
A Compilation Scheme for a Hierarchy of
Array Types

Dietmar Kreye

University of Kiel
Department of Computer Science and Applied Mathematics

D-24098 Kiel, Germany
E-mail: dkr@informatik.uni-kiel.de

Abstract. In order to achieve a high level of abstraction, array-oriented
languages provide language constructs for defining array operations in a
shape-invariant way. However, when trying to compile such generic ar-
ray operations into efficiently executable code, static knowledge of exact
shapes is essential. Therefore, modern compilers try to infer the shapes
of all arrays used in a program.
Unfortunately, shape inference is generally undecidable. Therefore, most
compilers either rule out all programs for which shape inference fails, or
they perform no shape inference at all. In the first case the expressive
power of the language is restricted, in the latter the generated code has
a weak runtime performance.
This paper presents a new compilation scheme for the language Sac

which combines these two approaches in order to avoid their individual
shortcomings. A preliminary performance evaluation demonstrates the
benefits of this compilation scheme.

1 Introduction

One of the key features of array-oriented languages such as Apl [11], J [6],
Nial [13], FISh [12], Zpl [15], or Sac [19] is that they support so-called shape-
invariant programming, i.e. all operations/functions can be defined in a way that
allows arguments to have arbitrary extents in an arbitrary number of dimensions.
This high level of abstraction gains the programmer a lot of benefits, among
these are simplicity of program development, good readability and re-usability
of programs.

However, the large semantical gap between such programming constructs and
a given target architecture makes it difficult to develop a compiler that generates
code with a high runtime performance. Sophisticated optimization techniques
are needed that transform the generic program specifications into more specific
ones, which in turn can be compiled into more efficiently executable code. A
common method to achieve this is the so-called static shape inference, which
tries to infer the shapes of all arrays used in a program as precisely as possible.
Several case studies in the context of Sac [18,10] and Zpl [7,16] have shown that
reasonably complex array operations can be compiled into code whose runtimes

are competitive with those obtained from rather low-level specifications in other
languages such as Sisal or Fortran.

Unfortunately, inferring shapes statically is impossible in certain situations,
e.g. if external module functions are compiled separately or input data have
unknown shapes. Even worse, whenever a recursive function is applied to an
argument whose shape is changing with each recursive call, shape inference may
be undecidable.

There are basically two ways to handle this problem. The first approach, used
for instance in the languages FISh, Zpl, and Sac, is to rule out all programs
for which static shape inference fails. As a consequence, implementing certain
algorithms in these languages requires some awkward code design or is even
impossible. The second approach, which gives the language the full expressive
power, is to refrain from static shape inference and to generate code for generic
programs instead. Past experiences with such languages, for instance Apl, J, or
Nial, have shown that this results in a rather weak runtime performance of the
generated code.

The aim of this paper is to present a compilation scheme that combines
the advantages of both approaches: generation of shape-specific code whenever
exact shapes can be statically inferred and generation of more generic code,
otherwise. The basic idea is to make use of a hierarchy of array types with
different levels of shape information — the most specific array types specify an
exact shape, whereas more general types prescribe an exact dimensionality only
or contain no shape information at all — and to translate the typed programs
into a corresponding hierarchy of array representations.

This compilation scheme has been developed in the context of the language
Sac and has been implemented as an extension to the current Sac compiler.
Therefore, Section 2 gives a brief introduction to the array concept of Sac and
specifies a short Sac program that is used as a running example throughout the
paper. Section 3 describes the compilation scheme for a hierarchy of array types,
Section 4 presents a preliminary performance figure, and Section 5 sketches some
related work. Finally, Section 6 concludes the paper and discusses future work.

2 Arrays in Sac

Sac [17] is a strict functional language based on C-syntax which primarily has
been designed for numerical applications. This section gives a brief introduction
to the array concept of Sac.

2.1 Representation of Arrays

Sac supports the notion of n-dimensional arrays and of high-level array oper-
ations as they are known from array languages such as Apl, J, and Nial. All
arrays are represented by two vectors: a data vector containing all array elements
in canonical order, and a shape vector which specifies the number of elements per

2

axis. For instance, a 2×3 matrix
(

1 2 3
4 5 6

)
has the data vector [1,2,3,4,5,6]

and the shape vector [2,3]. For reasons of uniformity scalars are considered
arrays with empty shape.

2.2 Type System

For each base type (int, float, double, bool, char) Sac provides an entire
hierarchy of array types. The most specific array types specify an exact shape,
whereas more general types prescribe an exact dimensionality only or contain
no shape information at all.

Basically, an array type consists of a base type followed by a shape vector. If
the shape is not completely defined, some or all components of the shape vector
may be replaced by wildcards (., *, +). The wildcard . means that the extent
of a certain dimension is unknown. The wildcards + and * represent arrays with
at least dimensionality 1 or completely unknown dimensionality, respectively.

