
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2012; 24:499–516
Published online 21 September 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1842

SPECIAL ISSUE PAPER

Asynchronous adaptive optimisation for generic data-parallel
array programming

Clemens Grelck 1,*,†, Tim van Deurzen 1, Stephan Herhut 2 and Sven-Bodo Scholz 2

1Institute of Informatics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
2School of Computer Science, University of Hertfordshire, AL10 9AB Hatfield, UK

SUMMARY

Programming productivity very much depends on the availability of basic building blocks that can be reused
for a wide range of application scenarios and the ability to define rich abstraction hierarchies. Driven by
the aim for increased reuse, such basic building blocks tend to become more and more generic in their
specification; structural as well as behavioural properties are turned into parameters that are passed on
to lower layers of abstraction where eventually a differentiation is being made. In the context of array
programming, such properties are typically array ranks (number of axes/dimensions) and array shapes
(number of elements along each axis/dimension). This allows for abstract definitions of operations such
as element-wise additions, concatenations, rotations, and so on, which jointly enable a very high-level
compositional style of programming, similar to, for instance, MATLAB. However, such a generic program-
ming style generally comes at a price in terms of runtime overheads when compared against tailor-made
low-level implementations. Additional layers of abstraction as well as the lack of hard-coded structural
properties often inhibits optimisations that are obvious otherwise. Although complex static compiler analy-
ses and transformations such as partial evaluations can ameliorate the situation to quite some extent, there
are cases, where the required level of information is not available until runtime. In this paper, we pro-
pose to shift part of the optimisation process into the runtime of applications. Triggered by some runtime
observation, the compiler asynchronously applies partial evaluation techniques to frequently used program
parts and dynamically replaces initial program fragments by more specialised ones through dynamic re-
linking. In contrast to many existing approaches, we suggest this optimisation to be done in a rather
non-intrusive, decoupled way. We use a full-fledged compiler that is run on a separate core. This measure
enables us to run the compiler on its highest optimisation-level, which requires non-negligible compi-
lation times for our optimisations. We use the compiler’s type system to identify the potential dynamic
optimisations. And we use the host language’s module system as a facilitator for the dynamic code modi-
fications. We present the architecture and implementation of an adaptive compilation framework for Single
Assignment C, a data-parallel array programming language. Single Assignment C advocates shape-generic
and rank-generic programming with arrays. A sophisticated, highly optimising compiler technology nev-
ertheless achieves competitive runtime performance. We demonstrate the suitability of our approach to
achieve consistently high performance independent of the static availability of array properties by means
of several experiments based on a highly generic formulation of rank-invariant convolution as a case study.
Copyright © 2011 John Wiley & Sons, Ltd.

Received 16 February 2011; Revised 18 June 2011; Accepted 28 July 2011

KEY WORDS: adaptive compilation; data-parallel computation; shape generic programming

*Correspondence to: Clemens Grelck, Institute of Informatics, University of Amsterdam, Science Park 904, 1098 XH
Amsterdam, The Netherlands.

†E-mail: c.grelck@uva.nl

Copyright © 2011 John Wiley & Sons, Ltd.



500 C. GRELCK ET AL.

1. INTRODUCTION

Software engineering is characterised by a fundamental dilemma: programming productivity versus
runtime performance. In an ideal world, program code would be highly generic, easy to understand,
abstract, well maintainable and portable, while at the same time, it would harness the highest levels
of performance that the hardware it runs on is able to deliver. In the real world, any software is some-
where in the continuous space between these extremes. Different software engineering communities
make different choices where to locate themselves in this continuous space depending on external
demands. If time-to-market is essential for success while the resulting program only needs to run
‘fast enough’, the choice will certainly be a different one than in a situation where performance
is essential as in high-performance computing. This motivates the use of different programming
languages and tool chains in different environments.

Optimising compilers aim at bridging the gap between the programmer’s desire for generic,
re-usable programs adhering to software engineering principles such as abstraction and composi-
tion and the necessities of executable code to achieve high runtime performance in sequential and,
increasingly important, (implicitly) parallel execution. Optimising compilers, analyse program code
and infer static properties that trigger program transformations as appropriate. In essence, they try
to overcome the general dilemma; with varying success, of course.

The effectiveness of static analysis often is limited for various reasons. It may depend on find-
ing a suitable order of program transformations; it may even require transformations that introduce
overheads, so that they can enable further optimisations. To make matters worse, most analyti-
cal approaches often fail to identify the best possible optimisation strategies analytically. Recent
research in this area suggests that purely analytical approaches are less successful than those
approaches based on machine learning techniques [1].

Even if these technical challenges could be overcome completely, there inevitably remains the
problem that some crucial information about the data to be processed may simply not be avail-
able up until runtime. In particular, in the context of generic array programming, lack of structural
information for input data, or intermediate results can have a detrimental impact on program run-
times. The efficient execution of applications written in a high-level combinator style requires, for
instance, advanced loop fusion techniques [2]. Their effectiveness, however, crucially depends on
the level of static knowledge about the data involved. Even advanced symbolic analyses [3, 4],
although often successful, cannot fully eliminate this dependency. Ultimately, only radically spe-
cializing generic programs to actual input data guarantees sufficient static knowledge for a compiler
to produce highly efficient code. Yet, for many applications, the increased size of executables
and additional compilation time caused by the specialisation for large numbers of potential inputs
is prohibitive.

Driven by this observation, we propose to use a more dynamic approach. Instead of producing a
range of specialized versions at compile time, we delay program specialization until runtime. Other
than common approaches to runtime specialisation, we make use of an existing full-fledged com-
piler without requiring any substantial modifications to it. The key ideas are to run the compiler
asynchronously on a separate core, and to employ existing mechanisms in the compiler to trigger
and to implement the actual code modifications. We demonstrate the feasibility of our approach
in the context of the compilation framework for the data-parallel functional array language, Single
Assignment C (SAC) [5]. SAC advocates shape-generic and rank-generic programming on multi-
dimensional arrays: SAC supports functions that abstract from the concrete shapes (extent along
dimensions) and even from the concrete ranks (number of dimensions) of argument arrays. Further-
more, functions yield result arrays whose shape and rank are determined by some computation in
the function itself. Depending on the amount of compile time structural information, the type system
of SAC distinguishes three classes of arrays that induce three different runtime array representations:
From non-generic arrays whose structure is fully known at compile time, via shape-generic arrays
where only the rank but not the extent of each dimension is known up to rank-generic arrays that
have a fully dynamic shape.

