
Single Assignment C (SAC)

High Productivity Meets High Performance

Clemens Grelck

University of Amsterdam, Institute of Informatics
Science Park 904, 1098 XH Amsterdam, Netherlands

c.grelck@uva.nl

Abstract. We present the ins and outs of the purely functional, data
parallel programming language SaC (Single Assignment C). SaC defines
state- and side-effect-free semantics on top of a syntax resembling that
of imperative languages like C/C++/C# or Java: functional program-
ming with curly brackets. In contrast to other functional languages data
aggregation in SaC is not based on lists and trees, but puts stateless
arrays into the focus.

SaC implements an abstract calculus of truly multidimensional arrays
that is adopted from interpreted array languages like Apl. Arrays are
abstract values with certain structural properties. They are treated in a
holistic way, not as loose collections of data cells or indexed memory ad-
dress ranges. Programs can and should be written in a mostly index-free
style. Functions consume array values as arguments and produce array
values as results. The array type system of SaC allows such functions to
abstract not only from the size of vectors or matrices but likewise from
the number of array dimensions, supporting a highly generic program-
ming style.

The design of SaC aims at reconciling high productivity in software
engineering of compute-intensive applications with high performance in
program execution on modern multi- and many-core computing systems.
While SaC competes with other functional and declarative languages on
the productivity aspect, it competes with hand-parallelised C and For-
tran code on the performance aspect. We achieve our goal through strin-
gent co-design of programming language and compilation technology.

The focus on arrays in general and the abstract view of arrays in
particular combined with a functional state-free semantics are key ingre-
dients in the design of SaC. In conjunction they allow for far-reaching
program transformations and fully compiler-directed parallelisation.
From literally the same source code SaC currently supports symmetric
multi-socket, multi-core, hyperthreaded server systems, CUDA-enables
graphics accelerators and the MicroGrid, an innovative general-purpose
many-core architecture.

The CEFP lecture provides an introduction into the language design
of SaC, followed by an illustration of how these concepts can be har-
nessed to write highly abstract, reusable and elegant code. We conclude
with outlining the major compiler technologies for achieving runtime
performance levels that are competitive with low-level machine-oriented
programming environments.

V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011, LNCS 7241, pp. 207–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

208 C. Grelck

1 Introduction and Motivation

The on-going multi-core/many-core revolution in processor architecture has ar-
guably more radically changed the world’s view on computing than any other
innovation in microprocessor architecture. For several decades the same program
could be expected to run faster on the next generation of computers than on the
previous. The trick that worked so well and so cheaply all the time is clock fre-
quency scaling. Gordon Moore’s famous prediction (also known as Moore’s law)
says that the number of transistors in a chip doubles every 12–24 months [1]. In
other words, the number of transistors on a single chip was predicted to grow ex-
ponentially. Surprisingly, this prediction has been fairly accurate since the 1960s.
Beyond all clever tricks in microprocessor architecture that were enabled by ever
growing transistor counts the probably most important impact of Moore’s law
lies in the miniaturisation of the logical structures within a processor. The time it
takes for an electrical signal to advance from one gate to the next is linear in the
distance. With the distance shrinking exponentially, processors were able to run
on higher and higher clock frequencies, moving from kilo-Hertz to giga-Hertz.

But now this “free lunch” of programs automatically running faster on a new
machine is over [2]. What has happened? Unlike Moore’s law, which is rather
a prediction than a law, there are also true laws of physics, and according to
them the energy consumption of a processor grows quadratically with the clock
frequency. Consequently, energy cost has become a relevant factor in computing
these days. Another law of physics, the law of conservation of energy, says that
energy neither appears from nothing nor does it disappear to nothing; energy
only changes its physical condition. In the case of processors, the electrical energy
consumed is mostly dissipated as heat, thus requiring even more energy for
cooling. These cause the technical and economic challenges we face today.

Circumstances have fostered two technological developments: the multi-core
revolution and the many-core revolution. The former means that general-purpose
processors do not run at any higher clock frequency than before, but the con-
tinuing miniaturisation of structures is used to put multiple cores, fully-fledged
processors by themselves, into a single chip. While quad-core processors are
already common place in the consumer market, server processors often have al-
ready 6, 8 or even 12 cores today. It is generally anticipated that Moore’s law of
exponential growth will continue for the foreseeable future, but that instead of
the clock frequency the number of cores will benefit.

