
Breaking the GPU Programming Barrier
with the Auto-Parallelising SAC Compiler

Jing Guo
University of Hertfordshire,Hatfield, UK

j.guo@herts.ac.uk

Jeyarajan Thiyagalingam
Oxford e-Research Centre, University of

Oxford, Oxford, UK
jeyarajan.thiyagalingam@oerc.ox.ac.uk

Sven-Bodo Scholz
University of Hertfordshire,Hatfield, UK

s.scholz@herts.ac.uk

Abstract
Over recent years, the use of Graphics Processing Units (GPUs)
for general-purpose computing has become increasingly popular.
The main reasons for this development are the attractive perfor-
mance/price and performance/power ratios of these architectures.

However, substantial performance gains from GPUs come at a
price: they require extensive programming expertise and, typically,
a substantial re-coding effort. Although the programming experi-
ence has been significantly improved by existing frameworks like
CUDA and OpenCL, it is still a challenge to effectively utilise
these devices. Directive-based approaches such as hiCUDA or
OPENMP-variants offer further improvements but have not elim-
inated the need for the expertise on these complex architectures.
Similarly, special purpose programming languages such as Mi-
crosoft’s Accelerator try to lower the barrier further. They provide
the programmer with a special form of GPU data structures and
operations on them which are then compiled into GPU code.

In this paper, we take this trend towards a completely implicit,
high-level approach yet another step further. We generate CUDA
code from a MATLAB-like high-level functional array program-
ming language, Single Assignment C (SAC). To do so, we identify
which data structures and operations can be successfully mapped
on GPUs and transform existing programs accordingly. This pa-
per presents the first runtime results from our GPU backend and it
presents the basic set of GPU-specific program optimisations that
turned out to be essential. Despite our high-level program specifica-
tions, we show that for a number of benchmarks speedups between
a factor of 5 and 50 can be achieved through our parallelising com-
piler.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages Processors [Compilers]

General Terms Algorithms, Design, Languages, Performance

Keywords Compiler, Optimization, CUDA, GPU, Code, Genera-
tion

1. Introduction
Modern Graphics Processing Units (GPUs) contain hundreds of
computational cores and have become one of the most commonly
used many-core architectures. The architectural aspects of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’11, January 23, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0486-3/11/01. . . $10.00

GPUs are far more complex than mainstream multi-core CPUs
and programming is often facilitated by programming models such
as CUDA [4] and OpenCL [10]. The ability to program GPUs
with these programming models has led to the proliferation of
using GPUs for accelerating many scientific applications, for ex-
ample [2]. Furthermore, the relative measure of performance/price
and performance/ power ratios between GPU-based architectures
and CPU-based architectures further encourages the choice of
GPUs.

However, these gains are not without significant challenges:
Firstly, the identification and exploitation of any parallelism in
the application is the responsibility of programmers. Often, this
requires extensive re-factoring work rather than simple program
transformations. Secondly, the GPU programming model is not
oblivious to the underlying architecture. Detailed knowledge of the
architecture is fundamental for writing effective GPU-based appli-
cations. Consequently, in GPU-based programs application logic
is inter-twined with device-specific logic. Difficulties in separating
the concerns of application logic from device logic prevents appli-
cation portability.

The OpenCL [10] programming model aims to address the
portability issue and offers a route for separating the device logic
from the application logic. However, the application logic cannot
be entirely free from low-level device logic. Compiler directive-
based approaches such as hiCUDA [9] or support from compilers,
such as PGI [13], have enabled application developers to retain
application logic in the source language such as C and/or Fortran.
Essentially this approach eliminates low-level device-specific logic
from the application but expects the application developers to hint
the compiler. Although this is a significant improvement in the
direction of offering a simple programming model, the developer
is still required to be familiar with the hardware to provide hints.

In this paper, we describe our auto-parallelising compiler frame-
work for GPUs, which is achieved by augmenting our existing
functional and data-parallel compiler framework, Single Assign-
ment C (SAC) [12], with GPU-specific capabilities. In our earlier
work [8], we proposed a compilation scheme for mapping high-
level SAC programs to CUDA-enabled GPUs. The key idea of the
scheme is to seek performance benefits from GPUs while retaining
the higher-level abstractions supported by the Single Assignment
C. This approach enables supporting rather high-level applications
while seeking GPU-level parallelisation. In particular, the contribu-
tions of this paper are:

• Extended analysis for automating the mapping process of high-
level abstractions to CUDA equivalents.

• An effective optimisation strategy for optimising memory trans-
fers between host and GPU memories.

15

• Initial performance evaluations of the auto-parallelising com-
piler framework and of the optimisation using a suite of bench-
marks on a modern GPU platform.

The rest of this paper is organised as follows: In Section 2
we provide a short background on CUDA programming model.
Section 3 discusses our source language SAC. We then briefly
outline the overall compilation scheme presented in our earlier
work [8] in Section 4. This is then followed by the presentation
of the compilation scheme for the memory transfer optimisation
in Section 5. We then evaluate the performance of the framework
and of the optimisation in Section 6. As part of the same section,
we highlight another prototype optimisation scheme with improved
results. We discuss related work in Section 7 and conclude the
paper with directions for further work in Section 8.

2. CUDA Architecture and Programming Model
A Compute Unified Device Architecture (CUDA) enabled GPU is
connected to the host system via a high-speed shared bus, such as
PCI Express. We show an internal arrangement of a typical GPU
in Figure 1. Each GPU consists of an array of Streaming Multi-
processors. Each streaming multiprocessor is packed with a num-
ber of scalar processing cores, named Streaming Processors. These
scalar processors are the fundamental computing units which ex-
ecute CUDA threads. For example, the Nvidia Tesla C1060 GPU
has 30 streaming multiprocessors and each streaming multiproces-
sor consists of eight streaming processors, yielding 240 processing
cores in total. In CUDA, all threads are created and managed by the
hardware. As a result, the overheads are almost negligible and this
leads to the possibility of executing a large number of threads at a
time.