From a software engineering point of view, it is (usually) desirable to specify functions on
rank-generic input type(s) to maximise opportunities for code reuse. Typical examples for such

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



ASYNCHRONOUS OPTIMISATION FOR GENERIC ARRAY PROGRAMMING 501

rank-generic operations are extensions of scalar operators (arithmetic, logical, relational etc.) to
entire arrays in an element-wise way or common structural operations like shifting and rotation
along one or multiple axes of an array. In fact, rank-generic functions prevail in the extensive SAC

standard library.
The benefits that this genericity offers come at a price. In comparison with non-generic code,

the runtime performance of equivalent operations is substantially lower for shape-generic code and,
again, substantially lower for rank-generic code [6]. The reasons are manifold and their individual
impact operation-specific, but three categories can be identified notwithstanding: First, generic run-
time representations of arrays need to be maintained, and generic code tends to be less efficient,
for example no static nesting of loops can be generated to implement a rank-generic multidimen-
sional array operation. Second, many of the SAC-compiler’s advanced optimisations [7, 8] are just
not as effective for generic code because the necessary code properties to trigger certain program
transformations cannot be inferred. Third, in automatically parallelised code [9], many organisa-
tional decisions must be postponed until runtime, and the ineffectiveness of optimisation leads to
excessive numbers of synchronisation barriers and superfluous communication.

In order to reconcile the desires for generic code and high runtime performance, the SAC-compiler
aggressively specialises rank-generic code into shape-generic code, and shape-generic code into
non-generic code. However, regardless of the effort put into compiler analyses for rank and shape
specialisation, this approach is fruitless if the necessary rank and shape information is simply not
available at compile time for whatever reason. Data may be read from a file at runtime, or SAC code is
called externally from a non-SAC environment via the sac4c foreign language interface [10]. In par-
ticular, the latter is more and more common as we use SAC in conjunction with the component-based
coordination language S-Net [11].

To mitigate the negative effect of generic code on runtime performance where specialisation is
not an option for one or more of the aforementioned reasons, we propose an adaptive compilation
framework that incrementally adapts shape-generic and rank-generic code to the concrete shapes and
ranks used in a specific instance of a program. After all, at runtime, full shape information is always
available. Our approach is motivated by the observation that the number of different array shapes
that effectively appear in generic array code, although theoretically unbounded, often is relatively
small in practice.

Two aspects set our adaptive compilation framework apart from existing just-in-time compilation
and dynamic optimisation/code tuning: For one, we dynamically adapt generic code to structural
properties of the data it operates on, whereas just-in-time compilation of byte code (or similar) aims
at adapting code to the execution environment, for example by generating native machine code.
The second and probably more far-reaching difference is that we inherently assume a multicore
execution environment where computing resources are available in abundance and often cannot
completely be exploited by a running program in an efficient way. Although the SAC-compiler
is equipped with very effective implicit parallelisation technology [9], experience says that the
difference between using 14 cores of a 16-core machine and using all cores for running a given
program is often marginal because the additional overhead for organising parallel execution more
and more outweighs the benefit with each core joining in into collaborative execution. At this
point, we propose to set apart a small (configurable) number of cores for the purpose of incre-
mentally adapting the binary code base to the array shapes actually appearing during a program
run. Our approach takes dynamic recompilation out of the critical path of an application. This
property is instrumental in using a heavy-weight, highly optimising compiler like sac2c in an
online setting.

The remainder of the paper is organised as follows. Section 2 provides a few more details on the
design of SAC. In Section 3, we demonstrate the generic programming style of SAC by means of
a small case study, generic convolution. In Section 4, we sketch out the compilation tool chain of
SAC and explain why generic and non-generic codes may have very different runtime behaviour. We
present our ideas on adaptive compilation in more detail in Section 5 and discuss implementation
issues in Section 6. In Section 7, we report on extensive experiments applying our adaptive compi-
lation framework to the case study code. Eventually, we browse through related work in Section 8,
draw conclusions in Section 9 and sketch out directions of future work in Section 10.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



502 C. GRELCK ET AL.

2. SINGLE ASSIGNMENT C IN A NUTSHELL

As the name ‘Single Assignment C’ suggests, SAC leaves the beaten track of functional languages
with respect to syntax and adopts a C-like notation. This is meant to facilitate familiarisation
for programmers who rather have a background in imperative languages than in declarative lan-
guages. Core SAC is a functional, side-effect free subset of C: we interpret assignment sequences
as nested let-expressions, branching constructs as conditional expressions and loops as syntactic
sugar for tail-end recursive functions. Details on the design of SAC and the functional interpretation
of imperative-looking code can be found in [5]. Despite the radically different underlying execu-
tion model (context-free substitution of expressions versus step-wise manipulation of global state),
all language constructs adopted from C show exactly the same operational behaviour as expected
by imperative programmers. This allows programmers to choose their favourite interpretation of
SAC code whereas the compiler exploits the benefits of a side-effect free semantics for advanced
optimisation and automatic parallelisation [9].

On top of this language kernel, SAC provides genuine support for truly multidimensional and
truly stateless/functional arrays advocating a shape-generic and rank-generic style of programming.
Conceptually, any SAC expression denotes an array; arrays can be passed to and from functions call-
by-value. A multidimensional array in SAC is represented by a rank scalar defining the length of the
shape vector. The elements of the shape vector define the extent of the array along each dimension,
and the product of its elements defines the length of the data vector. The data vector contains the
array elements (in row-major order). Figure 1 shows a few examples for illustration. Notably, the
underlying array calculus nicely extends to scalars, which have rank zero and the empty vector as
shape vector. Furthermore, we achieve a complete separation between data assembled in an array
and the structural information (rank and shape).

The type system of SAC (at the moment) is monomorphic in the element type of an array but poly-
morphic in the structure of arrays, that is rank and shape. As illustrated in Figure 2, each element
type induces a conceptually unbounded number of array types with varying static structural restric-
tions on arrays. These array types essentially form a hierarchy with three levels. On the lowest
level, we find non-generic types that define arrays of fixed shape, for example int[3,7] or just
int. On an intermediate level of genericity, we find arrays of fixed rank, for example int[.,.].
And, on the top of the hierarchy, we find arrays of any rank, for example int[*]. The hierarchy
of array types induces a subtype relationship, and SAC supports function overloading with respect
to subtyping.

j

k
i

10

7

1211
1 32

8 9

4 5 6

3
6

1 2
4 5
7 8 9

[ 1, 2, 3, 4, 5, 6 ]

42

rank: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

rank: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

rank: 1
shape: [ 6 ]
data: [1,2,3,4,5,6]

rank: 0
shape: [ ]
data: [42]

Figure 1. Truly multidimensional arrays in SAC and their representation by data vector, shape vector and
rank scalar.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



ASYNCHRONOUS OPTIMISATION FOR GENERIC ARRAY PROGRAMMING 503

...

... ... ......

int[.]

int[  ]

int[.,.]

int int[1] int[42] int[1,1] int[3,7]

rank: dynamic
AUD Class:

shape: static

shape: dynamic

AKD Class:
rank: static
shape: dynamic

AKS Class:
rank: static

*

Figure 2. Three-level hierarchy of array types: arrays of unknown dimensionality (AUD), arrays of known
dimensionality (AKD) and arrays of known shape (AKS).

SAC only provides a small set of built-in array operations. Essentially, there are primitives
to retrieve data pertaining to the structure and contents of arrays, for example an array’s rank
(dim(array)) or its shape(shape(array)). A selection facility provides access to individual elements
or entire subarrays using a familiar square bracket notation: array[idxvec]. The use of a vector for
the purpose of indexing into an array is crucial in a rank-generic setting: if the number of dimen-
sions of an array is left unknown at compile time, any syntax that uses a fixed number of indices
(e.g. comma-separated) makes no sense whatsoever.

