD re
ommended so far:

8 i 2 f1; : : : ; ng : OFFSET

i

:= ADDR( D

i

; SHP + PAD) ;

where ADDR(ve
; shp) is a fun
tion that 
omputes the o�set of ve
 in the row-

major unrolling of an array with shape shp, i.e.

ADDR(ve
; shp) :=

jshpj

X

k=0

(ve


k

�

jshpj

Y

m=k+1

shp

m

) :

For reasons of simpli
ity it is desirable to avoid negative o�sets. Sin
e our interest

is also limited to relative distan
es of 
a
he lo
ations, 
omputed o�sets 
an easily

be shifted by a 
onstant value. The easiest way to avoid negative o�sets is to

generally arrange the elements of a 
on�i
t group in as
ending lexi
ographi
al

order with respe
t to their o�set ve
tors, and to subtra
t OFFSET

0

from ea
h

s
alar o�set, i.e.

8 i 2 f1; : : : ; ng : OFFSET

i

:= OFFSET

i

�OFFSET

0

:

With the shifted o�sets at hand, we now determine the respe
tive 
a
he sets

8 i 2 f1; : : : ; ng : SET

i

:= (OFFSET

i

=CLS) mod NSET :

For ea
h referen
e R

i

, we 
ompute the number NPSC

i

of potential spatial reuse


on�i
ts with other referen
es. Two referen
esR

i

and R

j

potentially 
on�i
t with

ea
h other if and only if

((jSET

i

� SET

j

j < 2 _ (jSET

i

� SET

j

j = NSET � 1))

^ (jOFFSET

i

�OFFSET

j

j > 2 � CLS) ;

i.e., they referen
e non-adja
ent memory addresses whi
h are mapped to identi
al

or dire
tly adja
ent 
a
he sets. The latter serves as an additional bu�er that

allows to 
ompletely abstra
t from relative pla
ements of referen
es within 
a
he

lines. In a dire
t-mapped 
a
he (CA = 1), any potential 
on�i
t a
tually is a real


on�i
t. However, in general, a 
on�i
t o

urs whenever the number of potential


on�i
ts equals or ex
eeds the 
a
he's set asso
iativity CA, i.e., the number of

spatial reuse 
on�i
ts asso
iated with ea
h array referen
e is de�ned as

8 i 2 f1; : : : ; ng : NSC

i

:= max(0; NPSC

i

� CA+ 1) ;

the total number of spatial reuse 
on�i
ts within the 
on�i
t group is de�ned as

NSC :=

n

X

i=0

NSC

i

:

If there are no 
on�i
ts, i.e., NSC = 0, we are done and PAD is the re
-

ommended padding for this 
on�i
t group with respe
t to spatial reuse. If the

number of 
on�i
ts is redu
ed relative to the best padding found so far, the




urrent padding and the number of spatial reuse 
on�i
ts asso
iated with it are

stored as new 
urrently best solution. As long as there are still 
on�i
ts, we try

to solve them with additional padding, i.e., the padding ve
tor PAD is to be up-

dated. For this purpose, we �rst identify dimensions that are eligible for padding.

Assigning the index 0 to the outermost dimension and 
ounting upwards, the

minimum padding dimension is determined as MINPADDIM := d+ 1, where

d is the outermost dimension with D

i

[d℄ 6= D

j

[d℄ for any pair of 
on�i
ting ar-

ray referen
es R

i

and R

j

. The maximum padding dimension is simply 
hosen

asMAXPADDIM := jSHP j � 1. Among all eligible dimensions the outermost

one is 
hosen, where (SHP + PAD)[d℄ is maximal. This 
hoi
e of PADDIM

guarantees that padding overhead grows in minimal steps. Padding is preferably

applied to outer dimensions in order to redu
e the negative impa
t of the loop

overhead introdu
ed by it.

The padding ve
tor PAD is in
remented by 1 in dimension PADDIM and,

assuming this additional padding does not ex
eed the given limit on mem-

ory 
onsumption overhead, the 
a
he behaviour is re-evaluated with this new

padding ve
tor as des
ribed so far. Otherwise, SHP is reset to 0 in dimen-

sion MINPADDIM and, provided that MINPADDIM < MAXPADDIM ,

padding in the next dimension is in
reased by 1. The entire pro
ess is repeated

until either all spatial reuse 
on�i
ts are eliminated or all padding ve
tors eligible

with respe
t to the memory 
onsumption overhead limit have been investigated.