The many-core revolution has its origin in a similar technological progress in
the area of graphics cards. With their specialised designs graphics cards have de-
veloped into highly parallel, extremely powerful co-processors. They can compute
fitting workloads much faster than state-of-the-art general-purpose processors.
And, increasingly relevant, they can do this with a fraction of the energy budget.
With the fairly general-purpose CUDA programming model, particularly NVidia
graphics cards have become integral parts of many high-performance comput-
ing installations [3]. But even on the other end of the scale, in the personal
computing domain, GPGPUs (or general-purpose graphics processing units)
have become relevant for computing beyond computer graphics. After all, every

Single Assignment C (SAC) 209

computer does have a graphics card, and its full potential is not always needed
for merely controlling the display.

Looking into the future (which is always dangerous) one can anticipate a
certain symbiosis of general-purpose multi-core processors and GPU-style accel-
erators into unified processor designs with a few general-purpose fat cores and
a large number of restricted thin cores. AMD’s Fusion and Intel’s Knights Ferry
architectures are precursors of this development.

The radical paradigm shift in computer architecture from increasing clock
frequencies to duplicating computing devices on chip incurs a paradigm shift in
software engineering that is at least as revolutionary. As said before, programs
no longer automatically benefit from a new generation of computers. A sequen-
tial program does not run any faster on a quad-core system than on a uni-core
system, and it is very unlikely that it takes advantage of a computer’s graphics
card. Software at any level must be parallelised to effectively take advantage of
today’s computers. Harnessing the full power of increasingly concurrent, increas-
ingly diverse and increasingly heterogeneous chip architectures is a challenge for
future software engineers.

The multicore revolution must have a profound impact on the practice of soft-
ware engineering. While parallel programming per sé is hardly new, until very
recently it was largely confined to the supercomputing niche. Consequently, pro-
gramming methodologies and tools for parallel programming are geared towards
the needs of this domain: squeezing the maximum possible performance out of
an extremely expensive computing machinery through low-level machine-specific
programming. Programming productivity concerns are widely ignored as running
code is often more expensive than writing it.

What has changed with the multi-/many-core revolution is that any kind of
software and likewise any programmer is affected, not only specialists in high
performance computing centers with a PhD in computer science.

What has also changed thoroughly is the variety of hardware. Until recently,
the von-Neumann model of sequential computing was all that most software
engineers would need to know about computer architecture. Today’s computer
landscape is much more varied and with existing programming technology this
variety immediately affects programming. A computer today may just have a
single dual-core or quad-core processor, but it may likewise be a 4-processor
system with 4, 6 or 12 cores per processor [4,5]. So, already today the number of
cores in a general-purpose system can differ by more than one order of magnitude.
Technologies such as Intel’s hyperthreading [6] further complicate the situation:
they are often presented as real cores by the operating system, yet they require
a different treatment.

Non-x86 based processor architectures like Oracle’s Niagara range offer even
more parallelism. The T3-4 server system [7,8] shipped in 2011, for instance,
features 4 processors with 16 cores each while each core supports 8 hardware
threads. Such a system totals in 512 hardware threads and adds another order
of magnitude to the level of parallelism that software needs to effectively take
advantage of. A similar variety of technologies can be seen in the GPGPU market.

210 C. Grelck

Now any multi-core system can freely be combined with one or even multiple
GPGPU accelerators leading to a combinatorial explosion of possibilities. This,
at the latest, makes it technologically and economically challenging to write
software that makes decent use of a large variety of computing systems.

The quintessential goal of the SaC project lies in the co-design of program-
ming language technology and the corresponding compiler technology that ef-
fectively and efficiently maps programs to a large variety of parallel comput-
ing architectures [9,10]. In other words, SaC aims at reconciling programming
productivity with execution performance in the multi-/many-core era.