Whereas simple (one-dimensional) vectors can be written as shown in Figure 1, that is as a
comma-separated list of expressions enclosed in square brackets, any rank-generic or shape-generic
array is defined by means of WITH-loop expressions. The WITH-loop is a versatile SAC-specific array
comprehension or map-reduce construct. Because the ins and outs of WITH-loops are not essential to
know for reading the rest of the paper, we skip any detailed explanation here and refer the interested
reader to [5] for a complete account.

3. CASE STUDY: GENERIC CONVOLUTION

In order to illustrate the shape-generic high-level programming style typical of SAC and, in conse-
quence, to demonstrate the effect of the proposed adaptive compilation framework, we introduce a
small case study: generic convolution with iteration count and convergence check. This computa-
tionally non-trivial and application-wise highly relevant numerical kernel fits on half a page of SAC

code; Figure 3 contains the complete implementation.

module Convolut ion ;

use Array : a l l ;

export { convo l u t i on } ;

double [ ] convo l u t i on ( double [ ] A, double epsi lon , int max i t erat i ons )
{

new = A;

do {
o ld = A new ;
new = convo l u t i on st ep ( A old ) ;

}
while ( ! i s convergen t ( A new , A old , epsi l on ) && i < m ax i t erat i ons ) ;

return ( A new ) ;
}

inl ine double [ ] convo l u t i on st ep ( double [ ] A)
{

for ( i =0; i < dim (A) ; i ++) {

i = 0;

A

A
A
i += 1;

R = A;

R += r o t at e ( i , 1 , A) + r o t at e ( i , − 1, A) ;
}

return ( R / t od ( 2 dim (A) + 1 ) ) ;
}

inl ine bool i s convergen t ( double [ ] new , double [ ] old , double epsilon )
{

return ( a l l ( abs( new − old ) < epsilon ) ) ;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Figure 3. Case study: generic convolution kernel with convergence check.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



504 C. GRELCK ET AL.

The first line of code defines a module convolution. This module makes intensive use of the array
module from the SAC standard library that defines a large number of typical array operations such
as array extensions of the usual scalar primitive operators and functions, structural operations like
shifting and rotation or reduction operations like sum or product of array elements. The last line
of the module header declares that our module convolution exports a single symbol, that is the
function convolution.

The function convolution is defined in lines 7–21; it expects three arguments: an array A of
double precision floating point numbers of any shape and any rank (numbers of dimensions), which
is the array to be convolved, a double precision floating point number epsilon that defines the
desired level on convergence and, last but not least, an integer number max iterations that is sup-
posed to prematurely terminate the convolution after a given number of iterations regardless of the
convergence behaviour.

The body of the function convolution essentially consists of the iteration loop, a C-style do/while-
loop. This nicely demonstrates the close syntactical relationship between SAC and C. Semantically,
however, the SAC do/while-loop is merely syntactic sugar for an inlined tail-recursive function.
Nonetheless, the SAC programmer hardly needs to reason about such subtle semantical differences
as the observable runtime behaviour of the SAC code is exactly the same as one would expect from
the corresponding C code.

Within the do/while-loop of function convolution, we essentially perform a single convolution
step that itself is implemented by the function convolution step defined in lines 23–32. This func-
tion expects an array A of double precision floating point numbers of any shape and any rank, and
yields a new array of the same shape and rank. In our example, we chose cyclic boundary condi-
tions as exemplified by the use of the rotate function from the SAC standard array library. In fact,
the function rotate(index, offset, array) creates an array that has the same rank and shape as the
argument array, but with all elements rotated by offset index positions along array axis (or dimen-
sion) index. With the for-loop in lines 27–29, we rotate the argument array twice in each dimension,
by one element towards decreasing and by one element towards increasing indices. Each time, we
combine the rotated arrays using element-wise addition, as implemented by an overloaded version
of the + operator. In essence, this implements a rank-invariant direct-neighbour stencil operation,
that is in the one-dimensional case, we have a three-point stencil, in the two-dimensional case, a
five-point stencil, in the three-dimensional case, a seven-point stencil and so on.

In many concrete applications, we will have different weights for different neighbours. In order to
bound the complexity of our case study, we refrain from supporting this here, albeit such an exten-
sion would be rather straightforward. Instead, we merely compute the arithmetic mean, that is all
neighbours and the old value have the same weight. To achieve this, we divide all elements of array
R by the number of neighbours, plus one for the old value. The function tod merely converts an
integer number into a value of type double.

Coming back to the definition of the function convolution, we may want to have a closer look at
the loop predicate of the do/while-loop in line 18. We continue as long as we neither detect con-
vergence nor the maximum number of iterations is reached. Whereas the latter requires a simple
comparison on integer scalar values, the former makes use of the generic convergence test defined
in lines 34–37. The function convergent checks whether for all elements of the argument arrays new
and old, the absolute value of the difference is less than the given convergence threshold epsilon.
This function definition is a nice example of the SAC programming methodology that advocates
the implementation of new array operations by composition of existing ones. All four basic array
operations used here, that is element-wise subtraction, element-wise absolute value, element-wise
comparison with a scalar value and reduction with Boolean conjunction (all), are defined in the SAC

standard library.
We have already discussed potential further generalisation of this convolution kernel with respect

to using different weights for different neighbour elements. Another potential extension would be
a generalisation of the stencil itself to cover different notions of neighbourship in a rank-invariant
specification. Again, we refrain from doing so here, as it would make the code more difficult to
understand, while we do not expect any different behaviour with respect to the adaptive compilation
framework we propose in this paper.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



ASYNCHRONOUS OPTIMISATION FOR GENERIC ARRAY PROGRAMMING 505

4. SINGLE ASSIGNMENT C COMPILATION TOOL CHAIN

Figure 4 shows the essential components of the SAC compiler tool chain. Following the inevitable
lexical and syntactic analysis, we first do a functionalisation of the intermediate code. In this com-
piler phase, most of the imperative-looking features of SAC like for instance C-style branches and
loops are converted into properly functional conditional expressions and fully-fledged tail-recursive
functions, respectively. The following type inference and specialisation compiler phase infers as
concrete as possible array types based on static analysis of the code. The by far largest and most
important part of the SAC compiler tool chain, however, are the high-level optimisations. This is
the heart of the compiler. We assemble a large number of compiler optimisations and aim at com-
puting the fixed point of intermediate program representation with respect to the various program
transformations. Among them are many text book compiler optimisations, such as function inlining
or common subexpression elimination, but likewise a large number of SAC-specific optimisations
geared towards the generic array programming context.