In the latter 
ase, the best padding found during the pro
ess is stored as re
om-

mended padding.

With spatial reuse 
on�i
ts eliminated as far as possible, we may now fo
us

on temporal reuse 
on�i
ts. As a �rst step, we determine for ea
h referen
e R

i

if there is a 
han
e for temporal reuse from referen
e R

i+1

in the presen
e of

simple 
a
he 
apa
ity 
onstraints. This is the 
ase if and only if

OFFSET

i+1

�OFFSET

i

< (NSET � 2) � CLS :

Note here that all referen
es are sorted with in
reasing o�sets. For ea
h pair

of adja
ent referen
es R

i

and R

i+1

whi
h may bene�t from temporal reuse, we

then 
ompute the number of potential temporal reuse 
on�i
ts NPTC. An array

referen
e R

j

, j 6= i ^ j 6= i+ 1 represents a potential temporal reuse 
on�i
t if

it is mapped to a 
a
he set �in between� those asso
iated with R

i

and R

i+1

, i.e.

(SET

i

� SET

j

) ^ (SET

j

� SET

i+1

) () SET

i

� SET

i+1

;

(SET

i

� SET

j

) _ (SET

j

� SET

i+1

) () SET

i

> SET

i+1

:

In analogy to spatial reuse 
on�i
ts, the term �potential� is to be understood with

respe
t to set asso
iativity, i.e., the number of a
tual temporal reuse 
on�i
ts

NTC is de�ned as

8 i 2 f1; : : : ; ng : NTC

i

:= max(0; NPTC

i

� CA+ 1)

for ea
h referen
e and in total as

NTC :=

n

X

i=0

NTC

i

:



Whenever the 
urrent padding fails to eliminate all temporal reuse 
on�i
ts,

a new padding ve
tor 
andidate is determined in a similar way as for resolving

spatial reuse 
on�i
ts. However, eligible padding dimensions are restri
ted in

a slightly di�erent way. The minimum eligible padding dimension is de�ned

as MINPADDIM := d+ 1, where d denotes the outermost dimension with

D

i

[d℄ 6= D

j

[d℄ 6= D

i+1

[d℄ for any triple of 
on�i
ting array referen
es R

i

, R

j

, and

R

i+1

. The maximum eligible padding dimension MAXPADDIM is given as

the outermost dimension d where D

i

[d℄ 6= D

i+1

[d℄ holds for the same referen
es

R

i

and R

i+1

as above. The basi
 idea behind these 
hoi
es for MINPADDIM

andMAXPADDIM is to sele
t a padding dimension whi
h, on the one hand, is

su�
iently large so that the relative 
a
he lo
ations of adja
ent referen
es with

potential temporal reuse remain untou
hed, but, on the other hand, is su�
iently

small, so that padding a
tually alters the relative 
a
he lo
ations between these

adja
ent referen
es and the 
on�i
ting referen
e in between.

In 
ontrast to the 
hoi
e of a padding dimension for the elimination of spatial

reuse 
on�i
ts, an eligible padding dimension to avoid temporal reuse 
on�i
ts

not ne
essarily exists. In this 
ase, array padding does not resolve this 
on�i
t,

and the inferen
e heuristi
 stops at this point. Otherwise, a new padding ve
tor


andidate is 
hosen exa
tly as in the 
ontext of solving spatial reuse 
on�i
ts and

temporal reuse 
on�i
ts are re-evaluated iteratively until either all are eliminated

or the padding overhead 
onstraint is exhausted.