The hierarchy of array types can be classified into three major categories:

– arrays with known dimensionality and known extent, e.g. τ [3,2], τ ≡ τ [],
where τ denotes a base type;

– arrays with known dimensionality but unknown extent, e.g. τ [.], τ [.,.];
– arrays with unknown dimensionality and unknown extent, e.g. τ [+], τ [*].

Figure 1 depicts the directed graph of the (reflexive, transitive and antisym-
metrical) subtype relation. Vertices of the graph represent types and an edge
(τ → σ) means that σ is a subtype of τ . The dashed horizontal lines separate
the three categories of array types.

τ [*]
�
�

�
�
�

�
�
�
�
�
�
�
��

?

?
τ [+]
�
�
�

�
�
�=

Z
Z
Z
Z
Z
Z~

PPPPPPPPPPPPPq
τ [.]

�

�
�
�
���

A
A
A
AAU

τ [.,.]
�
�
�
��/

�
�
�
���

S
S
S
SSw

· · ·

τ ≡τ [] τ [0] τ [1] · · · τ [7] · · · τ [0,0] τ [0,1] · · · τ [5,3] · · ·

Fig. 1. Hierarchy of array types in Sac.

3

2.3 User-defined Array Operations

User-defined functions may have arbitrary numbers of parameters and return
values. Moreover, functions can be overloaded with respect to almost1 arbitrary
argument type constellations. The semantics of Sac prescribes that for each
function application the most specific instance suitable for the arguments must
be used.

Consider as an example computing the determinant of a two-dimensional
array. For arrays with shape [2,2] the operation is very simple:

det
(
a b
c d

)
= ad− bc . (1)

Higher-order determinants may be computed recursively using the Laplace ex-
pansion (along the first column):

det(A) =
n−1∑
i=0

(−1)i ·Ai0 · det(Ai0) , (2)

where A is an array of shape [n,n] and Aij denotes the array A without the
i-th row and j-th column. This mathematical specification of the algorithm can
be translated almost literally into a Sac implementation, defining a separate
function for each of the equations (1) and (2), as depicted in Fig. 2.

This example of a user-defined function is well-suited to explain the basic
problems that arise when trying to compile generic Sac code into efficiently
executable C code:

It is important to note that the function Det() is overloaded. The first in-
stance is suitable for arrays of shape [2,2] only, the second one applies for all
two-dimensional arrays with bigger shapes. It is the compiler’s duty to resolve
this overloading correctly.

Note also that the second instance of Det() has a non-shape-specific argu-
ment. In order to generate code with best possible runtime performance, the
compiler has to specialize this instance for all required argument shapes. More-
over, these additional instances must be taken into account during resolution of
function overloading.

Whenever the compiler succeeds in inferring all array shapes statically, both
tasks — function specialization and resolution of overloading — are quite simple,
because functions are specialized for concrete shapes only and overloading can
be resolved statically then. But in general things are not that easy.

Consider, for instance, applications of the Det() function to arguments of
type int[3,3], int[.,.], and int[+]. For the first application the compiler
builds a specialization of the second instance with argument shape [3,3] and
resolves the overloading statically. For the second application no specialization is
needed, but it is not statically decidable which instance must be used. Each of the
1 In the next section it will be shown that the signatures of overloaded functions have

to meet some side conditions.

4

(1): int Det(int[2,2] A)

(2): {

(3): return(A[[0,0]] * A[[1,1]] - A[[0,1]] * A[[1,0]]);

(4): }

(5): int Det(int[.,.] A)

(6): {

(7): shp = shape(A);

(8): if (shp[[0]] == shp[[1]]) {

(9): ret = with ([0] <= [i] < [shp[[0]]]) {

(10): B = Elim(A, [i,0]);

(11): det = Det(B);

(12): val = (-1)^i * A[[i,0]] * det;

(13): } fold(+, val);

(14): } else {

(15): ret = ERROR("array is not quadratic");

(16): }

(17): return(ret);

(18): }

Fig. 2. Computing the determinant of a two-dimensional array.

three instances available — the two given by the programmer and the one built by
the compiler — may be applicable. Thus, the compiler must generate additional
code that chooses the matching instance at runtime. For the third application
the situation is basically the same, but here an additional dynamic type check is
needed to ensure that the argument represents indeed a two-dimensional array.

So, in general it can be a rather complicated and time consuming task to
determine which functions have to be specialized for which argument shapes,
and to build all the tailor-made code fragments that resolve the overloading.

Another problem arises in the backend of the compiler. The compiler must
generate code for three different categories of array types, which include scalars.
With respect to runtime efficiency it is obviously a good idea to use different
representations for scalars and non-scalars. But in fact even for non-scalar arrays
a hierarchy of different representations should be used. However, these different
representations have to interact with each other, e.g. formal and actual argu-
ments of a function may have different types. Therefore, they must be designed
in a way that allows for cheap conversion from one representation into another.

