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Abstract. From laptops to supercomputer nodes hardware architec-
tures become increasingly heterogeneous, combining at least multiple
general-purpose cores with one or even multiple GPU accelerators. Tak-
ing effective advantage of such systems’ capabilities becomes increasingly
important, but is even more challenging.

SaC is a functional array programming language with support for
fully automatic parallelization following a data-parallel approach. Typ-
ical SaC programs are good matches for both conventional multi-core
processors as well as many-core accelerators. Indeed, SaC supports both
architectures in an entirely compiler-directed way, but so far a choice
must be made at compile time: either the compiled code utilizes mul-
tiple cores and ignores a potentially available accelerator, or it uses a
single GPU while ignoring all but one core of the host system.

We present a compilation scheme and corresponding runtime system
support that combine both code generation alternatives to harness the
computational forces of multiple general-purpose cores and multiple GPU
accelerators to collaboratively execute SaC programs without explicit
encoding in the programs themselves and thus without going through
the hassle of heterogeneous programming.

1 Introduction

Single Assignment C (SaC)[1] is a purely functional array programming language
for compute-intensive and performance-sensitive applications. SaC has a syntax
that very much resembles C, yet it is a fully-fledged programming language in its
own right with context-free substitution of expressions as the driving principle
of program execution. SaC features truly multidimensional arrays as the main
data aggregation principle as well as shape- and dimension-invariant definitions
of array operations. Arrays are truly stateless and, thus, functions (conceptually)
consume their array arguments and produce new array values. The focus of
the SaC project is on compiler technology that transforms high-level functional
specifications into executable code that competes well with C or Fortran through
aggressive compiler optimization and fully compiler-directed parallelization[2].

Heterogeneous computing receives increased attention due to the rise of pow-
erful and affordable accelerator hardware, such as general purpose GPUs, the
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IBM Cell processor, and FPGAs [3, 4]. These accelerators can provide speedups
of one or two orders of magnitude depending on the problem [5, 6, 7]. Most
available heterogeneous programming environments [8, 9, 10] provide a way to
offload computations to one of many types of accelerators. These approaches
mainly solve portability issues, but leave programmers alone with low-level,
architecture-specific coding of applications, and thus very much limit produc-
tivity the more heterogeneous the target architectures become.

With all the above approaches, a selected accelerator does the heavy work
while the host CPU is typically idle, as well as any other available accelerators.
Making effective use of heterogeneous computing environments may well provide
additional performance gains, as shown by the MAGMA project [11] in the area
of algebraic computations. Further studies demonstrate performance gains by
sharing computations between multiple GPUs and CPU cores [11, 12, 13].

Our approach taken for SaC is more ambitious than the ones above: from
the very same declarative and architecture-agnostic program we fully automat-
ically generate efficient parallel code for multi-core CPUs [14] and many-core
GPUs [15]. However, for now a choice needs to be made at compile time to
either utilize one or multiple multi-core CPUs or a single CUDA-enabled GPU.

In this paper we propose the necessary compilation and runtime system tech-
nology to realize additional performance gains by simultaneously using one or
more multicore CPUs and one or more GPUs to cooperatively execute array
operations without sacrificing our declarative, compiler-directed approach. This
requires the integration of the currently separate multicore and CUDA compila-
tion paths within the SaC compiler. Various issues need to be addressed from
high-level program transformations over code generation to dealing with explicit
memory transfers between the various memories involved.

The CUDA backend of the SaC compiler generates CUDA-kernels from SaC
array operations. Only such kernels can run on CUDA-enabled devices. They
are subject to several constraints imposed by the underlying hardware. For ex-
ample, the absence of a stack on GPUs rules out function calls, and branches are
costly as they result in parts of the GPU being masked out during execution.
Consequently, CUDA kernels must follow relatively simple patterns of nested
loops, and complex array operations must often be split into several consecutive
kernels. In contrast, the SaC multicore backed puts a lot of effort into improving
data locality in cache-based systems [20], which often results in fairly complex
codes that would be impossible or at least inefficient to run on GPUs. This ex-
ample shows that the choice of target architecture does not only affect the final
compilation stages of target code generation, but already needs to be taken into
account in central parts of the compilation process.