Figure 1. GPU hardware architecture

The CUDA programming model, which is an extension of the C
programming language, relies on this hardware support to provide
concurrency. In the model, computations are expressed as special
functions known as kernels. A kernel is launched from the host-
CPU and executed by N threads using the available computational
cores (and N is usually in the range of several thousands). All
threads are organised as a 1- or 2-dimensional grid of thread blocks.
Each block can be 1-, 2- or 3-dimensional. Threads in a block are
assigned to the same streaming multiprocessor during execution.
With a unique numbering scheme for threads, each thread can be
made to compute on a different subset of the input data so that the
execution leads to the Single Program Multiple Data (SIMD) style
parallelism.

Computational units are arranged alongside a hierarchical mem-
ory system, which has no sharing scheme with the host memory
system. A GPU typically has the following memory sub-systems:
global memory, constant cache, texture cache and shared mem-

ory. The global memory (also known as device memory) is com-
mon to all blocks (and thus to all threads) and has a high access
latency. Each streaming multiprocessor has a low-latency small
shared memory which can be accessed from threads within the
same block. This is very useful to exploit potential data locality
among threads.

The programming model relies on manual placement of data —
which means that the application developer is solely responsible
for moving the data from the host memory to the device memory
(or in reverse direction) and to exploit any re-use by relying on
shared memory or constant cache. It is also the responsibility of the
programmer to ensure that the latencies are hidden and memory
requests to the device memory are linearised for best bandwidth
exploitation (hardware memory coalescing). In line with the con-
ventional parallel programming models, memory transfers (corre-
sponding to communication overheads) may offset the benefits of
parallelisation, if it dominates the execution time. As a result, it is
performance critical that memory transfers around the system and
within the GPU are minimised as much as possible. For example,
if a kernel feeds another kernel with its output, it is beneficial to re-
tain the data in the GPU device memory without any intermediate
transfers to the host.

3. The SAC Programming Language
SAC is a purely functional and data-parallel programming lan-
guage. All its basic language constructs are identical to those of
C, not only with respect to their syntax but also with respect to
their semantics. Despite this rather imperative look and feel, a side-
effect free semantics is enforced by the exclusion of a few features
of C, most notably the absence of pointers. As a replacement, exten-
sive support for compiler-managed n-dimensional arrays has been
added as well as one very powerful language construct for express-
ing data-parallel operations, the WITH-loop.

Various application studies demonstrate that this setting enables
(i) sequential runtimes competitive with those of hand-written C
and FORTRAN codes, and (ii) almost linear speedups from auto-
parallelisation for shared memory systems [3].

More detailed introductions into SAC can be found elsewhere
(e.g. in [12]). Here, we deem it sufficient to present a small
example that demonstrates the combination of SAC’s array support
with standard C code.

1 double[.,.] relax(int n, double[.,.] A) {
2 for(i=0; i<n; i++) {
3 A = with {
4 ([1,1] <= iv < shape(A)-1) {
5 res = 0.25*(A[iv-[0,1]]+A[iv+[0,1]]+
6 A[iv-[1,0]]+A[iv+[1,0]]);
7 }:res;
8 }:modarray(A);
9 }
10 return(A);
11 }

Figure 2. Program fragment for typical scientific code.

Figure 2 shows a program fragment archetypical for many sci-
entific codes which we will use throughout this paper to exem-
plify our transformations. It contains the definition of a function
relax which takes two arguments: a scalar integer n and a two-
dimensional array (matrix) of double elements A. In the function
body, the array A is repeatedly modified within a for-loop. Each
such modification is expressed by means of the WITH-loop in lines
3-8. It specifies that all inner elements of the new version of A are
computed as a mean of the four direct neighbour elements of the
old version of A. Note here, that indexing into arrays in SAC is
done by means of index vectors rather than sequences of scalar
indices; the operation shape used in line 4 returns a vector con-

16

taining the number of elements of the given array; the subtraction
of 1 is applied to all elements of that vector, and indexing starts at
0. As a consequence, all indices between [1,1] (inclusive) and
shape(A)-1 (exclusive) denote exactly all inner elements of A.
Furthermore, it is important to note that the semantics of the WITH-
loop-construct ensures that all these array modifications, conceptu-
ally, happen at the same time, i.e., they can be executed in parallel.

4. Compilation of SAC into CUDA
In our parallelising compiler, instead of performing whole-program
transformation, we focus on translating individual data-parallel
WITH-loops to equivalent CUDA kernel functions. The transfor-
mation consists of three main steps: (1) identifying WITH-loops that
are eligible to be executed on GPUs (i.e. CUDA-WITH-loops), (2)
inserting data transfer instructions for arrays accessed in and gener-
ated by the CUDA-WITH-loops, and (3) outlining CUDA-WITH-loop
code as CUDA kernel functions. In the following sections, we use
the same WITH-loop example from Section 3. See [8] for a more
thorough and formal discussion of the compilation schemes.