Our fundamental approach is abstraction. In analogy to the von Neumann
architecture of sequential computing machines SaC abstracts from all concrete
properties of computing systems and merely allows the specification of concur-
rent activities without any programmer control as to whether two concurrent
activities are actually evaluated in parallel or sequentially. This decision is en-
tirely left to the compiler and runtime system. The guiding principle is to let the
programmer define what to compute, not how exactly this is done. Our goal is to
put expert knowledge, for instance on parallel processing or computer architec-
ture, once into compiler and runtime system and not repeatedly into low-level
implementations of many application programs. This approach is particularly
geared towards the overwhelming number of software engineers who are neither
experts in parallel programming nor appreciate being forced to develop such
skills. Nonetheless, it is particularly this target group that wants or must exploit
the capabilities of modern multi-core and many-core computing systems with
limited software engineering effort.

Specifying what to compute, not exactly how to compute sounds very fa-
miliar to functional programmers. And indeed, SaC is a purely functional lan-
guage with a state- and side-effect-free semantics. Thus, SaC programs deal
with values, and program execution computes new values from existing values
in a sequence of context-free substitution steps. How values actually manifest
in memory, how long they remain in memory and whether they are created at
all is left to the language implementation. Abstracting from all these low-level
concerns makes SaC programs expose the algorithmic aspects of some compu-
tation because they are not interspersed with organisational aspects of program
execution on some concrete architecture.

In order to make exclusively compiler-directed parallelisation feasible, SaC
embraces a data-parallel agenda. More precisely, SaC is an array programming
language in the tradition of Apl [11,12], J [13] or Nial [14]. In fact, multi-
dimensional arrays are the basic data aggregation principle in SaC. Operations
on arrays are defined not exclusively but overwhelmingly following a data-parallel
approach. Before we look closer into SaC, let us first illustrate why the data-
parallel approach is crucial for our goal of supporting a wide range of parallel
architectures solely through compilation. We do this by means of an example
algorithm that clearly is none of the usual suspects in (data-)parallel computing.
Fig. 1 shows three different implementations of the factorial function: an imper-
ative implementation using C, a functional implementation in OCaml and a

Single Assignment C (SAC) 211

data-parallel implementation in SaC. It is characteristic for both the imperative
and the functional definition of the factorial function that they do not expose
any form of concurrency suitable for compiler-directed parallelisation. The im-
perative code is sequential by definition, but its functional counterpart likewise
leads to a purely sequential computation.

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

fac n = if n <= 1

then 1

else n * fac (n - 1)

int fac(int n)

{

return prod(1 + iota(n));

}

Fig. 1. Three definitions of the factorial function: imperative using C (top), functional
using OCaml (middle) and data-parallel using SaC (bottom)

In contrast, the array-style SaC implementation of the factorial function does
expose a wealth of concurrency to compiler and runtime system to exploit for
automatic parallelisation. However, this admittedly warrants some explanation
of the SaC code in Fig. 1. The iota function (the name is inspired by the corre-
sponding Apl operation) yields a vector (a one-dimensional array) of n elements
with the values 0 to n-1. Adding the value 1 to this vector yields the n-element
vector with the numbers 1 to n. Computing the product of all elements of this
vectors yields the factorial of n. While this definition of the factorial function
may be unusual at first glance, it offers one significant advantage over the other
definitions of Fig. 1: it exposes concurrency. Each of the three conceptual steps
is a data-parallel operation. For appropriate values of n the data-parallel formu-
lation of the factorial function exposes a high degree of fine-grained concurrency.

Fig. 2 illustrates why this is highly relevant. In the example we compute the
factorial of 10. The data-parallel specification based on iota, element-wise addi-
tion and prod exposes a 10-fold concurrency in computing the factorial number.
This, however, does not mean that the computation is split into 10 independent
tasks, processes or threads. It is merely an option for the compiler and run-
time system to exploit this fine-grained concurrency. Depending on the target

212 C. Grelck

01

0

to

compilation
to

seqential
code

compilation
to

microthreaded

code

compilation
multithreaded code

prod(1+iota(10))

3628800

2 10

120 30240

20

2

3628800

1

2

6

3628800

20

2 12 56 90

24 1680

151200

30

2

2

1 3 4 5 6 7 8 9

98765431

64310 75 8 9

98765431

1 3 4 5 7 8 96

8 9765431

Fig. 2. Design choices in compiling a data-parallel program

architecture this may or may not be the case. If the target architecture, for in-
stance, supports very light-weight concurrent activities, the compiler may indeed
decide to expose the full amount of concurrency to the hardware. The MicroGrid
many-core architecture [15] is such an example.