GPUs have their own memory, which makes heterogeneous computing sys-
tems also distributed memory systems. Explicit data transfers between the host
memory and the various GPU device memories must be introduced into the gen-
erated code. For good performance it is crucial to avoid redundant data transfers.
The SaC CUDA backend schedules entire array computations on the (single)
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GPU. With this trivial static scheduling, the compiler can make all data move-
ment decisions statically, and only entire arrays are transferred between host
and device memories. If multiple GPUs and host cores are to collaborate in a
single array operation, we must dispense with this static model. Instead (concep-
tual) arrays must be distributed across the various memories of a heterogeneous
computing system. Consequently, as such an array becomes the argument of a
subsequent array operation, parts of this array are likely not to be present in
the memory of the host or device that needs the data. Heterogeneity naturally
limits the applicability of static scheduling in such a context, and we expect dy-
namic approaches to be more effective in the long run [16, 17, 13]. Therefore, the
runtime system needs to keep track of where which parts of an array are stored
and initiate the necessary data transfers to make the data available where it is
needed. In light of these problems, we specifically aim to:

– track location of computed array slices dynamically;
– perform as few copies from/to device memory as possible;
– avoid redundant copying between different memories;
– generate two code versions for each array operation, one optimized for CUDA

and the other for multicore execution.

The remainder of the paper is organized as follows. In Section 2 we provide
some background information on SaC and in Section 3 on relevant existing work
in the SaC compiler. Section 4 describes how to concert the CUDA and multicore
compilation paths. In Section 5 we introduce the notion of distributed arrays.
Section 6 shows how this proposed scheme integrates with existing SaC dy-
namic scheduling facilities. In Section 7 we present and analyze preliminary
experimental results. Eventually, we discuss some related work in Section 8 and
draw conclusions in Section 9.

2 Single Assignment C

As the name suggests, SaC leaves the beaten track of functional languages and
adopts a C-like syntax to ease adoption by imperative programmers. Core SaC
is a functional, side-effect free variant of C: we interpret assignment sequences as
nested let-expressions, branches as conditional expressions and loops as syntactic
sugar for tail-end recursive functions [1, 18]. Despite the radically different un-
derlying execution model (context-free substitution of expressions vs. step-wise
manipulation of global state), all language constructs show exactly the opera-
tional behaviour expected by imperative programmers. This allows programmers
to choose their favourite interpretation while the compiler exploits the side-effect
free semantics for advanced optimization and automatic parallelization.

On top of this language kernel SaC provides genuine support for processing
truly multidimensional and truly stateless/functional arrays advocating a rank-
and shape-generic programming style. Array types include arrays of fixed shape,
e.g. int[3,7] for a 3x7-matrix of integers, arrays of fixed rank, e.g. float[.,.]
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for a float matrix of any size and arrays of any rank, e.g. double[*] for a
double array of any rank, which could be a vector, a matrix, etc. SaC only
provides a small set of built-in array operations, essentially to retrieve the rank
(dim(array)) or shape (shape(array)) of an array and to select elements or
subarrays (array[idxvec]). All aggregate array operations are specified using
with-loop expressions, a SaC-specific array comprehension:

with {
( lower_bound <= idxvec < upper_bound) : expr;
...