4.1 Identifying Eligible WITH-loops
In SAC, WITH-loops are guaranteed to be free from dependencies.
Therefore, it may appear that all WITH-loops are immediately par-
allelisable at a first glance. However, inherent limitations of the
CUDA architecture and programming model prevents us from do-
ing so. Firstly, the absence of stack in CUDA prevents function in-
vocations within kernels (except device functions). This limits our
selection to WITH-loops without function invocations. Secondly, a
thread in CUDA cannot spawn sub-threads. This limits the paral-
lelisation to be at one level and inhibits hierarchical parallelism.
Therefore, a nested WITH-loop can only be parallelised at a sin-
gle level. Theoretically, WITH-loop at any nesting level (provided it
meets the first condition) can be parallelised because it is guaran-
teed to be dependency free. However, to amortise the overheads of
thread creation and synchronisation, we favours coarser granularity
and therefore parallelise only the outermost WITH-loop. Candidate
WITH-loops to be translated to CUDA are referred to as CUDA-
WITH-loops in the following sections.

4.2 Inserting Data Transfers
When translating CUDA-WITH-loops to kernels, free array vari-
ables found inside the loops are in fact host variables and they
should eventually be mapped to the device memory before being
accessed in kernels. For this purpose, we extended the type sys-
tem to accommodate both host- and device-typed variables With
this notion, the compiler performs a data flow analysis to find all
free host array variables (FVs) in a CUDA-WITH-loop. These vari-
ables are then converted to corresponding device type variables (de-
noted by varD) via the dedicated instruction, host2device . The
other instruction, device2host , converts the result from device
type to host type. Data transfers between host and device mem-
ory spaces are implied during the conversion. In our running ex-
ample, a host2device instruction is inserted before the CUDA-
WITH-loop to map a free variable A of host-type to a device-type
variable AD and of all occurrences there in. Similarly, result of a
CUDA-WITH-loop(device-typed variable, BD in our case), should
be transferred back to host via a device2host instruction. In
our case, the promise of single assignment form and our extended
type system make this transformation readily achievable. All local
variables, such as vals, are mapped to registers or local memory
assigned to each thread. The outcome after applying this transfor-
mation to the example is shown in Figure 3.

1 AD = host2device(A);
2 BD = cuda with {
3 ([1,1] <= iv=[i,j] < [4095,4095]) {
4 res = 0.25*(A

D[i][j-1]+AD[i][j+1]+
5 AD[i-1][j]+AD[i+1][j]);
6 }:res;
7 }:modarray(AD);
8 B = deivce2host(BD);

Figure 3. Example CUDA-WITH-loop with data transfers inserted.

4.3 Creating CUDA Kernels
After proper data transfer instructions are inserted, each WITH-loop
partition is outlined as a kernel function and replaced by the cor-
responding invocation to it (See Figure 4). The lower and upper
bounds of each partition determine the total number of threads to
be created. Threads are organised as a hierarchy consisting of a 2D
grid of 2D blocks. Each block is of size BLOCKSZ×BLOCKSZ, where
BLOCKSZ is a predefined constant and can be changed by setting a
command line option. Length of the grid along each dimension is
calculated by dividing the corresponding length of the partition by
BLOCKSZ. Note that we also need to add the result by one to take
care of the cases when the length is not evenly divisible. Both de-
vice variables BD and AD, along with all shape and bound informa-
tion, are passed to the kernel as parameters. Inside the kernel, each
thread calculates its absolute indices (i and j) from CUDA prede-
fined variables blockIdx, threadIdx and blockDim. Guarding
code is also added to ensure threads do not access array positions
beyond the upper bound. Each thread then computes a linear mem-
ory offset, wlidx, from both its absolute indices and the shape in-
formation. After performing the computation, the final result res
is assigned to BD at a position specified by wlidx.

1 cudaMemcpy(A,AD,size(A),cudaMemcpyHostToDevice);
2 int d0 = 4095 - 1;
3 int d1 = 4095 - 1;
4 dim3 grid(d1/BLOCKSZ+1, d0/BLOCKSZ+1);
5 dim3 block(BLOCKSZ,BLOCKSZ);
6 CUDA kernel<<<grid, block>>>
7 (BD,4096,4096,1,1,4095,4095,AD);
8 cudaMemcpy(B,BD,size(B),cudaMemcpyDeviceToHost);
9
10 global void CUDA kernel
11 (float BD,int shp0,int shp1,int lb0,int lb1,
12 int ub0,int ub1,float AD)
13 {
14 int i=blockIdx.y*blockDim.y+threadIdx.y+lb0;
15 if(i >= ub0) return;
16 int j=blockIdx.x*blockDim.x+threadIdx.x+lb1;
17 if(j >= ub1) return;
18 int wlidx = i*shp1+j;
19 res = 0.25*(A

D[i][j-1]+AD[i][j+1]+
20 AD[i-1][j]+AD[i+1][j]);
21 BD[wlidx] = res;
22 }

Figure 4. Translating example CUDA-WITH-loop to kernel func-
tion.

5. Optimising Memory Transfers
In Section 4, we outlined the basic mechanisms underpinning the
auto-parallelisation of SAC programs to CUDA. However, the
baseline compilation scheme is not sufficient to obtain noticeable
speedups. In literature, it can be found that one of the key opti-
misations for achieving satisfying performance in CUDA applica-
tions is minimising the redundant data transfers between different
memories of the system. Among these, transfers between host and
device memories are considerably expensive. Since data in global
memory is persistent across kernel invocations, a large portion of
the data exchanges can be eliminated altogether provided that sub-

17

sequent kernel invocations re-use the retained data. In our case, the
promise of single assignment and the support from type system to
differentiate host- and device-side arrays makes this optimisation
readily achievable.

We implemented two different optimisation passes to minimise
such data transfers. They are repeatedly applied to the program
until no more transfers can be eliminated.