3 Compilation

The compilation of user-defined array operations into C code is divided into four
major phases:

– type inference and function specialization,
– resolution of function overloading,
– high-level code optimization,

5

– code generation.

In this section, these phases are described in more detail.
Note, that the following subsection about type inference and function spe-

cialization is just an excerpt from [20] and is presented here as background
information only. The topic of this paper is code generation. It is demonstrated
how the partial shape information provided by the type system can be exploited
to generate efficiently executable code even in case of failing static shape infer-
ence. So, the innovative parts of the compilation scheme are described in the
subsections 3.2 and 3.4.

3.1 Type Inference and Function Specialization

The first important task of compilation is to infer the types of all local variables.
In order to achieve best possible potential for code optimizations, these types
are inferred as shape-specific as possible.

Basically, the inference algorithm works as follows: Starting from the main()
function, the type inference system traverses all function bodies from outermost
to innermost, propagating shapes as far as possible. Whenever a function ap-
plication is encountered, it has to be determined which function definitions are
relevant for it, i.e. which function definitions are possibly needed to compute
the result of the application. Then, the type of the application equals the most
specific common supertype (short: mscs) of the return types of all these function
definitions. Furthermore, if only a single relevant definition is found which has
not yet been specialized for the actual argument shapes, the specialization is
enforced.2

Take as an example the two definitions of Det() in Fig. 2. If Det() is applied
to an argument of type int[2,2], only the first definition is relevant. However,
if the argument is of type int[3,3], only the second definition is relevant. More-
over, the type inference system generates a specialized int[3,3] version of this
definition, which afterwards is the only relevant one. If the argument is of type
int[.,.], both definitions are relevant.

The inference algorithm sketched above has some important implications
which will be formalized in the following. Consider a function application

f(x1 :τ 1, . . .,xm :τm) .

(The notation x :τ means that for the variable x the type τ has been inferred.)
Let

σk1, . . .,σkn f (k)(τ k1 a1, . . .,τ km am) { ... } , k ∈ {1, ...,M}

2 To avoid non-termination, the number of possible function specializations is limited
to a pre-specified number of instances. If this number is exceeded, the generic version
of the function is used instead.

6

denote all the instances of f that occur in the given Sac program where M is
the number of these instances. A function definition f (k) is relevant for the above
application iff two conditions hold:

∀i ∈ {1, ...,m} : (τ ki�τ i ∨ τ ki�τ i) ,

¬ ∃l ∈ {1, ...,M} \ {k} : ∀i ∈ {1, ...,m} : (τ i�τ li�τ ki ∨ τ li=τ ki) .

(The notation τ�σ means that τ is a subtype of σ.) The first condition ensures
that actual and formal parameters of the application have compatible types.
The second condition excludes all instances that are under no circumstances
needed, because it is guaranteed that always another instance with more specific
argument shapes can be found.

Without loss of generality, let

{f (k) | k ∈ {1, ..., R}} , R ≤M

denote the set of relevant function definitions. As already mentioned, the type
of the j-th return value of the given application is equal to

mscs({σkj | k ∈ {1, ..., R}}) .

Obviously, such a supertype does not always exist. In order to ensure that the
type of the application is well-defined, the type inference system has to check
whether the return values of all relevant instances have pairwise a common
supertype:

∀k, l ∈ {1, ..., R} : ∀j ∈ {1, ..., n} : ∃σ : (σ�σkj ∧ σ�σlj) . (3)

Note here, that a common supertype of two arbitrary types exists iff the two
types have an identical base type. Thus, the constraint (3) can be simplified to:

∀k, l ∈ {1, ..., R} : ∀j ∈ {1, ..., n} : Basetype(σkj) = Basetype(σlj) .

3.2 Resolution of Function Overloading

The type inference system of the compiler infers for each function application
the set of relevant function definitions. If this set contains more than a single
instance, the compiler must generate additional code for the function application,
that dynamically chooses the matching instance (i.e. at runtime). Moreover, it
may not be statically inferable whether or not a function application is type-
correct, i.e. some actual arguments’ types are proper supertypes of the formal
arguments’ types. In this case the compiler has to generate additional code for
dynamic type checks as well.

Fortunately, it turns out that it is not necessary to generate individual code
that performs the resolution of overloading and the dynamic type checks for

7

each function application explicitly. Instead, it suffices to generate it for the
most general case only. This code is written in Sac itself and inserted into the
Sac program via a high-level code transformation. Subsequently, individual and
optimized code for each function application is obtained by means of the usual
high-level code optimizations already integrated into the compiler, like function
inlining, constant folding and constant propagation.