( lower_bound <= idxvec < upper_bound) : expr;
}: genarray( shape, default)

The key word genarray makes this with-loop define an array whose shape is
given by the shape expression and whose elements default to the value of the
default expression. The body consists of multiple (disjoint) partitions. Here,
lower_bound and upper_bound denote expressions that must evaluate to integer
vectors of equal length. They define a rectangular (generally multidimensional)
index set. The identifier idxvec represents elements of this set, similar to in-
duction variables in for-loops. We call the specification of such an index set a
generator and associate it with some potentially complex SaC expression. Thus,
we define a mapping between index vectors and values, in other words an array.
We deliberately use index sets, which make any with-loop expose fine-grained
concurrency and thus the ideal basis for our parallelization efforts.

...
foo = with {

(. <= iv <= .): 20;
}: genarray ([1000 , 1000]);

y = foo[[1,20]] + 1;

bar = with {
([0 ,10] <= iv <= .): foo[iv] + y;

}: modarray (foo);

bar[[1 ,2]] = 10;
...

Fig. 1. Example SaC code, consisting of a genarray, a modarray, and a few array
operations in between

We illustrate SaC code in general and the with-loop in particular by the (ar-
tificial) code fragment of Fig. 1. This code creates a 1000x1000 matrix where
each element is set to 20 using the genarray with-loop. The dots in the lower
and upper bound expression positions are syntactical sugar for the least and
the greatest legal index vector of the defined array. So, the generator covers
the entire index space, thus making an explicit default expression obsolete. We
then access this new array at some index and name the result y. Next, we define a
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new matrix bar based on the existing matrix foo using a modarray with-loop,
a variant of the genarray-with-loop introduced above. Matrix bar has the same
rank and shape as matrix foo. Likewise the values of the leftmost 10 columns
are taken from the corresponding values of foo. The remaining columns covered
by the generator are also taken from foo, but incremented by the value of y.
Finally, we change element [1,2] of the new matrix to 10. More precisely, we
create a third matrix also named bar that is identical to the previously existing
matrix bar except for the value at row 1, column 2.

3 Existing Work in the SAC Compiler

3.1 Generating Multi-threaded Code

The SaC-compiler takes considerable effort to condense multiple (often compu-
tationally light-weight) with-loops into fewer, more heavy-weight ones by means
of high-level code transformations [19]. This typically results in complex multi-
generator with-loops. Subsequently, such with-loops undergo a transformation
into what is called the canonical order [20]. This canonical order is an internal
representation of with-loops as a single, fairly complex (imperfect) nesting of
loops, whose execution follows the way elements are stored in memory, rather
than as a sequence of simple, perfect loop nests that would arise from the individ-
ual compilation of generators. This technique considerably improves performance
on conventional architectures through increased cache utilization.

The multicore code generator then selects individual with-loops for multi-
threaded execution based on a simple cost model and creates parallel sections
with the necessary communication and synchronization facilities. At runtime,
the main thread executes any sequential code as normal, while worker threads
remain inactive. Before starting one of the parallel sections and waking up the
worker threads, the main thread sets up a memory area, known as task frame,
where it inserts any variables the worker threads require. On a shared memory
system arrays are not copied to the task frame, only their references. For with-
loops in parallel sections, a scheduler assigns disjoint regions of the array index
space to each thread for computing. Threads repeat the with-loop computation
with different regions until the whole iteration space is assigned by the sched-
uler. The default strategy is block scheduling, but programmers can assign other
static and dynamic ones to each with-loop.

3.2 Generating CUDA Kernels

The first step towards generating CUDA kernels lies in selecting those with-
loops that can actually run on the GPU, e.g. it is impossible to call functions
within kernels. With-loops with function calls in the body (after optimizations
like inlining) thus take the standard compilation route, while selected with-loops
go through CUDA-specific transformations.
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The SaC CUDA backend [21, 15] maps individual with-loops to CUDA ker-
nels. The canonical order, however, is not suitable for CUDA as the correspond-
ing loop structure becomes too complicated and the GPUs can much less benefit
from this form of data locality. Hence, each generator is individually compiled
into one kernel instead.