5.1 Retention of Invariant Arrays
This case is prevalent in the intermediate program with several
data transfers concerning the same host array. Examples include
when the result of a CUDA-WITH-loop is consumed by a subsequent
CUDA-WITH-loop without being modified in between; and when
repeated read-only accesses to one or more arrays among a number
of CUDA-WITH-loops. In these cases, we perform only the first
transfer and subsequent transfers are considered as references to
the same array, which can be attributed to a device variable. We
show the compilation scheme for this case is shown in Figure 5.

C

2424 a = device2host(aD);

assigns;

bD = host2device(a);

3535
=

8><>:
a = device2host(aD);

assigns;

bD = aD;

Figure 5. Compilation Scheme for Memory Transfer Optimisa-
tion. The original notion of variables remain the same: variable xD

represents a device counterpart of x.
The notation of the compilation scheme is such that C =

[[Si]] = So generates a code block So when the translation scheme
memopt is applied to a statement block Si. In particular, the op-
timisation schemes look for host2device transfers on unmodi-
fied variables derived from device2host transfers (Figure 5) or
for redundant host2device transfers of the same variable. Since
the intermediate representation of the code is in SSA form, trans-
fers in both cases can easily be detected and replaced by device
variable assignments. Note that one of the existing optimisations in
the SAC compiler framework — Common Subexpression Elimina-
tion has been leveraged to achieve this effect.

An additional opportunity for optimising memory transfers oc-
curs when data transfers are enclosed within for loops. Since the
optimisation scheme discussed in Section 5.1 focuses only on min-
imising transfers within the same basic block, it does not attempt to
move transfers between different blocks (in this case, from for loop
to its enclosing context). The purpose of the optimisation outlined
in this section is to hoist those transfers out of the for loop subject
to certain conditions.

5.2 Hoisting Data Transfers from FOR-Loops
Due to the fact that SAC converts all for loops into tail-end recur-
sive functions, hoisting data transfers actually requires modifying
the function signature to accept/return device-typed variables. We
show the compilation scheme in Figure 6 for one of such cases
(hoisting host-to-device transfer) and the other case is implemented
similarly. A host2device memory transfer can be lifted out of
the current enclosing for loop if the following three conditions are
satisfied:

• Condition 1: The host2device transfers an incoming argu-
ment (argk). In other words, any other transfers of variables
whose scope is limited to the enclosing for-loop cannot be
hoisted.

• Condition 2: The kth parameter, param
′
k, of the recursive

loop function invocation is either defined by a device2host
transfer instruction or argk itself.

• Condition 3: The argk is not referenced in any instructions of
the loop other than host2device transfers. The first level
optimiser will detect and replace them by appropriate device
variable assignments.

C

26666666666666666666664

26666666666666666666664

res1...resm = loop fun(param1...paramk...paramn);

T1...Tm loop fun(arg1...argk...argn) {
assigns1;

aD = host2device(argk);

assigns2;

param′
k = device2host(vD);

assigns3;

if(cond)

{ res′
1...res

′
m = loop fun(param′

1...param
′
k...param

′
n); }

res1 = (cond ? res′
1 : v1);

...
resm = (cond ? res′

m : vm);

return(res1...resm);
}

37777777777777777777775

37777777777777777777775

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

aD = host2device(paramk);
res1...resm = loop fun(param1...a

D...paramn);

T 1...T m loop fun(arg1...arg
D
k...argn) {

assigns1;

assigns2;

param′
k = device2host(vD);

assigns3;

if(cond)

{ res′
1...res

′
m = loop fun(param′

1...v
D...param′

n);}
res1 = (cond ? res′

1 : v1)
...
resm = (cond ? res′

m : vm)

return(res1...resm);
}

Figure 6. Compilation Scheme for Memory Transfer Optimisation
in for loops by hoisting host2device transfers.

Note that unlike the cases when param
′
k is the same as argk,

traditional Loop Invariant Removal (lir) optimisation is not able to
hoist the transfer when param

′
k is defined by a device2host

instruction (show in Figure 6). However, this CUDA specific
optimisation is capable of detecting such pattern and replacing
param

′
k by its device counterpart. Such transformation converts

the host2device transfer into a loop invariant instruction and
can therefore be hoisted by a subsequent (lir) optimisation. The
hoisted host2device is placed immediately before the loop
function call. The corresponding arguments and parameters are
also changed to their device counterparts.

Figure 7 illustrates how the for loop in our example can benefit
from this optimisation (assuming that it has already been converted
into loop function). The host2device at line 4 transfers the last
argument of the function, A, which is not referenced anywhere in
the function body. Furthermore, the last parameter of the recur-
sive function call, A new, is defined by a device2host transfer.
Since all three conditions discussed above are satisfied, the com-
piler can replace the parameter A new by AD new. This exposes
a loop invariant host2device instruction to the (lir) optimisa-
tion which eventually hoists it from the loop (See the lower half of
Figure 7).

18

1 int, double[4096,4096]
2 relax loop(int i, int n,
3 double[4096,4096] A) {
4 AD = host2device(A);
5 AD new = with...(AD)...;
6 A new = device2host(AD new);
7 i new = i+1;
8 p = i new < n;
9 if(p)
10 { i res, A res =
11 relax loop(i new,n,A new);}
12 i out = (p ? i res : i new);
13 A out = (p ? A res : A new);
14 return(i out, A out);
15 }

1 int, double[4096,4096]
2 relax loop(int i, int n,
3 double[4096,4096] AD) {
4
5 AD new = with...(AD)...;
6 A new = device2host(AD new);
7 i new = i+1;
8 p = i new < n;
9 if(p)
10 { i res, A res =
11 relax loop(i new,n,AD new);}
12 i out = (p ? i res : i new);
13 A out = (p ? A res : A new);
14 return(i out, A out);
15 }

Figure 7. Hoisting data transfers from our example for loop.