(1): int Det__i_2_2(int[2,2] A) { ... }

(2): int Det__i_X_X(int[.,.] A) { ... Det__i(B) ... }

(3): int Det__i_3_3(int[3,3] A) { ... Det__i(B) ... }

(4): inline int Det__i(int[*] A) /* wrapper */

(5): {

(6): if (dim(A) == 2) {

(7): if (shape(A) == [2,2]) {

(8): ret = Det__i_2_2(A);

(9): } else if (shape(A) == [3,3]) {

(10): ret = Det__i_3_3(A);

(11): } else {

(12): ret = Det__i_X_X(A);

(13): }

(14): } else {

(15): ret = ERROR("type error");

(16): }

(17): return(ret);

(18): }

(19): int main()

(20): {

(21): int[+] A;

(22): int[.,.] B;

(23): int[3,3] C;

(24): ...

(25): a = Det__i(A);

(26): b = Det__i(B);

(27): c = Det__i(C);

(28): ...

(29): }

Fig. 3. After resolution of function overloading.

As an example consider a main() function that contains applications of the
familiar Det() function to arguments of type int[+], int[.,.], and int[3,3].
Figure 3 depicts the Sac code with resolved function overloading and explicit
type checks. There exist three instances of the function Det(): Two of them
have been given by the programmer (see lines 1, 2), the third one with argument
shape [3,3] (line 3) is built by the type inference system via specialization of
the [.,.] version. All three instances of Det() have unique names now. This is

8

done by adding suffixes representing the types of the arguments (e.g. i X X for
int[.,.]). The resolution code is implemented as a wrapper function Det i()
with the most general argument type int[*] (lines 4–18). All applications of
the function Det() in the Sac source code are replaced by applications of this
wrapper (lines 2, 3, 25–27). The wrapper selects the appropriate instance with
respect to the actual shape of the argument (lines 8, 10, 12), or causes a runtime
error if no appropriate instance has been found (line 15). In order to minimize
on average the number of comparisons needed to choose the correct function, the
choice is narrowed down by first checking the argument’s dimensionality (line 6).
The keyword inline in front of the definition of the wrapper function (line 4)
directs the compiler to perform function inlining on it.

The interesting part of this code transformation is the generation of the
wrapper function(s). Let again

σk1, . . .,σkn f (k)(τ k1 a1, . . .,τ km am) { ... } , k ∈ {1, ...,M}

denote all the instances of a function f that occur in the given Sac program,
and define the set I(f) of these instances:

I(f) := {f (k) | k ∈ {1, ...,M}} .

Then, the following defines an equivalence relation ∼ on I(f):

f (k) ∼ f (l) :⇐⇒ ∀i ∈ {1, ...,m} : Basetype(τ ki) = Basetype(τ li) .

For each equivalence class of this relation a wrapper function must be generated.
Without loss of generality, let

C := {f (k) | k ∈ {1, ..., N}} , N ≤M

denote an arbitrary equivalence class of ∼. Then, the i-th argument of the wrap-
per function has the type

Basetype(τ ki)[*] , identical for all k ∈ {1, ..., N} ,

and the j-th return value has the type

mscs({σkj | k ∈ {1, ..., N}}) .

Again, such a supertype exists only if a constraint analogous to (3) is met:

∀k, l ∈ {1, ..., N} : ∀j ∈ {1, ..., n} : Basetype(σkj) = Basetype(σlj) . (4)

In order to generate the body of the wrapper function, the instances in C must
be sorted according to their argument types. Unfortunately, in case of multiple
arguments the subtype relation on its own is not a proper ordering relation.
Consider as an example the following two instances of a function fun:

9

int fun(int[.] A, int[2] B) { ... }
int fun(int[2] A, int[.] B) { ... }

Regarding the argument A the second instance has a more specific type than
the first one, regarding the argument B it is the other way round. Consider an
application of fun, where for both arguments the type int[2] has been inferred.
Without additional criteria it is undecidable which instance has to be chosen.
This problem could be solved by introducing different priorities for different
argument positions, but then, the semantics of Sac programs would depend on
the order of the function arguments. To avoid confusion about the overloading
mechanism, instances with such argument types are ruled out:

∀k, l ∈ {1, ..., N} : ((∃i : τ ki≺τ li)⇒ (∀i : τ ki�τ li)) . (5)

(The notion τ≺σ means (τ�σ ∧ τ 6=σ).) Besides, all pairwise distinct in-
stances must differ in their argument signatures:

∀k, l ∈ {1, ..., N} : ∃i ∈ {1, ...,m} : τ ki 6=τ li (6)

Now, an ordering relation ≤ on C can be defined

f (k) ≤ f (l) :⇐⇒ ∀i ∈ {1, ...,m} : τ ki�τ li ,

and the following holds:

∀k, l ∈ {1, ..., N} : ((k 6= l)⇒ (f (k)<f (l) ∨ f (k)>f (l))) .