In order to statically distinguish between host-allocated and device-allocated
arrays in a sound way, the CUDA backend employs a simple type system where
every array type is tagged as either host type or device type. Relatively free
array variables inside CUDA with-loops are converted from a host type to the
corresponding device type by means of the primitive function host2device. Con-
versely, arrays computed by a CUDA with-loop (thus having a device type) can
be converted to a host type by the corresponding primitive function device2host.
At runtime these type conversion functions take care of the necessary memory
transfers. It is noteworthy that the SaC CUDA backend takes considerable effort
to avoid unnecessary memory transfers through high-level code transformations.

Consider the code from the example in Fig. 1. As both with-loops are CUDA-
compatible, the code is transformed to look like in Fig. 2. Note that to compute
bar_cuda there is no need to transfer foo back to device memory as foo_cuda
already resides there and as a functional data structure remains unchanged.

...
foo_cuda = with_cuda {...}: genarray ([1000 , 1000]);

foo_host = device2host(foo_cuda );
y = foo_host [[1 ,20]] + 1;

bar_cuda = with_cuda {...}: modarray (foo_cuda );
...

Fig. 2. Excerpt from the code of Fig. 1, both with-loops selected for CUDA

4 Compiling With-Loops for Multiple Targets

The same with-loop will produce very different code whether it is compiled for
CUDA or for multicore execution. To solve this incompatibility, we generate both
versions side-by-side. The first step is to allow existing compiler procedures to
mark all with-loops capable of running on CUDA. Then, these with-loops are
duplicated, and the copy is deselected for CUDA execution. This way, one of
the with-loops can go through the CUDA-specific transformations while the
other goes through the multicore-specific transformations and among others is
transformed into canonical order.

The resulting code for our running example is shown in Fig. 3. To simul-
taneously represent the two with-loop variants, these are encapsulated in a
conditional. For illustration we use the keywords with_cuda and with_host.
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The conditional will later be moved to parallel sections executed by multiple
threads in SPMD-style, and the predicate will be evaluated by each thread indi-
vidually. One host thread per GPU will launch the CUDA kernels. The remaining
worker threads will run multithread code on the host directly.

...
y = foo_host [[1 ,20]] + 1;

if(cudaBranch) {
bar_cuda = with_cuda {...}: modarray (foo_cuda );

} else {
bar_host = with_host {...}: modarray (foo_host );

}

bar_host [[1 ,2]] = 10;
...

Fig. 3. Excerpt from the SaC code in Fig. 1 after with-loop duplication

5 Managing Multiple Memories

The existing CUDA backend only transfers arrays in their entirety between host
and (one) device memory. This is not viable if we are to execute with-loops
simultaneously on multiple devices or on device and host. To keep track of dis-
tributed arrays scattered across multiple memories, we introduce a third type:
distributed variables. To access the array, it first needs to be converted from
distributed type to a concrete type through explicit conversion. Whenever these
arrays are written to, however, they again must be converted to the distributed
type to make the runtime system aware of any changes. To represent these con-
versions we introduce dedicated primitive functions: dist2host and host2dist
for the host, dist2device and device2dist for CUDA devices.

5.1 Distributed Variables

To keep track of distributed arrays scattered over different memories we intro-
duce a control structure inside distributed variables. This structure has refer-
ences to the concrete array addresses on the host and on the GPUs as well as a
table recording which parts of an array are present where. Currently, we restrict
ourselves to dividing arrays into blocks along the outermost axis.

To avoid unnecessary copying, the dynamic tracking scheme should also be
able to detect cases where data is available in several memories simultaneously.
The proposed scheme addresses this using techniques derived from cache co-
herency protocols [22]. The idea is to keep a table in host memory tracking the
state of each block on each device. The possible states are (M)odified, (S)hared
and (I)nvalid, mimicking the simple MSI cache coherence protocol [23], as illus-
trated in Fig. 4.
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Blocks ⇒
Host S M I I ...
CUDA 1 S I M I ...
CUDA 2 S I I M ...
...