6. Performance Evaluation
The main aim of our evaluation is to quantify the overall per-
formance benefits of our GPU backend. We deliberately chose to
measure the “gross” effect including all startup and transfer over-
heads as that is the impact that eventually can be observed by pro-
grammers in terms of wall-clock runtime effects. Therefore, we
present speedups of generated CUDA programs (referred to as
SAC-CUDA) against their sequential counterparts (referred to as
SAC-SEQ). We contrast these figures to results from our multi-
threaded implementation (referred to as SAC-MT) using POSIX
threads [7]. In addition to the speedup figures, we also provide
giga-flops per second for all benchmarks. This provides the reader
with a lower bound of the effectiveness that is achieved. For sev-
eral benchmarks, we investigate different problem sizes in order
to demonstrate the impact of the corresponding overheads on the
overall performance.

It is important to notice that both SAC-SEQ and SAC-MT
implementations are run entirely on the host CPU whereas the
SAC-CUDA version is run both on host CPU (sequential code) and
on the GPU (parallel code). We use the SAC-SEQ performance as
the baseline performance. We also assume that the entire dataset
required by each benchmark fits into the main memories of both
systems (CPU and GPU). The UNIX time command is used to
measure the wall-clock runtime of each benchmark and we use
the median of the measurements to compute the speedups. We ap-
ply the optimisations discussed in earlier sections and report our
findings below.

We have selected two suites of benchmarks: one contains a sub-
set of the Livermore loops and the other contains various complete
applications from different domains. Out of 24 Livermore loops
which are traditionally used to measure parallel program perfor-
mance, we select only a subset of them for our evaluation, leaving
out loops that require parallel reductions which are currently not
supported by the compiler. The complete applications include Ma-
trix Multiply, NBody Simulation, Mandelbrot computation, a 3D
PDE solver (PDE1),a 2D successive over relaxation scheme (SOR),
Gauss-Jordan elimination, KPI (Numerical solver for an oscillatory

differential equation using Kadomtsev Petviashvili method) and in-
sertion sort.

All benchmarks use double precision floating point numbers
and are executed on a system with an nVidia Tesla C1060 GPU.
The device has 30 streaming multiprocessors. Each multiprocessor
has 8 streaming processors clocked at 1.3 GHz. The total amount of
device memory is 4 GB. The theoretical peak performance of this
device on its own is 76 GFLOPS/sec in double precision.

The CPU is a 1.6 GHz Xeon 5110 dual core processor with 4
MB L2 cache. This architecture can deliver a maximum floating
point performance of 12.8 GFLOPS/sec when fully utilising both
cores.

The GPU is connected to the CPU through a 16x PCI express
bus. We use CUDA version 3.0 and enable -O3 option for all
compilations. The SAC version of the compiler is v1.00-beta-r-
17140.

6.1 Performance of the Livermore Loops
Speedups of SAC-CUDA code over SAC-SEQ code are shown in
Figure 8 with and without the memopt .

Loop1 Loop7 Loop10 Loop12 Loop14 Loop15 Loop18 Loop21 Loop22 Loop23
0

5

10

15

20

25

30

35

40

45

50

55

Speedups of Livermore Loops

Speedups(baseline) Speedups(memopt)

Sp
ee

du
ps

Figure 8. Speedups of Livermore loops.
Except for Loop15 and Loop21, the baseline approach without

optimisations leads to no speedups. However, when memopt is ap-
plied, performance of all loops are improved significantly, except
Loop23, for which the speedup is rather negligible. An analysis of
Loop23 shows that it consists of a for-loop with loop-carried depen-
dency inside the main stepping loop, which prevents the memopt
optimisation. The sequential workload of this loop occupies more
than 90% of the total execution time and thus eliminating any no-
ticeable improvement due to parallelisation. Loop14 achieved rel-
atively low speedups compared to other loops because it contains
indirect subscripts in array expressions resulting in rather random
access patterns of the device memory hindering effective hard-
ware memory access coalescing. All other loops show considerable
performance gains when memopt is enabled with the maximum
speedup of 52× for Loop15, which is mainly due to the high com-
pute intensity of its kernel.

Table 1 shows the absolute performance of these loops in giga
flops per second. We can observe that the best case, i.e. Loop21,
gets close to about 40% of the peak performance of the GPU card
despite taking all overheads into account.

6.2 Performance of Complete Applications
The performance of complete applications are shown in Figures 9,
10, 11 and 12. One of the applications which demonstrates real
benefits of auto-parallelisation is Mandelbrot (See Figure 9). It con-
tains three WITH-loops, each with a for loop inside. This, when
parallelised, provides an ample amount of parallelism exploitable

19

Loop Seq Baseline Memopt
Loop1 0.93 0.4 9.5
Loop7 0.43 0.16 9.73
Loop10 0.1 0.1 0.1
Loop12 0.08 0.04 1.68
Loop14 0.19 0.1 0.49
Loop15 0.28 0.66 14.55
Loop18 0.71 0.52 7.13
Loop21 1.52 19.22 29.24
Loop22 0.56 0.26 11.45
Loop23 0.01 0.01 0.01

Table 1. Gflops/sec of Livermore loops
by the GPU. Increasing the problem sizes leads to a better work-
load/overhead ratio, achieving the best speedup of 22× against
the sequential implementation. Table 2 shows the absolute perfor-
mance of all complete applications. For Mandelbrot, we achieve
about 40% of the theoretical peak performance of the GPU, despite
measuring wall-clock times.