Thus, it is guaranteed that the function overloading can be resolved uniquely.

3.3 High-level Code Optimizations

The Sac compiler applies several high-level code optimizations. Among these
are standard optimizations [2] like function inlining, constant folding, constant
propagation, dead code removal, common subexpression elimination, and loop un-
rolling. In general, the benefits gained by these optimizations heavily depend
on the types inferred for the array objects. The more precisely the shapes have
been inferred, the higher is the potential for optimizations. For example, having
specialized the function Det() for arguments of shape [3,3], the if-clause in
its body (see Fig. 2, line 8) is redundant and can be eliminated, whereas this
is not the case for the generic instance. Thus, by allowing arrays whose shapes
cannot be inferred statically some overhead is introduced.

Another potential source of overhead are the wrapper functions that resolve
function overloading. Since these wrappers are designed for arguments of most
general types, they contain a lot of redundancy if applied to arguments of more
specific types. Fortunately, this redundancy is eliminated by the optimization
techniques mentioned above. Take, for instance, an application of the wrapper
function Det i(), as defined in Fig. 3, to an argument of type int[3,3]. First,

10

the function is inlined, i.e. the function application is replaced by the body of the
wrapper function. Subsequently, constant folding detects that the conditions of
all if-clauses can be evaluated statically, and therefore replaces the whole nesting
of if-clauses by a call of the function Det i 3 3(). Thus, as intended, the call
of the wrapper function has been replaced by a call of the correct specialized
function.

3.4 Code Generation

In the final compilation phase the optimized Sac code is translated into ANSI
C code. The most important issue in this context is to find an appropriate C

representation for the whole hierarchy of array types provided by Sac.

Array Representation. Sac arrays that are statically identified as scalars are
represented in C by scalar values.

Other Sac arrays are uniquely defined by means of a data vector and a shape
vector. Additionally, a reference counter [8] (short: rc) for the implicit memory
management is needed. In order to get a compact representation, the reference
counter and the shape vector are combined to a so-called descriptor containing
reference counter, dimensionality, and all shape components. Keeping data vector
and descriptor separately allows arrays to be handled uniquely irrespective of the
length of their data and shape vectors, and it facilitates interfacing to external
languages such as C.

The performance evaluation presented in the next section shows that this
simple and uniform array representation is not sufficient for obtaining best pos-
sible runtime performance. Storing the shape in the descriptor (only) is in many
situations inefficient, because the shape information is frequently used. For in-
stance, consider a variable A representing an array of shape [.,.]. In this case it
is guaranteed that all descriptors of the arrays, A is pointing to during program
execution, contain a dimensionality of 2. So, in order to avoid costly accesses to
the main memory, all references to the dimensionality of A should be replaced by
the constant value 2. As a consequence, it is superfluous to store the dimension-
ality of A in the descriptor at all. Moreover, even the shape components of A are
constant until a new array object is assigned to A. Therefore, it is recommended
to buffer the shape components on the runtime stack or even in registers.

Unfortunately, it is unlikely that the C compiler will be able to apply such
optimizations. In an imperative language like C any function call or any reference
to a vector may cause a side-effect, hence it is almost impossible to detect that a
value behind a pointer is constant or in fact superfluous. Therefore, rather than
relying on the C compiler, these optimizations have to be done on the Sac level.
For this purpose additional local variables are used, which always mirror the
shape information of the descriptor. Whenever the shape has to be inspected,
these local variables are accessed rather than the descriptor.

Figure 4 depicts the optimized C representations for the different categories
of Sac arrays. For a variable A representing a non-scalar array, a data vector A

11

Declaration in Sac Declaration in C

τ [] A; τ A;

τ *A;

int *A desc; /* rc */

τ [4,3] A; const int A dim = 2;

const int A shp0 = 4;

const int A shp1 = 3;

τ *A;

int *A desc; /* rc, shp0, shp1 */

τ [.,.] A; const int A dim = 2;

int A shp0;

int A shp1;

τ [+] A; τ *A;

and int *A desc; /* rc, dim, shp0, ... */

τ [*] A; int A dim;

Fig. 4. C representations for the different categories of Sac arrays.

and a descriptor A desc is needed. All statically known parts of the shape are
not expected in the descriptor, i.e. the corresponding descriptor entries possibly
contain undefined values, but are declared as scalar constants instead. Further-
more, all variable parts of the shape are mirrored in scalar variables. Note, that
mirroring the shape components is impossible for arrays of shape [+] or [*],
because the number of needed scalars is unknown during compilation.

So, the hierarchy of array types in Sac is represented by a hierarchy of C

representations. As a result, the compilation scheme for array operations must be
parameterized with respect to array categories, and in certain situations arrays
must be converted from one representation into another.