Fig. 4. Dynamic tracking
control structure

This proposed control structure allows for some
scaling, as it is possible to track more devices sim-
ply by adding another row to the control structure
table. Each block currently corresponds to a posi-
tion along the outermost dimension. For a matrix,
for example, each block would correspond to a row.
We find this to be reasonable in most situations,
and it simplifies implementation.

5.2 Dedicated Conversion Functions

The primitive functions to convert from a dis-
tributed to a concrete type or vice-versa make use of the control structure in
distributed variables to copy only the required parts to the memory system that
needs them. These functions can be thought of as extensions to the device2host
and host2device primitive functions introduced by the SaC CUDA backend.
Instead of explicitly copying the whole array from one memory to another, the
new primitive functions transparently perform the copying of only those data
blocks needed but not present in some memory. This is possible because the
compiler always knows which parts of an array will be accessed, even if just in a
symbolic manner. We can thus pass a range of elements as an argument to the
conversion functions.

int_dist [*] host2dist(int_dist [*] dist_array , int[*] host_array , int[*] range)
{

foreach (block i in range) {
mark_block(i, host , Modified )
mark_block(i, cuda , Invalid )

}
return dist_array;

}

int[*] dist2host(int_dist [*] dist_array , int[*] host_array , int[*] range){
foreach (block i in range) {

if( get_block_mark(i, host) == Invalid ) {
copy_block(i, cuda , host)
mark_block(i, cuda , Shared)
mark_block(i, host , Shared)

}
}
return host_array;

}

Fig. 5. Pseudo-code for the host2dist and dist2host primitive functions

Pseudo code implementations of host2dist and dist2host are shown in
Fig. 5. For each block that falls into the specified range, host2dist sets the
corresponding entry in the distributed variable table to Modified on the host
and to Invalid on the CUDA devices. For each block that falls into the specified
range, dist2host checks the corresponding entry in the distributed variable
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table for whether or not the host line is set to Invalid. If not, it is done with the
block; otherwise, the data is copied from a CUDA device, and both host and
device entries are set to Shared. The CUDA device functions device2dist and
dist2device are very similar. Note that the distribution control data structures
always resides in host memory.

5.3 Making Use of the Type Extensions

Continuing the example of Fig. 3, a new code transformation creates the dis-
tributed variables and inserts the required conversion functions. This transfor-
mation makes the code look like in Fig. 6. With-loops now operate only on
a certain range, as the conversion functions need this information. This range
information will eventually come from the scheduler, but for now we use a place-
holder function. Note that unlike in the CUDA-only example of Fig. 2, it is now
necessary to explicitly convert bar_dist to bar_host. Also note that distributed
variables have to be initialized before the concrete arrays, so that we can update
the control structure afterwards.

...
y = foo_host [[1 ,20]] + 1;

bar_dist = initialize_dist_var(...);
range = rangeOracle();
if (cudaBranch) {

foo_cuda = dist2device(foo_dist , foo_cuda , range);
bar_cuda = with_cuda { ... | range}: modarray (foo_cuda );
bar_dist = device2dist(bar_dist , bar_cuda , range);

} else {
... /* same as above , using host code */
}

bar_host = dist2host(bar_dist , bar_host , [1 ,2]);
bar_host [[1 ,2]] = 10;
bar_dist = host2dist(bar_dist , bar_host , [1 ,2]);
...

Fig. 6. Excerpt of the SaC code from Fig. 3 after insertion of distributed variables
and primitive conversion functions

6 Code Generation

During code generation both with-loop versions and the corresponding type con-
versions must be integrated with the multicore parallel sections and scheduler.
Our approach is to create a parallel section around the conditionals with both
with-loop code variants, rather than single with-loops. The predicate becomes a
check for a specific kind of threads, which either launch CUDA kernel or execute
sections of a with-loop directly on the host.