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0

5

10

15

20

25

Mandelbrot Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)

Problem Sizes

S
pe

ed
up

s

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0

2

4

6

8

10

12

14

16

18

Nbody Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)

Problem Sizes

S
pe

ed
up

s

Figure 9. Speedups of Mandelbrot and NBody Simulation.
For the NBody simulation, basic CUDA auto-parallelisation

yields a speedup of less than 2× (lower than SAC-MT speedups),
which is almost invariant to problem sizes. However, the bench-
mark includes several WITH-loops embedded within a for loop,
which initiates redundant memory transfers between host and the
device for each iteration. As a result, benefit from memopt is rather
significant, improving the overall performance by several folds.
Speedups increase with increasing problem sizes as more concur-
rency is exposed.

The next application we benchmarked is a blocked version ma-
trix multiplication (See Figure 10). As shown in the figure, even
basic CUDA auto-parallelisation brings noticeable speedups by a
factor of 10× to 13×. However, further improvements are marginal
with increasing problem sizes. This is because: 1) to compute each
output element, a CUDA thread performs n multiply-add oper-

Benchmark Size Seq MT Baseline Memopt
1Kx1K 1.4 2.7 15.4 17.4
2Kx2K 1.4 2.7 21.8 26.3

Mandelbrot 3Kx3K 1.4 2.7 23.6 28.8
4Kx4K 1.4 2.7 25.1 31.2

1Kx1K 0.4 0.8 0.6 5.1
2Kx2K 0.4 0.8 0.7 6.3

Nbody 3Kx3K 0.5 0.9 0.8 8.1
4Kx4K 0.5 0.9 0.8 7.5

323 1.0 1.8 0.3 0.6
643 1.0 1.9 0.5 2.5

PDE1 1283 0.9 1.4 0.7 4.6
2563 0.8 0.8 0.7 8.0

1Kx1K 0.4 0.5 0.26 4.3
2Kx2K 0.4 0.5 0.26 5.3

Relaxation 3Kx3K 0.5 0.5 0.26 5.5
4Kx4K 0.5 0.5 0.26 5.5

1Kx1K 1.0 1.9 9.1 10.1
2Kx2K 1.0 1.9 11.4 12.1

Matmul 3Kx3K 1.0 1.9 11.8 12.3
4Kx4K 1.0 1.9 11.9 12.4

Table 2. Gflops/sec of complete applications

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0

2

4

6

8

10

12

14

Matmul Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)

Problem Sizes

S
pe

ed
up

s

Figure 10. Speedups of Blocked Matrix Multiplication.
ations and accesses 2n data, where n is the matrix dimension.
2) accesses to one row of a matrix is un-coalesced among all
threads, which leads to large amount of memory transactions to
the device memory. To evaluate the absolute performance, we also
measured the giga flops on both CPU and GPU. As we can see,
the SAC-CUDAversion achieves a significantly higher performance
than either SAC-SEQ or SAC-MT. This also represents the maxi-
mally achievable performance of a typical unoptimised matrix mul-
tiplication on Tesla C1060.

Our next set of benchmarks are PDE1 and SOR, both of which
are stencil-based applications (See Figure 11). SAC-MT achieves
some speedups. However, CUDA baseline performance is slower
than SAC-SEQ. This is mainly because the stencil-like memory ac-
cess patterns of these applications hinders effective memory coa-
lescing. The memopt improves the speedups significantly by re-
taining the data across successive iterations.

The final set of applications, where we found slowdowns instead
of speedups are Gauss-Jordan elimination, Insertion sort and KP1.
(See Figure 12). Although memopt improves the performance of
Gauss-Jordan elimination significantly, in overall it was slower than

20

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0

2

4

6

8

10

12

PDE1 Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)

Problem Sizes

S
pe

ed
up

s

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0

2

4

6

8

10

12

14

Relaxation Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)

Problem Sizes

S
pe

ed
up

s

Figure 11. Speedups of PDE1 and Relaxation applications.
the SAC-SEQ and SAC-MT version. In other two cases, we did not
find any improvements when applying memopt.

Upon further investigation we found that these applications
contain parallel CUDA-WITH-loops whose results are consumed
by the interleaved sequential code. This results in memory trans-
fers between successive CUDA-WITH-loops not eliminated by the
memopt transformations. Such redundant transfers and sequential
code blocks (i.e. for loops with carried dependencies) are detrimen-
tal to the performance.

6.3 Further Analysis
Figure 13 shows an example when such execution pattern can result
in extra data transfers.

Two CUDA-WITH-loops (lines 1 and 10) will be executed in
parallel on the GPU. Instructions in lines 7 and 8 comprises a serial
code block (selecting an array element from a and modifying an
array element in a) which should be executed on the CPU. This
demands two memory transfers from(to) GPU to(from) CPU (lines
6 and 9). These transfers cannot be eliminated by the memopt
scheme described in Section 5. However, if the array selection is
sinked into the second CUDA-WITH-loop (executed redundantly
by all threads) and the array modification is executed in a single
threaded CUDA kernel, both transfers can be eliminated (assuming
that neither val nor a SSA0 is referenced later in the program).
The final optimised code is shown in Figure 14. In the optimised
version, the transfers are replaced by temporary device variable
which is subsequently passed to a kernel with single thread.

In order to be able to quantify the impact of these sequential
code snippets, we re-ran our measurements on Gauss-Jordan and
Insertion Sort with hand-patched codes that avoid those transfers.
We refer to these codes as expar. Both benchmarks benefit vastly
from this yielding speedups of 14× and 4.5× respectively (See
Figure 15).