Transformation Rules. With an appropriate array representation at hand,
the code generation can be specified by means of a transformation scheme C
which transforms Sac code into semantically equivalent C code. The basic set
of transformation rules for array operations is depicted in Fig. 5.

Transformation rule (7) applies to variable declarations. The pseudo state-
ment DECL ARRAY() represents a C declaration as shown in Fig. 4.

A simple example for creating a new array is given in (8). ALLOC ARRAY()
allocates memory for the data vector as well as the descriptor of the array, and
initializes the descriptor entries and the mirror variables. ASSIGN CONST() stores
the elements of the constant array [1,2,...] in the data vector.

Assignments of a variable A representing an array of type τ to a variable B
representing an array of type σ are compiled into the statement ASSIGN ARRAY()
that also converts the array representation if needed. Take as an example B : int[+]
and A : int[.,.]. Then, the following code is created:

12

C
s τ A;

Rest

{
7−→

{
DECL ARRAY(A :τ)
C J Rest K (7)

C
s
A :τ = [1,2,...];

Rest

{
7−→

ALLOC ARRAY(A :τ)
ASSIGN CONST(A :τ , [1,2,...])

C J Rest K
(8)

C
s
B :σ = A :τ ;
Rest

{
7−→

{
ASSIGN ARRAY(B :σ, A :τ)
C J Rest K (9)

C
s
B :σ = fun(A :τ);
Rest

{
where σ′ fun(τ ′ A’) { ... }

7−→

FUN AP(B :σ, fun, A :τ)
REFRESH MIRROR(B :σ)

C J Rest K
; iff (τ=τ ′ ∧ σ=σ′)

C

u

ww
v

A’ :τ ′ = A :τ ;
B’ :σ′ = fun(A’ :τ ′);
B :σ = B’ :σ′;
Rest

}

��
~ ; otherwise

(10)

C

u

wwww
v

σ fun(τ A)

{
Body
return(B :σ);

}

}

����
~
7−→

FUN DEF(B :σ, fun, A :τ)
{

DECL ARRAY ARG(A :τ)
C
s

Body
return(B :σ);

{

}

(11)

Fig. 5. Rules for transforming Sac code into semantically equivalent C code.

B = A;
B_desc = A_desc;
B_dim = A_dim;

However, if the inferred types are B : int[.,.] and A : int[+], descriptor accesses
are needed:

B = A;
B_desc = A_desc;
B_shp0 = A_desc[2];
B_shp1 = A_desc[3];

Another important situation arises if A is a scalar and B not, e.g. A : int[] and
B : int[*]. In this case a new descriptor for B has to be generated.

Assignments with a function application3 on the right hand side are trans-
formed as shown in (10). If the types of formal and actual parameters / return
3 Function definitions and applications are, for reasons of clarity, restricted to a single

argument and a single return value here.

13

values are identical, the assignment is directly compiled into the statements
FUN AP() and REFRESH MIRROR(). Otherwise additional assignments before or
after the function application are inserted to convert the array representations
accordingly. Consider that A and B are both non-scalar arrays. Then, FUN AP()
represents an application of the function fun to the arguments A, A desc, &B,
&B desc, i.e. return values are implemented as reference parameters, because C

functions allow a single return value only. Note, that the mirror variables of the
array representation (A dim, ...) are not passed to the function, because the func-
tion signature must be suitable for all argument types. Instead, the subsequent
statement REFRESH MIRROR() assures that the mirror variables are initialized
with the corresponding values of the descriptor.

The rule for transforming function definitions is depicted in (11). The state-
ment FUN DEF() defines the function header by analogy with FUN AP(). Besides,
for each function argument a statement DECL ARRAY ARG() is inserted into the
body which declares and initializes the scalar variables of the array representa-
tion. Take as an example an argument A : int[.,.]. In this case A and A desc
are already declared in the argument list of the function header, but the scalar
variables for the shape are still missing:

const int A_dim = 2;
int A_shp0 = A_desc[2];
int A_shp1 = A_desc[3];

4 Preliminary Performance Evaluation

This section evaluates the runtime behaviour of the code generated by the com-
pilation scheme presented in the previous section.

The hardware platform used for the measurements is a Sun Ultra-10 with
256 MB of main memory running under Solaris 7. The GNU C compiler (gcc,
version 2.95.3) is used to compile the C code generated by the Sac compiler into
native machine code.

The evaluation is based on the function Det() used in the previous sections
which is applied to an array of shape [10,10]. This example is compiled with two
different compiler versions: The first one uses the simple array representation,
i.e. all non-scalar arrays are represented by data vector and descriptor only, and
the second one uses the optimized array representation.