Following an aggressive, typically large-scale reorganisation of intermediate code by the various
compiler optimisations, we have two fundamental lowering steps. The memory management com-
piler phase introduces symbolic memory allocation and de-allocation as well as reference counting
operations into the code [12]. The defunctionalisation compiler phase revokes many of the trans-
formations made earlier; for instance, tail-recursive functions are again transformed into loops. The
resulting intermediate code may, on demand, automatically be parallelised [9] before we finally
generate ANSI C code. Any ANSI-compliant C compiler can then be used to obtain executable
binary code.

We highlight the architecture of the SAC compiler tool chain here to illustrate how little it
resembles a lightweight just-in-time compiler. Instead, it is a heavy-weight highly optimising com-
piler and designed for exactly this purpose: generating efficient code, not efficiently generating
code. Of course, one could accelerate compilation by reducing the amount of optimisation or
even switching off optimisation entirely, but that runs counter our purpose. We particularly aim
at exploiting the optimisation capabilities with the proposed adaptive compilation framework, just
at application runtime.

In the remainder of this section, we will elaborate on a few issues mentioned in the introduc-
tion that explain a potentially drastic performance difference between generic array code and code

Scanner / Parser

Code Generation

Backend Compiler
ANSI C

Function Inlining

Dead Code Removal
Common Subexpression Elimination
Constant Propagation
Constant Folding
Copy Propagation
Algebraic Simplification
Loop Unrolling

Loop Invariant Removal
Memory Management

Functionalisation

High−Level Optimisations

Type Inference
Type Specialisation

De−Functionalisation

Parallelisation

Memory Reuse

With−Loop Unrolling
With−Loop Invariant Removal
With−Loop Folding
With−Loop Scalarisation
With−Loop Fusion
Automatic Array Padding
Index Vector Elimination

Array Elimination

Figure 4. Organisation of the SAC compiler tool chain.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



506 C. GRELCK ET AL.

float float floatX dat a ;

const int X dim =2;
const int X shp0=42;
const int X shp1=21;

X dat a ;
int X desc ;

const int X dim =2;
int X shp0=X desc [ 1 ] ;
int X shp1=X desc [ 2 ] ;

X dat a ;
int X desc ;
int X dim=X desc [ 0 ] ;

Figure 5. Different runtime representations for arrays of (statically) known shape (AKD) left, arrays of
known dimension (AKD) center and arrays of unknown dimension (AUD) right.

that is either originally non-generic or specialised by the compiler at an early compilation stage.
Going from bottom to top, Figure 5 illustrates the different runtime representations used by SAC for
arrays of (statically) known shape (AKS), arrays of known dimension (AKD) and arrays of unknown
dimension (AUD) for the example of a 42�21-matrix of single precision floating point numbers X.
In each case, we can identify the data vector X_data. In the AKS case, we can store all structural
information as constants, that is the rank of the array (X_dim) and the extent along the two dimen-
sions (X_shp0 and X_shp1). Whenever structural information of the matrix X is needed further in
the code, the C compiler can immediately use these constant values in assembly generation. In the
AKD case, the data vector X data must be accompanied by a descriptor X desc that dynamically
carries the structural properties of an array together with the data vector around between function
invocations. Still, the rank can be stored as a constant, and the shape information can be cached in
registers within a function context for more efficient access. Last but not least, in the AUD case,
we have the same descriptor as in the AKD case, but here we also need to extract the rank from the
descriptor. We may cache the rank information in a register, but because we do not know the number
of dimensions at compile time, we cannot do the same for the shape information. Consequently, any
access to this information inflicts a costly memory load operation to retrieve the information directly
from the descriptor.

In analogy to the different data representations shown in Figure 5, we can also identify an impor-
tant difference in the generated code operating on such data. As long as we at least know the
rank of arrays statically, (irregular) operations on them can still be represented as efficient nestings
of for-loops. As soon as we are confronted with rank-generic code, we need to mimic a multi-
dimensional loop structure by a single loop and costly retrieval of a conceptually multi-dimensional
index location from a single scalar index.

The third major source of overhead of generic code as opposed to non-generic code stems from
reduced effectiveness of high-level optimisation. As an example, consider our case study code in
Figure 3. If we know the rank of the argument array to function convolution_step at compile time
(e.g. through specialisation), we can unroll the for-loop in lines 27–29 as typically the rank will be
a relatively small integer number. As a consequence, the induction variable i in the application of
rotate becomes a constant. In conjunction with the already constant rotation offset, we can highly
optimise/adapt the rotation operation to the concrete requirement. Furthermore, we can condense
the now statically known number of rotations into a single array comprehension (with-loop) from
which we can generate executable code that closely resembles an optimised low-level imperative
implementation of the convolution step.

5. ADAPTIVE COMPILATION FRAMEWORK

The architecture of our adaptive compilation framework is sketched out in Figure 6. A key design
choice in our framework is the separation of the gathering of profiling information that triggers spe-
cialisation (bottom part of Figure 6) from the actual runtime specialisation itself (the grey boxes in
the upper part of Figure 6). Our aim was to keep the implementation of the former as lean as possible
to keep the impact on compiled application code minimal. Instead, most of the new functionality is
encapsulated in the dynamic specialisation controller. The running program and the dynamic spe-
cialisation controllers communicate with each other exclusively via two shared data structures: the
dispatch function registry and the specialisation request queue (shown as dark boxes in the center of
Figure 6). This lean and well-defined interface facilitates the use of multiple specialisation controller

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



ASYNCHRONOUS OPTIMISATION FOR GENERIC ARRAY PROGRAMMING 507

Executable Program

Dynamic Specialisation
Controller

Specialisation

Request

Queue Registry
Function
Dispatch

file
request

lookup
dispatch
function

and
retrieve

inspect

Binary
Code

Code
Intermediate

link
with

generate

load

create

update

link with SAC
Module

SAC Compiler

invoke

Figure 6. Architecture of our adaptive compilation framework.

instances on the one side and supports multithreaded execution of the program itself on the other
side of the interface.

Our design makes use of the existing function call infrastructure within executable (binary) SAC

programs generated by our SAC compiler sac2c. Such programs (generally) consist of binary
versions of shape-specific, shape-generic and rank-generic functions. Any shape-generic or rank-
generic function, however, is called indirectly through a dispatch function that selects the correct
instance of the function to be executed in the presence of function overloading by the programmer
and static function specialisation by the compiler. This dispatch function serves as an ideal hook
to add further instances (specialisations) of functions created at runtime. Because adding more and
more instances also affects function dispatch itself, we need to change the actual dispatch function
each time we add further instances. To achieve this, we no longer call the dispatch function directly,
but do this through a pointer indirection that allows us to exchange the dispatch function dynami-
cally as needed. We call the central switchboard that implements the function call forwarding the
dispatch function registry.