However, this does not yet solve the performance issues found
for KP1. In KP1 the problems stem from an unfavourable nesting

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0

0.2

0.4

0.6

0.8

1

1.2

Gauss-Jordan Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)

Problem Sizes

S
pe

ed
up

s
32K 64K 128K 256K

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Insertion Sort Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)

Problem Sizes
S

pe
ed

up
s

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0

0.2

0.4

0.6

0.8

1

1.2

KP1 Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)

Problem Sizes

S
pe

ed
up

s

Figure 12. Slowdowns of Gauss-Jordan, Insertion Sort and KP1.
of for loops and WITH-loops. They lead to a for loop which con-
tains WITH-loops, whose results are partially data-dependent from
one iteration to the next. In the context of traditional POSIX-thread
based concurrent executions on shared-memory systems, this is not
a problem as the sharing of the entire data comes for free. In the
context of CUDA, the situation is different. Here, our desire to min-
imise transfers now leads to the necessity to transfer between indi-
vidual loop iterations. Further investigation into the code revealed
that by manually applying some optimisations between for loops
and WITH-loops similar to the traditional loop interchange these
problems can be overcome. Figure 16 shows our hand-optimised
results.

The absolute performance achieved by these modifications are
shown in Table 3.

7. Related Work
The work described in this paper partly inherits the original ap-
proach from Grelck et. al. [7] where they consider auto-parallelising
individual WITH-loop for SMP systems. In their approach, the
thread assignments are made to disjoint partitions of the iteration

21

1 aD = cuda with {
2 (lb <= iv < ub) {
3 assigns;
4 }:res;
5 }:genarray(shp, def);
6 a = device2host(aD);
7 val = idx sel(a, i);
8 a SSA0 = idx modarray(a, j, 100);
9 a SSA0D = host2device(a SSA0);
10 bD = cuda with {
11 (lb <= iv < ub) {
12 .. = ..val..;
13 .. = ..a SSA0D..;
14 }:res;
15 }:genarray(shp, def);

Figure 13. Program with interleaved parallel and sequential code.

1 T CUDA single thread kernel(T tmpD, T j) {
2 a SSA1D = idx modarray(tmpD, j, 100);
3 return(a SSA1D);
4 }
5
6 aD = cuda with {
7 (lb <= iv < ub) {
8 assigns;
9 }:res;
10 }:genarray(shp, def);
11 tmpD = aD;
12 a SSA1D = CUDA single thread kernel(tmpD, j);
13 a SSA0D = a SSA1D;
14 a tmpD = aD;
15 bD = cuda with {
16 (lb <= iv < ub) {
17 val = idx sel(a tmpD, i);
18 .. = ..val..;
19 .. = ..a SSA0D..;
20 }:res;
21 }:genarray(shp, def);

Figure 14. Program after applying reduce memory transfer opti-
misation.

Benchmark Size Baseline Memopt Expar
1Kx1K 0.03 0.12 1.33
2Kx2K 0.03 0.13 2.13

Gauss-Jordan 3Kx3K 0.03 0.13 2.3
4Kx4K 0.03 0.12 2.2

32K 0.03 0.03 0.68
64K 0.03 0.03 1.16

Insertion Sort 128K 0.03 0.03 1.72
256K 0.03 0.03 2.22

1Kx1K 0.17 0.17 3.51
2Kx2K 0.12 0.12 8.52

KP1 3Kx3K 0.12 0.12 10.4
4Kx4K 0.12 0.13 11.8

Table 3. Gflops/sec of three benchmarks before and after applying
expar
space in a reconfigurable manner. Although looks similar, their
work differs from us in several ways. Our work benefits from
micro-threading mechanisms of CUDA whereas their work re-
lies on POSIX threads. Furthermore, due to the nature of GPU-
based applications, we aggressively optimise for redundant mem-
ory transfers between the host and the device. Since SMP-based
systems do not suffer from such transfers, their compiler do not

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0

2

4

6

8

10

12

14

16

Gauss Jordan Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)
Speedups
(memopt +
expar)

Problem Sizes

S
pe

ed
up

s
32K 64K 128K 256K

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Insertion Sort Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)
Speedups
(memopt +
expar)

Problem Sizes

S
pe

ed
up

s

Figure 15. Speedups of Gauss-Jordan and Insertion Sort after ex-
panding parallel region.

1Kx1K 2Kx2K 3Kx3K 4Kx4K
0.1

1

10

100

KP1 Speedups

Speedups
(mt)
Speedups
(baseline)
Speedups
(memopt)
Speedups
(memopt +
parallel for)

Problem Sizes

S
pe

ed
up

s

Figure 16. Speedups of KP1 when for-loops are executed in par-
allel.
perform such optimisations. These differences will become mag-
nified as we deploy additional optimisations to exploit different
aspects of GPUs.

Apart from this, mapping high-level code to GPGPUs is an ac-
tive area of research and several frameworks are evolving in this
direction. Microsoft’s Accelerator Framework [5] is an example in
that direction. Directive-based approaches offer a high-level alter-
native, whereby the underlying compiler is hinted using compiler
directives for GPU-specific optimisations. Commercial compilers
from PGI [13] and hiCUDA [9] aim to provide abstractions at
the device level so that the separation of application logic from the
device logic becomes easier. The directives in the language offer
better expressibility and minimise the mechanical steps to manage
device-specifics, such as memory allocation. They offer different
types of directives to manage the data and computation. The for-
mer one enables the specification of the data movements between

22

different memories of the device whilst the latter enables different
partitioning strategies for threads. However, we believe that these
abstractions are far from freeing the application programmers from
device-specific programming.