Continuing the example from Fig. 6, the above transformation yields the code
in Fig. 7. For brevity, we again only consider the bar with-loop; effects on the
foo with-loop are very similar. First, in the master thread, we start a parallel
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section, so that the worker threads wake up and run the worker function. We
pass the function and its arguments through the task frame to the worker threads
before the master thread joins parallel execution as worker #0.

...
y = foo_host [[1 ,20]] + 1;

bar_dist = initialize_dist_var(...);
_start_parallel_section(&_spmd_bar , bar_dist , foo_dist , foo_cuda , foo_host );
_spmd_bar(0, bar_dist , foo_dist , foo_cuda , foo_host );

bar = dist2host(bar_dist , bar_host , [1 ,2]);
...

void _spmd_bar( thread_id , bar_dist , foo_dist , foo_cuda , foo_host )
{

if( _isCUDAthread( thread_id) ) {
do {

range , continue = _getSubset( thread_id , ...);

foo_cuda = dist2device(foo_dist , foo_cuda , range);
bar_cuda = with_cuda {... | range }:modarray (foo_cuda );
bar_dist = device2dist(bar_dist , bar_cuda , range);

} while (continue );
} else {

do {
range , continue = _getSubset( thread_id , ...);

foo_host = dist2device(foo_dist , foo_host , range);
bar_host = with_host {... | range }:modarray (foo_host );
bar_dist = device2dist(bar_dist , bar_host , range);

} while (continue );
}

_sync_barrier( thread_id)
}

Fig. 7. The bar with-loop of Fig. 6, after creating worker thread functions: original
with-loop context (top) and lifted SPMD-style worker function (bottom)

In the parallel section we have the conditional with the two with-loop vari-
ants. Both branches are very similar, the only differences are that one uses the
CUDA conversion functions and the CUDA with-loop code while the other uses
the host conversion functions and the multicore with-loop code. The predicate
_isCUDAthread uses the thread id to choose the correct branch for each thread.

All threads then enter a loop. Each thread obtains some subset of the elements
to compute from the scheduler (represented here as the _getSubset() function).
The next step is converting the with-loop dependencies from a distributed type
to the appropriate concrete type. We do not convert the whole array though,
only the parts we need for computing the specific iteration space the scheduler
assigned to this thread. The conversion functions will take care of copying any
required missing data from the assigned area. Then, we can perform the com-
putation on this partial concrete array, generating a partial concrete result. The
last step in the loop is to update the distributed variable. As long as there are
sections of the array to compute, the scheduler sets the output flag continue
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to true, so threads will continue to query the scheduler for a new subset of the
array to compute. Once the whole array has been assigned, threads will start to
exit the loop and hit a synchronization barrier (_sync_barrier()). When all
threads are done, the program resumes sequential execution.

7 Preliminary Results

7.1 Benchmark Code

To test the viability of the system described in the previous section, we decided
to implement it manually based on a relatively simple but nonetheless represen-
tative program. We chose a prototypic stencil computation where over a number
of iterations each element in a matrix is set to the arithmetic mean of its four di-
rect neighbours in the previous iteration. There are many ways to write this code
in SaC (for examples see [18]), but in one way or another high-level program
transformations lead to code similar to the program fragment in Fig. 8. Note
that even though the computation itself is rather simple, communication and
synchronization are inevitable between iterations of the for-loop, which makes
this a clearly non-trivial scenario.

for (k=0; k<LOOP; k++) {
A = with {

( . < x < . ) : 0.25f*( A[x+[1 ,0]] +A[x-[1 ,0]] +A[x+[0 ,1]] +A[x-[0,1]]);
} : modarray ( A );

}

Fig. 8. Computational kernel of 2-d convolution example

We compiled this program with both the multicore and the CUDA backend to
obtain original intermediate C codes. We then manually combined these codes
implementing the concepts presented so far. Instead of fully dynamic scheduling,
however, we divided arrays statically into two parts: one part is divided equally
among the CPU cores, the other among the GPUs. Nonetheless, locations of
array slices are indeed tracked “dynamically”, following the scheme presented
in Section 5. The distributed memory control structure is consulted on every
iteration, even though the mapping remains the same throughout execution.