On the other end of the spectrum compiler and runtime system may equally
well decide to run the entire computation sequentially. Maybe we utilise sequen-
tial legacy hardware; maybe we have already exhausted our parallel computing
capabilities on an outer application level. If so, it is fairly simple not to make
use of the apparent concurrency and generate sequential binary code instead.

Between these two extremes, exploiting all concurrency available or exploiting
no concurrency at all, we find an almost contiguous design space for compiler and
runtime system to make appropriate decisions. The right choice depends on a
variety of concerns including properties of the target architecture, characteristics
of the code and attributes of the data being processed. For example, in the center
of Fig. 2 we can identify a solution that is presumably well-suited for a dual-core
system. The compiler generates two independent tasks that each take care of one
half of the intermediate vector. Both threads can run without synchronisation
until the final multiplication of the partial reduction results.

A compiler could even generate multiple alternative code versions and post-
pone any decision until runtime when complete information about hardware
capacities, data sizes, etc, are available to make a much more educate choice.

Of course, the factorial function is merely an example to illustrate the princi-
ple of data-parallel array programming, not at all a relevant application. Neither
is the factorial function particularly interesting to be computed in parallel for

Single Assignment C (SAC) 213

large argument numbers, nor do the concrete implementations of Fig. 1, based
on machine-width integer representations, support sufficiently large values.

As the name Single Assignment C suggests and the factorial example already
reveals to some extent, SaC does not follow regular syntactic conventions of
established functional languages. Neither do we invent a completely new syntax
from scratch. Instead, we aim at providing imperative programmers with the
warm feeling of a familiar programming environment. After all, the majority of
programmers suddenly confronted with the multi-core revolution has not used
Haskell, OCaml or Clean before but rather C, C++, C# or Java. We will
later see how imperative appearance and functional semantics can make a very
beneficial symbiosis.

Last but certainly not least, SaC aims at combining high-level, problem-
oriented programming not only with fully automatic parallelisation but likewise
with competitive sequential performance. And competition here means estab-
lished imperative programming languages, not high-level, declarative or func-
tional ones. If we aim at converting imperative programmers to SaC, we must
be able to generate absolute performance gains through automatic parallelisa-
tion. In other words SaC aims at outperforming sequential imperative codes on
parallel hardware. For that it is paramount to deliver sequential performance
that is close to imperative programs. After all, we cannot expect more than a
linear performance increase from parallelisation. To support the performance
demands, SaC dispenses with a number of programming features typical for
main-stream, general-purpose functional languages. For instance, SaC neither
supports higher-order functions, nor currying or partial applications. SaC also
follows a strict evaluation regime.

MicroGrid
Architecure

Amsterdam Systems
on a
ChipProcessors

Functional Array Programming

Advanced Compiler Technology

FPGAs ClustersGPGPU
Accelerators

Multi−
Multi−Core

SAC

SAC2C

Fig. 3. The SaC compilation challenge: past, present and future work

Fig. 3 illustrates the compilation challenge taken by SaC. Based on compet-
itive sequential performance, we aim at compiling a single SaC source program
to a variety of computing architectures. At the moment SaC supports symmet-
ric (potentially hyper-threaded) multi-core multi-processor systems with shared
memory, i.e. today’s bread-and-butter server systems. Moreover, SaC also sup-
ports general-purpose graphics processing units (GPGPUs) as accelerators as

214 C. Grelck

well as the MicroGrid [15], an innovative general-purpose many-core processor
architecture developed at the University of Amsterdam. Work is currently on-
going to combine multi-core and many-core code generators to support hybrid
systems-on-chip. Support for reconfigurable hardware on one end of the spectrum
and network-interconnected clusters of multi-core servers with accelerators on
the other mark up-coming challenges that we have only started exploring.

The rest of the article is organised as follows: We begin with the core lan-
guage design of SaC and explain the relationship between imperative syntax and
functional semantics in Section 2. Section 3 elaborates on the calculus of multi-
dimensional arrays and discusses its implementation by SaC. We then introduce
the array type system of SaC and the associated programming methodology in
Section 4. Sections 5 and 6 illustrate programming in SaC by means of two
case studies: variations of convolution and numerical differentiation. Sections 7,
8 and 9 complete the introductory text on SaC and explain the module system,
SaC’s approach to functionally sound input/output and the foreign language
interfaces, respectively. Last not least, we discuss essential aspects of the SaC
compiler and runtime system in Section 10. A small selection of related work is
sketched out in Section 11 before we conclude with a short summary and outlook
on current and future research directions in Section 12.