Mapping domain-specific languages to GPGPUs is another ap-
proach where the mapping problem is simplified by the design of
the domain-specific language under consideration, for example [6].
However, such approaches may not render a generic solution as
ours.

In [11], Lee et. al. present a translator to map OPENMP pro-
grams to CUDA programs, where they target work sharing direc-
tives for parallelisation which are eventually mapped as kernel re-
gions. They optimise the data accesses to the global memory using
suitable loop transformations. Since kernel boundaries are demar-
cated by work-sharing constructs in OPENMP, this particular opti-
misation is not global. In [1], Baskaran et. al. describe a compiler
framework where they target affine loop nests for parallelisation us-
ing polyhedral model. In particular, they optimise the loop nests to
have effective data transfers between global and shared-memories
of the device. However, the analysis does not extend beyond loop
nests.

8. Conclusions and Further Work
One of the key challenges in using GPUs is that application pro-
grammers are expected to have expert knowledge on the GPU ar-
chitecture. Different programming models improved this situation
but it is still a challenge to program at the abstraction level. In this
paper, we offered an implicit high-level approach: we generated
CUDA code from a high-level functional array programming lan-
guage, Single Assignment C (SAC). Our compiler targets the data
parallel loops, WITH-loops in SAC for parallel execution. In addi-
tion to mapping the WITH-loops to CUDA kernels, we performed
additional transformations for improving the performance even fur-
ther. We found minimising redundant data transfers as a key opti-
misation technique. Using a suite of benchmarks we demonstrated
that this optimisation can lead to significant performance gains.
We also did a proof-of-concept demonstration on a subset of our
benchmark suite to confirm the effectiveness of expanding parallel
regions beyond WITH-loops.

The work we presented here is part of a larger effort in pro-
ducing an auto-parallelising compiler framework for heterogeneous
architectures. A number of issues to be addressed in reaching this
goal are:

• The expanding parallel region transformation requires further
development to include other looping constructs, such as for
loops.

• The current implementation does not optimise kernels on their
memory usage such as different types of memory (constant,
cache or shared) or memory coalescing. A careful data re-use
analysis is required to determine placement of data or to re-
order the accesses.

• The compiler framework, SAC, is flexible enough for re-
targeting the code generation for different languages. Accelerator-
based OPENMP like directives [9, 13] is an attractive route for
retaining the abstractions while addressing heterogeneity.

• In our work, we fervently hoped that the data size does not ex-
ceed size of the device memory. However, several class of ap-
plications do demand processing on rather large amount of data.
Such computations on large data sets will require advanced fea-
tures such as support for streaming from our compiler.

• Finally, the parallelising framework targets only the WITH-
loops for mapping the execution to kernels. We would like to
extend this support towards traditional for loops.

References
[1] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,

A. Rountev, and P. Sadayappan. A Compiler Framework for Optimiza-
tion of Affine Loop Nests for GPGPUs. In ICS ’08: Proceedings of
the 22nd Annual International Conference on Supercomputing, pages
225–234, New York, USA, 2008. ACM.

[2] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, and E. Kaxiras.
A Flexible High-Performance Lattice Boltzmann GPU Code for the
Simulations of Fluid Flows in Complex Geometries. Concurrency and
Compututation : Practice and Experience, 22(1):1–14, 2010.

[3] R. Daniel, J. Carl, K. Alexei, S. Sven-Bodo, and V. S. Alexander.
Numerical Simulations of Unsteady Shock Wave Interactions Using
SaC and Fortran-90. In Lecture Notes in Computer Science, volume
5698, pages 445–456. Springer-Verlag, 2009.

[4] David B. Kirk, Wen-mei W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010.

[5] David Tarditi and Sidd Puri and Jose Oglesby. Accelerator: using data
parallelism to program GPUs for general-purpose uses. In Proceed-
ings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (12th ASPLOS’06),
pages 325–335. ACM 2006, 2006.

[6] Fred V. Lionetti and Andrew D. McCulloch and Scott B. Baden.
Source-to-Source Optimization of CUDA C for GPU Accelerated Car-
diac Cell Modeling. In Pasqua D’Ambra, Mario Rosario Guarracino,
and Domenico Talia, editors, Proceedings of the 16th International
Euro-Par Conference (Euro-Par 2010), Part I, volume 6271 of Lec-
ture Notes in Computer Science, pages 38–49. Springer-Verlag, 2010.

[7] Clemens Grelck. SAC – From High-Level Programming with Arrays
to Efficient Parallel Execution. In Proceedings of the 2nd Interna-
tional Workshop on High Level Parallel Programming and Applica-
tions (HLPP’03), Paris, 2003.

[8] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. Towards
Compiling SaC to CUDA. In Trends in Functional Programming,
volume 10, pages 33–48, Bristol, UK, 2010. Intellect.

[9] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: A High-Level
Directive-Based Language for GPU Programming. In GPGPU-2:
Proceedings of 2nd Workshop on GPGPUs, pages 52–61, New York,
USA, 2009. ACM.

[10] Khronos Group. OpenCL 1.1, Last accessed November 22, 2010.
http://www.khronos.org/opencl/.

[11] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to
GPGPU: A Compiler Framework for Automatic Translation and Opti-
mization. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages
101–110, New York, USA, 2009. ACM.

[12] Sven-Bodo Scholz. Single Assignment C – Efficient Support for High-
level Array Operations in a Functional Setting. Journal of Functional
Programming, 13(6):1005–1059, 2003.

[13] Wolfe, Michael. Implementing the PGI Accelerator model. In GPGPU
’10: Proceedings of the 3rd Workshop on GPGPUs, pages 43–50, New
York, USA, 2010. ACM.

23