Figure 7 gives the pseudo code for function dispatch with dynamic specialisation. Before actu-
ally calling the dispatch function retrieved from the registry, we file a specialisation request in the
specialisation request queue. Apart from information that allows us to uniquely identify the tar-
get of the call, that is, the function name, the module name where the function originates from,
and so on, this request contains the concrete shapes of all actual arguments to the generic for-
mal parameters of the called function. It is essential here that queuing specialisation requests is
implemented as lightweight as possible as this operation is performed for every call to a generic
function. To achieve this, we have slimmed the operation down as far as possible. Most information
contained in the specialisation request is precomputed and preassembled at compile time. Further-
more, we do not perform any sanity checks during the enqueue operation. These are postponed
until the item is later processed by a separate worker thread. This design is geared towards reducing

d i sp at ch ( arguments ) {
Collect rank and shape information from runtime descriptors of arguments.

request ( ” foo ” ,
,”raBeludom”

types ,
shapes ,
pointer into registry ) ;

p t r = address stored in the registry ;

p t r ( arguments ) ;

1 f oo
2
3
4 enqueue
5
6
7
8
9

10 f o o
11
12 f o o
13 }

Figure 7. Pseudo code describing the interplay of function dispatch and runtime specialisation.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



508 C. GRELCK ET AL.

the impact of the proposed adaptive compilation framework on the genuine program execution to
a minimum.

Within the same process that runs the executable program, one or more threads are set apart act-
ing as dynamic specialisation controllers. A dynamic specialisation controller is in charge of the
main part of the adaptive compilation infrastructure; it always runs asynchronous from the program
itself. A dynamic specialisation controller inspects the specialisation request queue and retrieves
specialisation requests as they appear. It first checks whether the specialisation requested already
exists or is currently in the process of being constructed. If so, the request is discarded. Other-
wise, the dynamic specialisation controller creates the (compiler-) intermediate representation of
the specialised function instance to be generated.

The dynamic specialisation controller then invokes the SAC-compiler sac2c on the intermediate
representation, that is the dynamic specialisation controller effectively turns itself into the SAC-
compiler. As such, it now starts the standard compilation process for the generated intermediate
representation. During this process, the compiler dynamically links with the (compiled) module
the function stems from and retrieves a partially compiled intermediate representation of the func-
tion’s implementation and potentially further dependent code from the binary of the module. This,
again, exploits a standard feature of the SAC module system that was originally developed to support
inter-module (compile time) optimisation [13].

Eventually, the SAC-compiler (with the help of a backend C compiler) generates another shared
library containing binary versions of the specialised function(s) and one or more new dispatch func-
tions taking the new specialisations into account in their decision. Following the completion of the
SAC-compiler, the dynamic specialisation controller regains control.

Before attending to the next specialisation request, two tasks still need to be performed to enable
the new specialised code in the running program. Firstly, the controller links the running process
with the newly created shared library. As the module name chosen for the stub is unique, this will
make a new symbol for the dispatch code of the specialised function available. In a second step,
the controller updates the dispatch function registry with the new address of this new symbol for
dispatch function(s) from the newly compiled library. As a consequence, any subsequent call to the
now specialised function originating from the running program will directly be forwarded to the
specialised instance rather than to the generic version and benefit from (potentially) substantially
higher runtime performance without further overhead.

6. IMPLEMENTATION ASPECTS

We have extended the existing SAC compiler and runtime system in three aspects. Firstly, we have
modified the code generation of the compiler to provide the required information to the specialisa-
tion controller. Secondly, we have implemented hooks in the compiler that allow the specialisation
controller to initiate the specialisation of requested functions. And, last but not least, we have
implemented the specialisation controller itself as part of the SAC runtime system.

To control the collection and reporting of runtime information, we have added an additional flag
to the compiler. The option –rtspec– will enable the required extension to code generation. The pro-
duced executable differs from standard executables in mainly three aspects. Firstly, we extend the
dynamic dispatch code that is generated for function applications where we cannot statically deter-
mine the matching instance. Additionally to dynamically choosing the appropriate instance, the
extended dispatch code also files a corresponding specialisation request to the specialisation request
queue. As functions are always dispatched statically with respect to the base types of arguments,
this information mainly comprises the rank and dimensionality of each argument. Furthermore, we
send the index into the global registry that corresponds to the called function. This information is
used twofold: It allows us to later identify which entry in the registry to update. More importantly,
however, the index can be used as a unique token to identify the function to specialise. We use this
token to lookup the information that is required in the communication with the compiler.

Note here that we send that shape information rather blindly. In particular, we do not perform
any checks on whether a specialisation is actually necessary at this point. To keep the runtime

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



ASYNCHRONOUS OPTIMISATION FOR GENERIC ARRAY PROGRAMMING 509

overhead within the actual program as low as possible, we offload these checks into the specialisa-
tion controller.

The specialisation request queue itself is implemented in a fairly standard way using condition
variables to signal the availability of requests to the specialisation controllers and mutual exclu-
sion to synchronise concurrent access to both ends of the queue by multiple threads collaboratively
sharing the productive computation as well as multiple instances of specialisation controllers to
satisfy requests.

Secondly, we reroute all applications of dispatch functions via the dispatch function registry. This
way, we are able to dynamically rebind function applications to updated implementations of dispatch
functions. All that is required is an update to the function pointer in the registry.

Last but not least, we have also modified static function dispatch in the compiler. If no runtime
specialisation is requested, we usually dispatch a function call statically as soon as we can identify
a single matching instance. However, such an instance could still be rank-generic or shape-generic.
When using runtime specialisation, such a dispatch is not desirable. As we use the dynamic dispatch
code to trigger runtime specialisation, an application that has been statically dispatched would never
be optimised. Therefore, when runtime specialisation is enabled, we only dispatch a function appli-
cation statically if we were able to derive full shape knowledge for the arguments, and the matching
instance is an exact match for those shapes. In those situations, no further specialisation would
be possible.

The second work package in our implementation, the special version of the SAC compiler that
creates new specialisations on the fly, turned out to require surprisingly implementation effort as
we capitalise on a combination of existing compiler features. To maximise reuse of the existing
compiler implementation, we have not created a dedicated interface to the compiler for runtime spe-
cialisation. Instead, the dynamic specialisation controller creates the intermediate representation of a
standard SAC module. For example, to create a specialised instance of the convolution step function
from Figure 3 for a 10� 10 matrix of double values, the intermediate representation corresponding
to the module shown in Figure 8 is created.

Essentially, the generated stub module consists of a module (name space) declaration (line 1), an
import-statement for the symbol to be specialised (line 3), an export-statement for the new (spe-
cialised) symbol to be created (line 5) and, most importantly, a specialisation directive (line 7). The
import-statement in Line 3 instructs the compiler to load the definition of the function to be spe-
cialised into the current name space, that is, the otherwise empty module rtspec_mod_001. We use
the name rtspec_mod_001 as an illustrative example. Any name can be used as long as it is unique
during the runtime of the application. In particular, no two specialisation requests may use the same
module name. Our implementation uses an appropriate strategy to derive such module names.

The second essential component of the generated intermediate representation is the specialisa-
tion directive to the compiler in Line 7. This directive is directly generated from the specialisation
request data extracted from the queue. As can be seen, large parts of the required data, for exam-
ple, the return type and the types of non-generic arguments, are identical for all valid specialisation
requests. These components of the request can and will be statically preassembled to accelerate the
enqueueing of requests.