Additionally, during compilation four different strategies for function special-
ization are used. The first strategy builds no specializations at all, i.e. only the
original two instances of Det() are available. Whenever Det() is applied to an
argument whose shape is not [2,2], the generic instance is used. The second
strategy builds a single specialization for argument shape [3,3]. The third one
builds specializations for argument shapes [3,3] and [4,4]. The fourth one
builds instances for all needed argument shapes [10,10], ..., [3,3]. As a conse-
quence, all array objects have statically known shapes and function overloading
can be resolved statically.

14

4

1

2

3

5

ex
ec

ut
io

n
tim

e
in

 s
ec

.

CSAC, opt.SAC, no opt.

2.32 1.53 1.065.06 4.70 2.13 1.34 2.160.93

1. 2. 3.
fully specializedgeneric

4.

Fig. 6. Time demand for computing the determinant of a 10×10 array.

The results of the runtime measurements are shown in Fig. 6. The four bars
on the left and in the middle relate to the two Sac compilers, whereas the color
of each bar indicates the specialization strategy used. The single bar on the
right depicts the time demand of an equivalent C implementation of the Det()
function.

The runtime figure shows that the descriptor optimizations have a significant
impact on the execution times of the generated code. Enabling the optimizations
decreases the execution times by ≈ 8–14 %.

Furthermore, the measurements demonstrate that specializing functions is
indeed crucial for getting best possible runtime performance. The more special-
izations are built by the compiler, the lower is the time demand of the generated
code. The generic version without any specializations is about a factor of 5 slower
than the fully specialized version. Building one or two specialized instances of
the Det() function reduces the slowdown to a factor of ≈ 2.3 or 1.4 respectively.

However, it is also indicated that by means of the new compilation scheme
even generic functions can be compiled into code with an acceptable runtime per-
formance. Note, that it is sufficient to build a single specialization of the Det()
function to get approximately the same execution time as the C implementa-
tion. If the compiler adds additional specializations, the Sac implementation is
significantly faster than the C implementation.

5 Related Work

The concept of shape-invariant programming has been invented mainly by the
designers of the language Apl. Although Apl allows for a very concise and el-
egant way of program specification, it causes difficulties when trying to execute

15

these generic programs efficiently. It usually requires dynamic typing and execu-
tion in an interpretating environment. Much effort has been devoted to improve
runtime efficiency of such programs by application of sophisticated optimization
techniques [4] and by attempts to compile them [21,9,5,3]. But code efficiency in
many cases turns out to be less than satisfactory.

In order to overcome this shortcoming, languages like FISh or Zpl are de-
signed in a way that eases static shape inference. As a result, FISh and Zpl

programs, although written shape-invariantly, are compiled into very efficiently
executable code. However, compilers for these languages lack the ability to gen-
erate truly shape-invariant code.

Common techniques to implement overloading, for instance in Haskell com-
pilers, involve the use of dictionary values [1,14]. A dictionary is a kind of a
virtual function table that is passed as additional parameter to overloaded func-
tions to resolve overloading at runtime. This dictionary-passing style must be
generated by the backend of the compiler and can incur substantial overhead. In
contrast, the compilation scheme presented in this paper uses static branch code
written in Sac itself to implement the dynamic dispatches, therefore, no modifi-
cations in the backend are needed. A similar approach is used in the SmallEiffel

compiler, which is described in more detail in [22]. Here, it is also shown that
dynamic dispatches that have been implemented via static branch code, rather
than function tables, perform better on modern hardware.

6 Conclusion and Future Work

This paper presents a compilation scheme for transforming shape-invariant ar-
ray operations into efficiently executable code. This scheme has been developed
in the context of the language Sac and combines two approaches: On the one
hand static shape inference is performed to generate shape-specific code when-
ever possible, on the other hand more generic code is produced if the shape
inference fails. The basic idea is to make use of a hierarchy of array types with
different levels of shape information and to translate the typed programs into a
corresponding hierarchy of array representations.

In order to support such a hierarchy of array types, basically two prob-
lems have to be solved. Firstly, a mechanism must be found that allows the
compiler to resolve function overloading dynamically and to generate additional
dynamic type checks if needed. The approach suggested in this paper achieves
this by means of an elegant high-level code transformation. For each overloaded
function a generic wrapper, which is also written in Sac, is generated that dy-
namically chooses the matching instance and performs all needed type checks.
Subsequently, the code of this wrapper function is individually adapted to each
function application by means of the code optimizations already integrated into
the compiler.

The second problem is to find a hierarchy of array representations that is
suitable for the hierarchy of array types. This paper presents two different ver-
sions of such representations. The first one is easy to implement but results in a

16

suboptimal runtime performance of the generated code, whereas the second one
is much more complex but reduces execution times by approximately 10 %.

However, the code generated for generic Sac functions may show an ex-
tremely poor runtime performance in certain situations. That is due to the fact
that some high-level code optimizations of the Sac compiler are not imple-
mented for arrays with unknown shape yet, for instance with-loop folding and
index vector elimination. Therefore, future work will focus on remedying this
shortcoming.