7.2 Experiment 1: Host Plus 2 GPUs

We use the Distributed ASCI Supercomputer (DAS-4) [24] for evaluation. Our
first experiment runs on a dual hexa-core 2.67 GHz Intel Xeon node equipped
with two NVidia GTX480 GPUs. We run our benchmark for 2000 iterations on
a double precision floating point matrix of 9000x9000 elements with different
SaC backends: sequential, multicore, CUDA and our proposed hybrid scheme.
We use gcc with optimization level -O3 as binary code generator and report the
shortest time out of 3 runs. We experiment with different work division schemes
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Fig. 9. Comparison of the runtimes between different work division percentages; results
for the CUDA and multicore backends are shown as vertical lines

and compare the performance we achieve using the hybrid scheme with that of
the existing CUDA and multicore backends. Results are shown in Fig. 9.

In Fig. 9, we see that while the CUDA backend provides a reasonable speedup
of about 12, the multicore backend performs very poorly, with a speedup of just
over 3 for 12 threads. The bottleneck is most likely the host memory system.
There is so little computing that much CPU time is spent waiting for memory
load instructions to complete. In previous experiments we did achieve almost
linear speedups for the same kind of code on smaller matrices.

Comparing the performance of our implementation with the others, we see
that using the GPU(s) with less than 25% of the iteration space introduces so
much overhead that it is better to just use the CPUs. To actually outperform the
CUDA-only implementation, one has to use the GPU(s) for at least 80% of the
workload. Assigning the whole array to the CPUs with our implementation is
slower than the existing multicore backend. The other way around, assigning the
whole array to one GPU, achieves practically the same run time as the existing
CUDA backend. We believe this is due to the fact that the CUDA-bound threads
can perform the bookkeeping while its assigned GPU is computing the result,
thus overlapping overhead with computing. In contrast, CPU-bound threads
must do both computation and bookkeeping on the CPU.
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With one GPU, our solution achieves the best results with 15% of the workload
assigned to the host and 85% assigned to the one GPU. The added benefit from
using the CPUs is small, but still significant. Using only the two GPUs, we
practically double the performance compared with the existing CUDA backend.
The best results are achieved with 95% of the workload assigned to the GPUs
and 5% assigned to the CPUs. This, however, results in a marginal benefit only.
Although these results show that it is not worthwhile to use the CPUs when
more than one GPU is available for this particular problem, other problems,
containing sections that cannot be parallelized for the GPU, for example, can
still benefit from being able to use all the available CPU cores, rather than
running sequentially as is happening today.

7.3 Experiment 2: Up to 8 GPUs

To explore the scalability of simultaneously using multiple GPUs we run ex-
periments on another node of the DAS-4 system equipped with two quad-core
2.4 GHz Intel Xeon CPUs and 8 NVidia GTX580 GPUs. In this experiment we
increase the problem size to 10000 iterations and 13000x13000 elements. Given
the results of the first experiment we leave out the host and focus on increasing
numbers of GPUs instead.
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Fig. 10. Speedups over the CUDA backend obtained with our hybrid approach for a
varying number of GPUs, without CPU assistance

Considering the results shown in Fig. 10, we see that while using two GPUs
provides a nearly two-fold speedup, using 3 or more GPUs provides significantly
less improvements. This can be attributed to an increase in communication while
the problem size remains constant. As the iteration space is block-wise divided
between the different GPUs, two GPUs have only one communication partner
while any additional GPU has two. We try to minimize the impact of communi-
cation by not communicating redundant data. We believe it does a good job, as
the speedup obtained with 8 GPUs over the single GPU version is on par with
that obtained with the multicore version over the sequential one.
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8 Related Work

We are not aware of other functional approaches to programming heterogeneous
systems such as the one we presented in this paper. Recent projects such as
Accelerate [25] for Haskell or Microsoft’s Accelerator for F# [26] facilitate using
one GPU, but lack support for using the CPU simultaneously or for multiple
GPUs. This work also differs from our’s in general spirit: while Accelerate offers
a form of high-level CUDA programming with skeletons in Haskell, with SaC
we strive for a completely compiler-directed solution.