During this process, the compiler dynamically links with the (compiled) module the function
stems from and retrieves a partially compiled intermediate representation of the function’s imple-
mentation and potentially further dependent code from the binary of the module. This, again,
exploits a standard feature of the SAC module system that was originally developed to support
inter-module (compile time) optimisation [13].

1 module rtspec mod 001 ;
2
3 import Convolut ion : { convo lu t i on s tep } ;
4
5 export { convo lu t i on s tep } ;
6
7 specia l ize double [ ] convo lu t i on s tep ( double [ 10 ,10 ] A ) ;

Figure 8. Intermediate representation of a stub module used for a specialisation request for the function
convolution step from Figure 3.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



510 C. GRELCK ET AL.

All that remains to be done to exploit the existing machinery for runtime specialisation is to cre-
ate the preceding code, at least in form of an abstract syntax tree in memory, start the compilation
process and dynamically add the resulting library. This functionality, among other bookkeeping, is
implemented in the specialisation controller. In the simplest case, the controller dequeues a special-
isation request, creates the corresponding abstract syntax tree to trigger the specialisation, enacts
the compiler and collects back the updated library. That library is then dynamically linked to the
program, and the global registry is updated.

However, as the augmented program submits specialisation requests blindly, we might end up
with many duplicate requests for specialisations that have already been performed. To prevent use-
less specialisation runs, the controller keeps track of requests it has acted upon and automatically
disregards future requests of the same kind. Using this technique, we ensure that each request is
only acted upon once.

Our adaptive compilation framework is carefully designed such that the associated runtime over-
head in the executable program is minimal. Essentially, it boils down to an indirection in calling
the dispatch function and the filing of a specialisation request. All the remaining work is done con-
currently to the execution of the program itself by one or more dynamic specialisation controllers.
Our essential assumption is that these run on different processors or cores and as such use resources
that would otherwise remain unused or whose exploitation for running the program itself would, at
most, have a marginally positive effect on overall performance.

7. EXPERIMENTAL EVALUATION

Our experimental evaluation is based on the generic programming case study introduced in
Section 3. We use an AMD Phenom II X4 965 quad-core system running at 3.4-GHz clock fre-
quency. It is equipped with 4-GB DDR3 memory, and the operating system is Linux with kernel
2.6.38-rc1.

We ran our generic convolution kernel for a total of six different problem sizes. For each problem
size, we recorded the execution time of each individual iteration of the convolution using a high
resolution real-time clock. We uniformly set the number of iterations to 50 while we use a conver-
gence threshold and initial array values, which guarantee that we effectively run these 50 iterations.
Because we read some initialisation data from a file, the SAC compiler is unable to deduce this
information statically, and we effectively evaluate the convergence check in every iteration.

To isolate the effect of adaptive compilation more clearly, we refrain from running the application
itself with multiple threads for now and only employ a single instance of the specialisation controller
throughout the experiments.

Figure 9 shows experimental results for three different matrix sizes: 500� 500, 1000� 1000 and
10, 000 � 5, 000. Each experiment is made with and without runtime specialisation enabled. For
all three problem sizes, we can easily identify a recurring pattern in the runtime behaviour. At the
beginning, code with and without runtime specialisation enabled takes about the same time per iter-
ation. In principle, code with runtime specialisation enabled should run slightly slower because it
contains additional instructions for spawning the specialisation controller thread, identifying poten-
tial specialisation cases and enqueuing specialisation requests. In the given example, this overhead
of runtime specialisation seemingly is negligible compared with the computational workload of
convolution even for the smallest problem size investigated.

In our case study, the first convolution iteration triggers the first specialisation requests for func-
tions convolution step and is convergent. As soon as specialised and, in consequence, far better
optimised versions of these functions become available, we can identify a dramatic decrease in sin-
gle iteration runtimes. As the problem size remains constant throughout each individual program
run, no further specialisations occur, and the shorter iteration runtime remains constant until the end
of each program run.

The time it takes to dynamically recompile versions of the functions convolution step and is
convergent specifically adapted to the individual experimental settings is, of course, independent
of these settings in general and the problem size used in particular. Hence, the larger the problem
size is, the less convolution iterations we need to wait until adapted code becomes available. For a

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



ASYNCHRONOUS OPTIMISATION FOR GENERIC ARRAY PROGRAMMING 511

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50

T
im

e 
in

 s
ec

on
ds

 p
er

 c
on

vo
lu

tio
n 

st
ep

Convolution steps

Experiment 1: 500x500 matrix
Runtime specialisation disabled
Runtime specialisation enabled

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

T
im

e 
in

 s
ec

on
ds

 p
er

 c
on

vo
lu

tio
n 

st
ep

Convolution steps

Experiment 2: 1000x1000 matrix
Runtime specialisation disabled
Runtime specialisation enabled

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

T
im

e 
in

 s
ec

on
ds

 p
er

 c
on

vo
lu

tio
n 

st
ep

Convolution steps

Experiment 3: 10,000x5,000 matrix
Runtime specialisation disabled
Runtime specialisation enabled

Figure 9. Experimental results obtained by applying the case study code discussed in Section 3 to matrices
of different size with runtime specialisation disabled and enabled.

500 � 500 matrix, it takes more than 35 iterations until the adapted version of the convolution step
function becomes available. Because we set the maximum number of iterations to 50 in our experi-
ments, we wait in vain for a specialised version of the convergence check. For a 1000�1000matrix,
we only wait for nine iterations to obtain an optimised convolution step that leads to a more than
fivefold performance increase. After another 26 iterations, we also obtain the optimised convergence
check, which makes the execution time of a single convolution step drop by another factor of 4. For
the largest problem size, a 10 000�5000 matrix, a single convolution step is sufficient for the adap-
tive compilation framework to produce optimised versions of both functions convolution step and

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



512 C. GRELCK ET AL.

is convergent. As a consequence, we observe a 20-fold speedup in execution time. These numbers
are in accordance with the relative problem sizes as can be expected from a numerical kernel whose
computational complexity is linear in the problem size.

One of the remarkable features of our generic convolution kernel is that it cannot only be applied
to matrices of any size but likewise to arrays of different rank, or number of dimensions. In
Figure 10, we show further experimental results obtained from applying the convolution kernel to

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35 40 45 50

T
im

e 
in

 s
ec

on
ds

 p
er

 c
on

vo
lu

tio
n 

st
ep

Convolution steps

Experiment 4: 1,000,000 vector
Runtime specialisation disabled
Runtime specialisation enabled

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40 45 50

T
im

e 
in

 s
ec

on
ds

 p
er

 c
on

vo
lu

tio
n 

st
ep

Convolution steps

Experiment 5: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

T
im

e 
in

 s
ec

on
ds

 p
er

 c
on

vo
lu

tio
n 

st
ep

Convolution steps

Experiment 6: 100x100x100x50 array
Runtime specialisation disabled
Runtime specialisation enabled

Figure 10. Experimental results obtained by applying the case study code discussed in Section 3 to a vector,
a tensor and a four-dimensional array with runtime specialisation disabled and enabled.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



ASYNCHRONOUS OPTIMISATION FOR GENERIC ARRAY PROGRAMMING 513

a vector of 1 000 000 elements, a tensor of 100� 100� 100 elements and a four-dimensional array
of 100� 100� 100� 50 elements. The experiments confirm our observations in Figure 9. Depend-
ing on the size of the workload, we are able to materialize significant improvements within few
convolution steps.