2 Core Language Design

In this section we describe the core language design of SaC. First, we identify
the syntactical subset of C for which we can define a functional semantics as
language kernel for SaC (Section 2.1). Afterwards, we explain the relationship
between the imperative, C-inspired syntax and its truly functional semantics in
detail (Section 2.2).

2.1 A Functional Subset of ISO C

The core of SaC is the subset of ANSI/ISO C [16] for which functional semantics
can be defined (surprisingly straightforwardly). Fig. 4 illustrates the similarities
and differences between SaC and C. In essence, SaC adopts from C the names of
the built-in types, i.e. int for integer numbers, char for ASCI characters, float
for single precision and double for double precision floating point numbers.
Conceptually, SaC also supports all variants derived by type specifiers such as
short, long or unsigned, but for the time being we merely implements the
above standard types. Unlike C, SaC properly distinguishes between numerical,
character and Boolean values and features a built-in type bool for the latter.

As a functional language SaC uses type inference instead of C-style type
declarations. This requires a strict separation of values of different basic types.
While type bool is, as expected, inferred for the Boolean constants true and
false and character constants like ’a’ are obviously of type char, the situation
is less clear for numerical constants. Here, we decide that any number constant
without decimal point or exponent specification is of type int. Any floating

Single Assignment C (SAC) 215

values
return

multiple

overloading
function

I/O system

modules

bool

goto

functions

double
float
char
int

operators

assignments

 stateless
arrays

global vars

side−effects

pointers

continue
break

 multi−dimensional

branches
loops

C SAC

Fig. 4. Similarities and differences between SaC and C

point constant with decimal point or exponent specification is by default of type
double. A trailing f character makes any numerical constant a single precision
floating point constant, and a trailing d character a double precision floating
point constant. For example, 42 is of type int, 42.0 is of type double, 42.0f
and 42f are of type float and 42d is again of type double. SaC requires explicit
conversion between values of different basic types by means of the overloaded
conversion functions toi (conversion to integer), toc conversion to character,
tof (conversion to single precision floating point), tod (conversion to double
precision floating point) and tob (conversion to Boolean).

Despite these minor differences in details, SaC programs generally look in-
triguingly similar to C programs. SaC adopts the C syntax for function defini-
tions and function applications that clearly distinguishes between functions and
values. Function bodies are essentially sequences of assignments of expressions
to variables. While C-style variable declarations are superfluous due to type in-
ference, they are nonetheless permitted and may serve documentation purposes.
If present declared types are checked against inferred types.

In addition to constants as explained above, expressions are made up of iden-
tifiers, function applications and operator applications. SaC supports most op-
erators from C, among them all arithmetic, relational and logical operators. As
usual, Boolean conjunction and disjunction only evaluate their right operand
expression if necessary. Furthermore, SaC does also support the tertiary condi-
tional expression operator from C (question mark and colon, in other words a
proper functional conditional), operator assignments (e.g. += and *=) as well as
pre and post increment and decrement operators (i.e. ++ and --). For the time
being, SaC does not support the bitwise operations of C.

SaC adopts almost all of C’s structured control flow constructs: branches
with and without alternative (else), loops with leading (while) and with trailing

216 C. Grelck

(do...while) predicate and, last not least, counted loops (for). All of these
constructs feature exactly the same syntax as C proper. In case of the for-loop
we even adopt the definition of exact semantics as a (preprocessor) transforma-
tion into a while-loop [17]. Given the proper separation between Boolean and
numerical values, predicates in branches, conditional expressions and loops must
be expressions of type bool, not int as in C.