An alternative implementation di�erent from the above inferen
e heuristi
 is

to evaluate all potential padding ve
tors eligible with respe
t to the given 
on-

straint on additional memory 
onsumption. For ea
h su
h padding ve
tor, the

number of spatial and temporal reuse 
on�i
ts as well as the asso
iated over-

head are 
omputed. Afterwards, the padding ve
tor whi
h 
auses the minimal

number of 
on�i
ts is sele
ted. If there are several equally suitable padding ve
-

tors, the one whi
h 
auses the least overhead is 
hosen. If there are still multiple


andidates, the one whi
h in
urs the least padding in inner dimensions is taken

eventually. While this alternative implementation is guaranteed to �nd the most

suitable padding with respe
t to the number of 
a
he 
on�i
ts, memory 
on-

sumption overhead, and loop overhead, it generally requires 
onsiderably more


omputational e�ort. However, sin
e this e�ort is made at 
ompile time rather

than at runtime, it may be tolerable in many situations.

5 Padding transformation

The padding inferen
e algorithm des
ribed in the previous se
tion results in

the de�nition of a fun
tion PadT ype, whi
h for ea
h array type found in the

program or module under 
onsideration yields the re
ommended padded type.

Types for whi
h a manipulation of the internal data layout is not re
ommended

are simply returned by PadT ype as they are. This se
tion fo
usses on the a
tual

realization of the padding re
ommendation, whi
h in the sequel will be formalized

by means of a transformation s
heme APT . It de�nes a high-level sour
e-to-

sour
e transformation on simpli�ed and type-annotated intermediate Sa
 
ode.



APT [[ rettypes fun ( args ) { varde
s instrs } Rest ℄℄

=) APT [[ rettypes ℄℄ fun ( APT [[ args ℄℄ ) {

RepArgs[[ args ℄℄ APT [[ varde
s ℄℄

APT [[ instrs ℄℄

} APT [[ Rest ℄℄

APT [[ type , Rest ℄℄

=) PadT ype[[ type ℄℄ , APT [[ Rest ℄℄

APT [[ type argname , Rest ℄℄

=) PadT ype[[ type ℄℄ argname , APT [[ Rest ℄℄

RepArgs[[ type argname , Rest ℄℄

=) type _argname ; RepArgs[[ Rest ℄℄ | T oBePadded[[ type ℄℄

=) RepArgs[[ Rest ℄℄ | otherwise

APT [[ type varname ; Rest ℄℄

=) PadT ype[[ type ℄℄ varname ;

type _varname ; APT [[ Rest ℄℄

| T oBePadded[[ type ℄℄

=) type varname ; APT [[ Rest ℄℄ | otherwise

Fig. 6. Transformation s
heme APT on fun
tion de�nitions.

The former means that nested expressions are lifted to separate assignments to

temporary variables; the latter provides a fun
tion T ype, whi
h asso
iates ea
h

variable with a Sa
 data type. The transformation s
heme APT is based on two

additional auxiliary fun
tions: Shape[[ type ℄℄ yields the shape part of an array

data type type as a ve
tor, and T oBePadded[[ type ℄℄ de
ides whether or not a

padding is re
ommended for a given type, i.e.

T oBePadded[[ type ℄℄ := PadT ype[[ type ℄℄ 6= type .

Fig. 6 shows the e�e
t of the 
ompilation s
heme APT on fun
tion de�ni-

tions. The formal parameters of a fun
tion are traversed, and whenever padding

is re
ommended for a return or argument type, the original type spe
i�
ation is

repla
ed by the respe
tive padded type. A similar transformation is applied to

the lo
al variable de
larations. As already pointed out in Se
tion 4, the trans-

formation of a padded array into its unpadded representation is ne
essary in


ertain situations, e.g. at module boundaries. Sin
e we do not have any a priori

knowledge as to whether or not su
h a transformation will a
tually be required,

additional variable de
larations are introdu
ed for ea
h padded original lo
al

variable.

1

The same is done for padded formal parameters by means of the

auxiliary 
ompilation s
heme RepArgs.

The e�e
t of APT on appli
ations of user-de�ned and of built-in fun
tions

is de�ned in Fig. 7. Whereas nothing is to be done in the 
ase of lo
ally de�ned

fun
tions, the appli
ation of an imported fun
tion may require a 
hange in the

1

Super�uous variable de
larations are eliminated by subsequent optimization steps.