How representative is a single benchmark? The proposed adaptive optimisation technique capi-
talises essentially on two aspects: the performance difference between generic and non-generic code
and the unavailability of exact shape information of essential arrays at compile time. In our view,
this combination rather is the norm in real-world applications than the exception. The first aspect
depends on the actual programming style, of course, but as soon as programs follow the advocated
style using composition of building blocks and rich abstraction hierarchies, similar effects as in the
convolution example are inevitable. The second aspect is just as relevant. As soon as the building
of an application is time-wise and person-wise separated from the running of the application, which
again rather is the norm in real-world applications than the exception, the opportunities for static
specialisation will be extremely limited. Where this separation does not prevail, for example in
high-performance computing, often applications internally apply the same functions to arguments
of different shape in a way that is difficult to deduce statically even if the initial shapes are indeed
known. Examples here are the NAS benchmarks MG and FT [14, 15].

8. RELATED WORK

A wealth of related work can be found in the area of runtime partial evaluation, often also referred
to as dynamic specialisation. Systems such as Tempo [16, 17], Fabius [18] or DyC [19] are based
on user annotations, which indicate to the compiler where dynamic specialisations can be expected.
These systems then generate specific runtime specialisers leading to a staged compilation process.
This measure keeps the overhead introduced by the compilation at runtime low. In contrast, our
approach is based on the idea to specialise programs concurrently and asynchronously. This allows
us to apply the full-fledged compiler to an annotated source code.

Further related work concerns binary translation approaches that operate on the code that is being
executed. They typically analyse different instruction paths at runtime. When it turns out that a
certain path is used frequently, these paths are optimised further.

Dynamo [20] and DynamoRio [21] both identify hot spots in programs. When a hotspot has been
identified, execution is paused, and optimised code is generated for it. As interpreting is expensive,
Dynamo tries to store as many optimised traces as possible in a trace cache. The next time a trace is
executed, Dynamo points it to the optimised code stored in its cache.

Another approach, Adaptive Object Code RE-optimisation (ADORE) [22], uses hardware per-
formance monitoring to identify performance bottlenecks. Similar to the approach presented in this
paper, ADORE uses two threads: One thread runs the application as it would have normally, and
the second thread runs the optimisation functions. However, the optimisations performed in the
ADORE system primarily target insertions of data cache prefetching to improve the cache behaviour
in subsequent runs.

The lack of static knowledge about array operations drives other approaches to data-parallel com-
puting towards runtime optimisation as well. In FlumeJava [23], compiled programs do not execute
data-parallel programs directly but construct an execution plan at runtime. This execution plan is
then further optimised before it is executed. A similar approach is used by Intel’s Ct [24] in the con-
text of C++. In contrast to our approach, FlumeJava and Ct are designed for runtime code generation.
Neither produces directly executable code. As such, program execution is halted while the just-in-
time compiler generates an optimised executable, whereas our approach offloads this to a dedicated
core while program execution continues. Furthermore, we use a significantly more heavyweight
compilation technology.

9. CONCLUSION

We have presented an adaptive compilation framework for generic array programming that vir-
tually achieves the quadrature of the circle: to program code in a generic, reuse-oriented way

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



514 C. GRELCK ET AL.

abstracting from concrete structural properties of the arrays involved and, at the same time, to
enjoy the runtime performance characteristics of highly specialised code when it comes to program
execution.

As multiple cores are already rather the norm in contemporary processors, and the number of
cores is predicted to grow quickly in the near future, adaptive optimisation virtually comes for free.
We run all dynamic recompilations/specialisations fully asynchronously with the main computation.
Thus, their delaying effect on the main computation is minimal. With the growing number of cores,
this observation even holds for computational code that is itself multithreaded. Reserving a small
fraction of available cores for adaptive compilation either permanently or temporarily has a minor
effect on the computation’s progress even for linearly scaling programs.

Extensive experimental data using a highly generic implementation of a highly relevant numerical
kernel, multidimensional rank-generic convolution demonstrate the usefulness of our approach. In
essence, we effectively use an otherwise unused core of a multicore system to continuously adapt the
running code to problem sizes prevailing in a concrete application. We overcome the limitations of
static specialisation by recompiling and highly optimising generic code at runtime when structural
properties of arrays are fully available.

Because each dynamic invocation of the compiler incurs some time independent of the problem
size, adaptive compilation becomes more profitable for long-running applications. In an extreme
case, the program itself could run to completion before the first spawned specialisation request is
actually satisfied. However, our experimental data suggests that the overhead within the running
code is rather small and, hence, the main wasting of resources would be in occupying one core
to produce code that is never going to be run. In essence, all numerically interesting/challenging
real-world problems can be classified as long-running relative to a compiler invocation.

Likewise, our approach builds on the assumption of temporal locality, that is, the assumption that
if some function is applied to some arguments of certain shapes, it will, later during program exe-
cution, again be applied to arguments of the same shapes (but most likely different values). If this
assumption does not hold for a certain program, adaptive compilation cannot be expected to provide
any benefits to runtime performance. In such a case, it should rather be disabled to avoid wasting
resources such as the core used for program adaptation. However, the detrimental effect of adaptive
compilation on the performance of the program itself is very small.

10. FUTURE WORK

It does not take much to identify a wealth of research questions arising from realising the proposed
adaptive compilation framework. For example, given a number of available cores, what is a prof-
itable division of cores into one group of cores that collaboratively execute the program and another
group of cores that run dynamic specialisation controllers.

Furthermore, it would be more than reasonable to complete more than one specialisation request
at a time, but rather take all such requests from the request queue that have been filed since the previ-
ous specialisation round. Although the dynamic invocation of the SAC compiler is not on the critical
path because of running concurrently with the main program on different computing resources,
compiler runtimes are not completely irrelevant either. Therefore, it may be useful to run the SAC

compiler with a different option set in these cases and, moreover, to use a specific build of the SAC

compiler geared for performance, for example by leaving out all sorts of debug code. The compiler
used in the experiments, for instance, still did contain all this; hence, we expect a great potential for
speeding up dynamic invocations.

For now, we only collect specialisations during one program run. However, the same special-
isations are likely to be helpful across multiple invocations of the same program or even across
programs sharing some set of basic libraries, for example the SAC standard library. Hence, it would
be desirable to persistently store specialised binary code along with the generic binary code of
the original module implementation. Thus, we would, over time, create a growing base of pre-
specialised instances of certain functions ready for use in subsequent program runs. Such a persistent
module storage creates a further number of interesting and challenging research question. For

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



ASYNCHRONOUS OPTIMISATION FOR GENERIC ARRAY PROGRAMMING 515

example, we cannot safely let the persistent modules grow only at some point, we also need to
discard existing function instances, which require a sort of replacement policy.