On the imperative programming side, a number of heterogeneous computing
environments have recently been developed. The approach has mostly been to
define and implement APIs. One such heterogeneous environment is Qilin[27].
Qilin is built on top of the Intel Threading Building Blocks (TBB) and the Nvidia
CUDA libraries to support both multicore CPUs and Nvidia GPUs. Compilation
is done dynamically, Qilin generates the machine code at runtime using static
scheduling of operations between the CPU and GPU. This static scheduling
however is adaptive. The Qilin system keeps track of operation runtimes in a
database, and uses this information to generate a better static schedule on each
program run. Qilin was shown to adapt well to varying input sizes, but the
amount of offline training required is unclear.

StarPU[22, 28] defines codelets as non-preemptible offloadable tasks. Program-
mers must provide the corresponding kernel functions themselves though. They
also have to specify the data dependencies of the codelets, which then allows
the StarPU runtime system to efficiently schedule tasks to each of the available
computation resources. The runtime system also provides a data management
facility. Data is divided into disjoint subsets using filters, which can be applied
recursively. Memory consistency uses a write-back model and a directory-based
protocol so that each piece of data has a state associated with it: modified,
shared, or invalid. Additionally, it is possible to define custom schedulers and
codelet drivers for different architectures. With our work in SaC, we intend to in-
troduce a similar system, yet simpler. One significant difference is that we intend
to make existing SaC code readily able to make use of heterogeneous computing
environments. Specifically, we do not want the programmer to specify codelets
or data dependencies, rather should the SaC-compiler infer them automatically.

Song et al. [29] developed a new methodology for matrix computations using
multi-core CPUs and multiple GPUs. In this work, a new tiling algorithm is
introduced as well as corresponding partition and load balancing schemes. From
a SaC perspective, the tiling schemes of Song et al. are rather specific, and out
of scope of current research. The work on minimizing communication would be
interesting to apply on a SaC scheduler, however.

Ravi et al. [13] describe a heterogeneous computing system for map-reduce
applications. Programmers only need to annotate the reduction processing struc-
ture, the compiler then generates code for multi-core CPUs and GPUs. At run-
time, the work is distributed dynamically. Support for reduction operations is
an integral part of SaC. Some results from their scheduling scheme may prove
useful for further work in a SaC scheduler.
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9 Conclusion

Nowadays, a typical computer contains at least one multicore CPU and one
GPU. Together these resources provide significant computing power, but their
heterogeneity requires a heroic programming effort to effectively harness it. In
this paper we presented compiler and runtime systems extensions for SaC to
effectively exploit heterogeneous hardware resources by concerting the existing
separate compilation paths for multicore CPUs and single GPUs and adding
support for arrays dynamically distributed across multiple memories. Thus, we
create support for systems with multiple multicore CPUs and multiple GPUs
without requiring programmers to explicitly code for such systems. Preliminary
experiments based on a hand-coded prototype show encouraging results.

We are currently implementing the proposed techniques in the SaC-compiler.
Once completed, we will investigate a larger range of existing SaC benchmarks
and applications. Future work beyond this will be in two directions. Firstly, we
aim at completing fully dynamic scheduling between CPU and GPUs. Secondly,
we would like to generalize the proposed techniques from host/device memo-
ries to network-connected cluster nodes, potentially each equipped with GPU
accelerators.
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