APT [[ vars = fun ( args ); Rest ℄℄

=) vars = fun ( args ); APT [[ Rest ℄℄

APT [[ vars = module:fun ( args ); Rest ℄℄

=) UnPad[[ args ℄℄

Rename[[ vars ℄℄ = module:fun ( Rename[[ args ℄℄ );

Pad[[ vars ℄℄ APT [[ Rest ℄℄

APT [[ var = dim( array ); Rest ℄℄

=) var = dim( array ); APT [[ Rest ℄℄

APT [[ var = shape( array ); Rest ℄℄

=) var = Shape[[ T ype[[ array ℄℄ ℄℄ ;

APT [[ Rest ℄℄

| T oBePadded[[ T ype[[ array ℄℄ ℄℄

=) var = shape( array ); APT [[ Rest ℄℄ | otherwise

APT [[ var = psi( array , ve
 ); Rest ℄℄

=) var = psi( array , ve
 ); APT [[ Rest ℄℄

APT [[ var = modarray( array , ve
 , val ); Rest ℄℄

=) var = modarray( array , ve
 , val ); APT [[ Rest ℄℄

APT [[ var = reshape( ve
 , array ); Rest ℄℄

=) UnPad[[ array ℄℄

Rename[[ var ℄℄ = reshape( ve
 , Rename[[ array ℄℄ );

Pad[[ var ℄℄ APT [[ Rest ℄℄

Fig. 7. Transformation s
heme APT on fun
tion appli
ations.

representations of argument as well as of result arrays. This is des
ribed by the

three auxiliary 
ompilation s
hemesRename, Pad, and UnPad de�ned in Fig. 8.

Sa
 supports only a very limited number of built-in operations on arrays. For

instan
e, dim and shape retrieve an array's dimensionality and shape, respe
-

tively. Sin
e padding has no e�e
t on dimensionality, any appli
ation of dim may

simply remain as it is. In 
ontrast, an appli
ation of shape must be repla
ed by

the shape 
orresponding to the original type of the argument array. The fun
tion

psi sele
ts the element of array spe
i�ed by the index ve
tor ve
. The o�set in

memory spe
i�ed by ve
 is 
omputed using the fun
tion ADDR(ve
; shp) de-

�ned in Se
tion 4. However, this fun
tion also 
omputes the 
orre
t o�set of

an array element in a padded array representation when providing the padded

shape as se
ond argument. Hen
e, no 
ode transformation is required for the se-

le
tion of elements regardless of whether or not an array is padded. The built-in

fun
tion modarray yields an array that is identi
al to its �rst argument ex
ept

for the element denoted by the se
ond argument, whi
h is repla
ed by the third

argument. Sin
e T ype[[ var ℄℄ = T ype[[ array ℄℄ and hen
e

PadT ype[[ T ype[[ var ℄℄ ℄℄ = PadT ype[[ T ype[[ array ℄℄ ℄℄ ,



modarray 
an be applied to padded arrays without additional measures. The last

remaining built-in fun
tion is reshape, whi
h 
reates an array that 
onsists of

the same elements as the argument array, but is asso
iated with the new shape

de�ned by the argument ve
. Appli
ations of reshape are restri
ted to argu-

ments where the given array's original shape and the new shape are 
ompatible,

i.e., they refer to arrays with the same number of elements. However, as soon as

one of the two shapes is padded, this restri
tion is violated. Even if both shapes

are padded, it is rather unlikely that the padded shapes 
omply with the 
om-

patibility restri
tion. As a way out, both the argument array as well as the result

array have to be 
onverted between padded and unpadded representations.

The transformation of an array from a padded into an unpadded representa-

tion or vi
e versa is subje
t to the three auxiliary 
ompilation s
hemes Rename,

Pad, and UnPad de�ned in Fig. 8. Whenever a padded array is en
ountered

where an unpadded representation is required, it is transformed by means of a

prede�ned generi
 fun
tion UnPad. In a similar way, arrays whi
h are 
reated in

an unpadded representation for some reason, but whose types are re
ommended

to be padded a

ording to PadT ype, are transformed into the 
orresponding

padded representation using the prede�ned generi
 fun
tion Pad.

Aggregate array operations are de�ned in one way or another by means of

with-loops in Sa
 itself. The e�e
t of the 
ompilation s
heme APT on with-

loops is des
ribed in Fig. 9. Apart from re
ursively applying APT to the in-

stru
tions within the body of a with-loop, only a single 
ode transformation is

a
tually required. The expression that de�nes the shape of the result array in a

genarray-With-loop is repla
ed by the 
orresponding padded shape.