Last but not least, dynamic specialisation only makes sense for functions that actually benefit from
the availability of more detailed structural information on argument arrays. This definitely holds for
computationally intensive functions, but not so much, for example, for I/O-related functions. Iden-
tifying suitable functions alone is an interesting future research question. This is somewhat related
to hotspot detection in standard jit-compilation, but still has its very own characteristics. For exam-
ple, in this case, we may actually get very far with static code analysis techniques, whereas hotspot
detection rather requires some form of runtime profiling.

ACKNOWLEDGEMENT

This work is partially supported by the European Union through the STREP project Advance (Asynchronous
and Automatic Virtualisation through Performance Analysis to Support Concurrency Engineering, project
number FP7 248828).

REFERENCES

1. Fursin G, Cohen A, et al. A practical method for quickly evaluating program optimizations. In Proceedings of the
International Conference on High Performance Embedded Architectures and Compilers (HiPEAC 2005). Springer
Verlag: Berlin, Heidelberg, Germany, 2005; 29–46.

2. Grelck C, Scholz SB. Merging compositions of array skeletons in SAC. In Parallel Computing: Current and
Future Issues of High-End Computing, International Conference ParCo 2005, Malaga, Spain, NIC Series, Vol. 33,
Joubert G, Nagel W, Peters F, Plata O, Tirado P, Zapata E (eds). John von Neumann Institute for Computing: Jülich,
Germany, 2006; 859–866. [ISBN 3-00-017352-8].

3. Herhut S, Scholz SB, et al. From Contracts Towards Dependent Types: Proofs by Partial Evaluation. In Implementa-
tion and Application of Functional Languages, 19th International Symposium, IFL’07, Freiburg, Germany, Revised
Selected Papers, Lecture Notes in Computer Science, Vol. 5083, Chitil O, Horváth Z, Zsók V (eds). Springer-Verlag:
Berlin, Heidelberg, 2008; 254–273.

4. Bernecky R, Herhut S, et al. Symbiotic expressions. In Implementation and Application of Functional Languages,
21st International Symposium, IFL’09, South Orange, NJ, USA, Revised Selected Papers, Lecture Notes in Computer
Science, Vol. 6401, Morazán MT, Scholz SB (eds). Springer-Verlag: Berlin, Heidelberg, 2010; 107–124.

5. Grelck C, Scholz SB. SAC: a functional array language for efficient multithreaded execution. International Journal
of Parallel Programming 2006; 34(4):383–427.

6. Kreye D. A compilation scheme for a hierarchy of array types. In Implementation of Functional Languages,
13th International Workshop (IFL’01), Stockholm, Sweden, Selected Papers, Lecture Notes in Computer Science,
Vol. 2312, Arts T, Mohnen M (eds). Springer-Verlag: Berlin, Heidelberg, Germany, 2002; 18–35.

7. Grelck C, Scholz SB. SAC — from high-level programming with arrays to efficient parallel execution. Parallel
Processing Letters 2003; 13(3):401–412.

8. Grelck C, Scholz SB. Merging compositions of array skeletons in SAC. Journal of Parallel Computing 2006;
32(7–8):507–522.

9. Grelck C. Shared memory multiprocessor support for functional array processing in SAC. Journal of Functional
Programming 2005; 15(3):353–401.

10. Marcussen-Wulff N, Scholz SB. On interfacing SAC modules with C programs. In 12th International Workshop on
Implementation of Functional Languages (IFL’00), Aachen, Germany, Aachener Informatik-Berichte, Vol. AIB-00-7,
Mohnen M, Koopman P (eds). Technical University of Aachen: Aachen, Germany, 2000; 381–386.

11. Grelck C, Scholz S, et al. Asynchronous stream processing with S-Net. International Journal of Parallel Program-
ming 2010; 38(1):38–67. DOI: 10.1007/s10766-009-0121-x.

12. Grelck C, Trojahner K. Implicit memory management for SaC. In Implementation and Application of Functional
Languages, 16th International Workshop, IFL’04, Lübeck, Germany, Grelck C, Huch F (eds). University of Kiel,
Institute of Computer Science and Applied Mathematics: Kiel, Germany, 2004; 335–348. Technical Report 0408.

13. Herhut S, Scholz SB. Towards fully controlled overloading across module boundaries. In Implemen-
tation and Application of Functional Languages, 16th International Workshop, IFL’04, Grelck C,
Huch F (eds). University of Kiel, Institute of Computer Science and Applied Mathematics: Kiel, Germany, 2004;
395–408. Technical Report 0408.

14. Grelck C. Implementing the NAS Benchmark MG in SAC. In 16th International Parallel and Distributed Processing
Symposium (IPDPS’02), Fort Lauderdale, Florida, USA, Prasanna VK, Westrom G (eds). IEEE Computer Society
Press: Los Alamitos, California, USA, 2002.

15. Grelck C, Scholz SB. Towards an efficient functional implementation of the NAS Benchmark FT. In Paral-
lel Computing Technologies, 7th International Conference, PaCT’03, Nizhni Novgorod, Russia, Lecture Notes

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe



516 C. GRELCK ET AL.

in Computer Science, Vol. 2763, Malyshkin V (ed.). Springer-Verlag: Berlin, Heidelberg, Germany, 2003;
230–235.

16. Consel C. A general approach for run-time specialization and its application to C. In 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, St. Petersburg Beach, USA. ACM Press: New York City, New
York, USA, 1996; 145–156.

17. Noel F, Hornof L, Consel C, Lawall JL. Automatic, template-based run-time specialization: implementation and
experimental study. In International Conference on Computer Languages. IEEE Computer Society Press: Los
Alamitos, California, USA, 1998; 132–142.

18. Leone M, Lee P. Dynamic specialization in the Fabius system. ACM Computing Surveys 1998; 30(3es).
19. Grant B, Philipose M, et al. An evaluation of staged run-time optimizations in DyC. ACM SIGPLAN Notices 1999;

34(5):293–304.
20. Bala V, Duesterwald E, et al. Dynamo: a transparent dynamic optimization system. SIGPLAN Not. May 2000;

35(5):1–12. http://doi.acm.org/10.1145/358438.349303.
21. Bruening D, Garnett T, et al. An infrastructure for adaptive dynamic optimization. International Symposium on Code

Generation and Optimization, March 2003.
22. Lu J, Chen H, et al. Design and implementation of a lightweight dynamic optimization system. Journal of

Instruction-Level Parallelism April 2004; 6:1–24.
23. Chambers C, Raniwala A, et al. FlumeJava: easy, efficient data-parallel pipelines. In Proceedings of the 2010 ACM

SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’10, ACM: New York, NY,
USA, 2010; 363–375.

24. Ghuloum A, Smith T, et al. Future-proof data parallel algorithms and software on Intel multi-core architecture.
Intel Technology Journal November 2007; 11(4):333-347. DOI: 10.1535/itj.1104.07.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:499–516
DOI: 10.1002/cpe