References

1. L. Augustsson: Implementing Haskell Overloading. In: Conference on Functional
Programming Languages and Computer Architecture (FPCA ’93). Copenhagen,
Denmark, 1993.

2. D. F. Bacon, S. L. Graham, O. J. Sharp: Compiler Transformations for High-Per-
formance Computing. ACM Computing Surveys, 26(4), pp. 345–420, 1994.

3. R. Bernecky: APEX: The APL Parallel Executor. Master’s Thesis, University of
Toronto, Canada, 1997.

4. J. Brown: Inside the APL2 Workspace. ACM Quote Quad, 15, pp. 277–282, 1985.

5. T. Budd: An APL Compiler. Springer, 1988. ISBN 0-387-96643-9.

6. C. Burke: J and APL. Iverson Software Inc., Toronto, Canada, 1996.

7. B. L. Chamberlain, S. J. Deitz, L. Snyder: A Comparative Study of the NAS MG
Benchmark Across Parallel Languages and Architectures. In: Proceedings of the
ACM Conference on Supercomputing. ACM Press, 2000.

8. J. Cohen: Garbage Collection of Linked Data Structures. ACM Computing Surveys,
13(3), pp. 341–367, 1981.

9. G. C. Driscoll, D. L. Orth: Compiling APL: The Yorktown APL Translator. IBM
Journal of Research and Development, 30(6), pp. 583–593, 1986.

10. C. Grelck, S.-B. Scholz: HPF vs. SAC — A Case Study. In A. Bode, T. Ludwig,
W. Karl, R. Wismüller (Eds.): Euro-Par 2000, Parallel Processing, Proceedings of
the 6th International Euro-Par Conference, Munich, Germany. Vol. 1900 of: LNCS.
Springer, 2000, pp. 620–624.

11. K. E. Iverson: A Programming Language. John Wiley & Sons, 1962.

12. C. B. Jay: Programming in FISh. International Journal on Software Tools for
Technology Transfer, 2(3), pp. 307–315, 1999.

13. M. A. Jenkins, W. H. Jenkins: The Q’Nial Language and Reference Manuals. Nial
Systems Ltd., Ottawa, Canada, 1993.

14. M. P. Jones: Dictionary-Free Overloading by Partial Evaluation. In: ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program Manipula-
tion. ACM Press, 1994.

15. C. Lin: ZPL Language Reference Manual. UW-CSE-TR 94-10-06, Department of
Computer Science and Engineering, University of Washington, Seattle, Washing-
ton, USA, 1996.

16. C. Lin, L. Snyder, R. Anderson, B. L. Chamberlain, S.-E. Choi, G. Foreman, E. C.
Lewis, W. D. Weathersby: ZPL vs. HPF: A Comparison of Performance and Pro-
gramming Style. TR 95-11-05, Department of Computer Science and Engineering,
University of Washington, Seattle, Washington, USA, 1995.

17

17. S.-B. Scholz: Single Assignment C — Entwurf und Implementierung einer
funktionalen C-Variante mit spezieller Unterstützung shape-invarianter Array-
Operationen. PhD Thesis, Institut für Informatik und Praktische Mathematik,
Universität Kiel, 1996. ISBN 3-8265-3138-8.

18. S.-B. Scholz: A Case Study: Effects of WITH-Loop-Folding on the NAS Benchmark
MG in SAC. In C. Clack, T. Davie, K. Hammond (Eds.): Implementation of
Functional Languages, 10th International Workshop (IFL ’98), London, England,
UK, Selected Papers. Vol. 1595 of: LNCS. Springer, 1998, pp. 216–228. ISBN
3-540-66229-4.

19. S.-B. Scholz: On Defining Application-Specific High-Level Operations by Means of
Shape-Invariant Programming Facilities. In S. Picchi, M. Micocci (Eds.): Proceed-
ings of the Array Processing Language Conference (APL ’98), Rome, Italy. ACM
Press, 1998, pp. 40–45.

20. S.-B. Scholz: A Type System for Inferring Array Shapes. In T. Arts, M. Mohnen
(Eds.): Proceedings of the 13th International Workshop on the Implementation of
Funtional Languages (IFL ’01). Ericsson, Älvsjö, Sweden, 2001, pp. 53–63.

21. J. Weigang: An Introduction to STSC’s APL Compiler. In: Proceedings of the
Array Processing Language Conference (APL ’89). Vol. 15 of: ACM Quote Quad.
ACM Press, 1989, pp. 231–238.

22. O. Zendra, D. Colnet, S. Collin: Efficient Dynamic Dispatch without Virtual Func-
tion Tables: The SmallEiffel Compiler. In: Proceeding of the 12th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA ’97). Atlanta, Georgia, USA, 1997, pp. 125–141.

18

	A Compilation Scheme for a Hierarchy of Array Types