Assuming a generator depends in one way or another on the shape of a

padded array, all appli
ations of the built-in fun
tion shape would have been

Rename[[ var , Rest ℄℄

=) _var , Rename[[ Rest ℄℄ | T oBePadded[[ T ype[[ var ℄℄ ℄℄

=) var , Rename[[ Rest ℄℄ | otherwise

Rename[[ 
onst , Rest ℄℄

=) 
onst , Rename[[ Rest ℄℄

Pad[[ var , Rest ℄℄

=) var = Pad( _var ); Pad[[ Rest ℄℄ | T oBePadded[[ T ype[[ var ℄℄ ℄℄

=) Pad[[ Rest ℄℄ | otherwise

UnPad[[ var , Rest ℄℄

=) _var = UnPad( var ); Pad[[ Rest ℄℄ | T oBePadded[[ T ype[[ var ℄℄ ℄℄

=) Pad[[ Rest ℄℄ | otherwise

UnPad[[ 
onst , Rest ℄℄

=) Pad[[ Rest ℄℄

Fig. 8. Auxiliary s
hemes Rename, Pad, and UnPad.



APT [[ var = with ( generator ) { instrs } genarray( shp , val ); Rest ℄℄

=) var = with ( generator ) { APT [[ instrs ℄℄ }

genarray( Shape[[ T ype[[ var ℄℄ ℄℄ , val ); APT [[ Rest ℄℄

APT [[ var = with ( generator ) { instrs } modarray( old , iv , val ); Rest ℄℄

=) var = with ( generator ) { APT [[ instrs ℄℄ }

modarray( old , iv , val ); APT [[ Rest ℄℄

APT [[ var = with ( generator ) { instrs } fold( fun , neutral , val ); Rest ℄℄

=) var = with ( generator ) { APT [[ instrs ℄℄ }

fold( fun , neutral , val ); APT [[ Rest ℄℄

Fig. 9. Transformation s
heme APT on with-loops.

abstra
ted out of the generator itself. These appli
ations are then repla
ed by

the original shapes of the arrays they refer to (see Fig. 7). As a 
onsequen
e,

array padding does not alter the generators of with-loops in any way. Should

padding apply to the result array of a genarray-With-loop or modarray-With-

loop, the additional dummy elements are automati
ally initialized a

ording to

the default rule of the with-loop without any additional measures required.

While the padding transformation of with-loops, as outlined in Fig. 9, is

simple and elegant on a 
on
eptual level, it unfortunately introdu
es super�uous

and avoidable runtime overhead. Initializing dummy array elements a

ording

to the with-loop's default rule leads to additional memory a

esses that, by

de�nition, do not 
ontribute to the program result. This observation gives way

to an additional optimization whi
h distinguishes between dummy and regular

array elements in the intermediate representation of with-loops. The internal

format of multi-generator with-loops, as des
ribed in [7℄, provides a suitable

framework for this purpose.

6 Performan
e evaluation

Fig. 10 shows the e�e
t of applying the array padding optimization outlined in

Se
tions 3, 4, and 5 to the PDE1 ben
hmark. Given the same problem sizes as in

the initial investigations des
ribed in Se
tion 2 and the upper limit on memory


onsumption overhead set to 10%, the padding inferen
e heuristi
 de
ides to

pad 25 out of the total of 33 problem sizes under 
onsideration. In 16 
ases,

it re
ommends a padding of [0,1,0℄ (32

3

, 96

3

, 160

3

, 224

3

, 272

3

, 288

3

, 304

3

,

336

3

, 368

3

, 400

3

, 416

3

, 432

3

, 464

3

, 480

3

, 496

3

, 528

3

) and in 7 
ases a padding

of [0,2,0℄ (64

3

, 128

3

, 192

3

, 256

3

, 320

3

, 384

3

, 448

3

). For the problem size 352

3

a padding of [0,22,0℄ and for 512

3

a padding of [0,5,1℄ is 
hosen. Fig. 10

shows the e�e
t of array padding on the simulated 
a
he performan
e of the

PDE1 ben
hmark. In fa
t, array padding su

eeds in keeping the L1 
a
he hit

rate on a 
onsistently high level between 84% and 88% a
ross all problem sizes.

It also manages to avoid the sharp drops in the overall 
a
he hit rate, whi
h 
an

be observed for the problem sizes 256

3

and 512

3

in the original �gures.
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Fig. 10. PDE1: simulated 
a
he performan
e with and without array padding.

Fig. 11 shows the e�e
t of array padding on the runtime performan
e of the

PDE1 ben
hmark. First of all, it 
an be observed that for none of the problem

sizes the padding heuristi
 yields a performan
e degradation. In 
ontrast, im-

provements 
an be observed whenever the padding transformation a
tually is

applied, some of them being quite 
onsiderable. In parti
ular, for the problem

sizes 64

3

, 256

3

, and 512

3

the average time needed to re-
ompute a single grid

element 
an be redu
ed by 53%, 64%, and 63%, respe
tively. Also, the varian
e

in runtimes is signi�
antly de
reased. With array padding 
onsistent runtimes

are a
hieved over the whole range of problem sizes investigated.

7 Related work

In most fun
tional programming languages, lists rather than arrays are the pre-

dominantly used data stru
ture. The most prominent ex
eption is the language

Sisal. However, Sisal represents arrays as ve
tors of ve
tors rather than as 
on-

tiguous data, and this storage format renders optimizations like array padding

obsolete. So, we are not aware of any similar optimization te
hnique in the area

of fun
tional languages.

In high-performan
e 
omputing based on imperative languages, still predom-

inantly Fortran, data lo
ality has long been identi�ed as an important issue

[23℄. Mu
h resear
h has been fo
ussed on program transformations that reorder

the sequen
e in whi
h single iterations within a nesting of loops are a
tually
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Fig. 11. PDE1: average time required to re-
ompute a single grid element.

exe
uted [5, 19, 12℄. Loop transformations su
h as permutation, reversal, or in-

ter
hange, are used to adjust the iteration order to a given array data layout

in order to a
hieve unit stride memory a

esses in inner loops and, hen
e, to

exploit spatial lo
ality. Loop tiling, also 
alled loop blo
king, is a 
ombination

of loop skewing and subsequent loop permutation. It seeks to improve temporal

lo
ality in loop nestings by redu
ing the iteration distan
e between subsequent

a

esses to the same array element [10, 4, 18℄. Moreover, loop fusion allows to

exploit lo
ality of referen
e a
ross multiple adja
ent loop nestings [11℄.

Often, superior 
a
he performan
e 
an be a
hieved if both the iteration order

as well as the memory layout are subje
t to 
ompiler transformations. Examples

are the 
ombination of array transposition with loop permutation [3℄ or that of

array padding with tiling in order to in
rease tile sizes and, thus, to redu
e the

additional loop overhead in�i
ted by tiled 
ode [15℄. Whereas these approa
hes

mostly fo
us on 
apa
ity misses, 
on�i
t misses due to limited set asso
iativity

have been identi�ed as another important sour
e of performan
e degradation

[22℄. Their quanti�
ation has been a
hieved by so-
alled 
a
he miss equations,

i.e. linear Diophantine equations, that spe
ify the 
a
he line to whi
h an array

referen
e in a loop will be mapped [6℄. Due to the 
omplexity and expense of su
h

a

urate investigations, simpler heuristi
s that address both self-interferen
e as

well as 
ross-interferen
e 
a
he 
on�i
ts in Fortran loop nestings, have been

proposed re
ently [16, 17℄.



8 Con
lusion

This paper presents an algorithm that su

essfully eliminates spatial and tem-

poral reuse 
on�i
ts in Sa
 programs by impli
itly adjusting array data layouts

to a

ess patterns and 
a
he 
on�gurations. Ca
he simulation as well as runtime

performan
e investigations on the PDE1 ben
hmark show that this optimiza-

tion te
hnique allows for substantial redu
tions in program runtimes for 
ertain

problem sizes and, moreover, a
hieves a de
idedly more 
onsistent runtime per-

forman
e over a wide range of problem sizes.
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