We do not mention C’s switch-construct in Fig. 4. While the SaC compiler
does not implement this for the time being, our choice is not motivated by any
conceptual issues, but solely by engineering effort concerns. In contrast, C does
have a number of quintessentially imperative features that we definitely do not
want to adopt: pointers, global variables and side effects in general. Moreover,
C-style control flow manipulation features, such as goto, break and continue,
make no sense in SaC because the functional semantics dispenses with any form
of control flow.

int gcd(int high , int low)

{

if (high < low) {

mem = low;

low = high;

high = mem;

}

while (low != 0) {

quotient , remainder = diffmod(high , low);

high = low;

low = remainder ;

}

return high;

}

int , int diffmod(int x, int y)

{

quot = x / y;

remain = x % y;

return (quot , remain);

}

int main ()

{

return gcd(22, 27);

}

Fig. 5. Example of a core SaC program that illustrates the similarities and differences
between SaC and C: greatest common denominator following Euclid’s algorithm

Single Assignment C (SAC) 217

The language kernel of SaC is enriched by a number of features as illus-
trated in Fig. 4. Some of these features are characteristic for SaC, e.g. the
multi-dimensional, stateless arrays. Others are mere programming conveniences
or state-of-the-art modernisations of C, e.g. a proper module system with infor-
mation hiding or an I/O system that combines the simplicity of imperative I/O
(e.g. simply adding a print statement where one is needed) with a save integra-
tion of state manipulation into the purely functional context of SaC “under the
hood”. Unlike C but in the tradition of C++ SaC also supports function and
operator overloading (ad-hoc polymorphism). Syntactically, SaC allows func-
tions to instantaneously yield multiple values. As functions can (of course) take
multiple arguments, support for multiple return values creates a nice symmetry
between domain and codomain.

Fig. 5 illustrates the (scalar) language kernel of SaC by means of a simple
example: Euclid’s algorithm to determine the greatest common denominator of
two natural numbers. The code in Fig. 5 mainly highlights the syntactical simi-
larity (if not identity) between SaC and C (at least for such simple programs).
The code, nonetheless, is not legal C code as it also showcases a SaC-specific
language feature: functions with multiple return values. The auxiliary function
diffmod instantaneously yields the quotient and the remainder of two integers.
Consequently, the function diffmod is defined to yield two integer values and
its return-statement contains two expressions. Parentheses are required around
multiple return expressions. The application of diffmod demonstrates instan-
taneous variable binding. Like in C and other languages, a function with the
reserved name main defines the starting point of program execution. One may
note the complete absence of local variable declarations in Fig. 5.

2.2 Functional Semantics vs C-Like Syntax

Despite its imperative appearance, SaC is a purely functional programming lan-
guage. While we refrain from any attempt to define a formal functional semantics
for the language kernel, we nonetheless illustrate the main ideas behind combin-
ing an imperative syntax with a purely functional semantics. The examples in
Figs. 6, 7 and 8 show relevant fragments of SaC code and explain their exact
meaning by semantically equivalent OCaml code.

int add1(int a, int b)

{

c = a + b;

x = 1;

c = c + x;

return c;

}

⇐⇒
let add1 (a,b) =

let c = a + b

in let x = 1

in let c = c + x

in c

Fig. 6. Semantic equivalence between SaC and OCaml: simple function definitions

218 C. Grelck

Fig. 6 shows a very simple SaC function add1 whose body merely consists
of a sequence of assignments of expressions to variables and a trailing return-
statement. Semantically, we interpret a sequence of assignments as a sequence
of nested let-expressions with the return expression serving as the final goal
expression of the let-cascade. This transformational semantics easily clarifies
why and how SaC, despite prominently featuring the term single assignment in
its name, does actually allow repeated assignment to the “same” variable. Any
assignment to a previously defined variable or function parameter is actually an
assignment to a fresh variable that merely happens to bear the same name as
the variable defined earlier. Standard scoping and visibility rules, even familiar
to imperative programmers, clarify that the previously assigned variable can no
longer be accessed.

int fac(int n)

{

if (n>1) {

r = fac(n-1);

f = n * r;

}

else {

f = 1;

}

return f;

}

⇐⇒

let fac n =

if n>1

then let r = fac (n-1)

in let f = n * r

in f

else let f = 1

in f

Fig. 7. Semantic equivalence between SaC and OCaml: branching

The functional interpretation of imperative branching constructs is shown in
Fig. 7 by means of a recursive definition of the factorial function. In essence, we
“copy” the common code following the branching construct including the trailing
return-statement into both branches. By doing so we transform the C branching
statement into a functional OCaml conditional expression. For consistency with
the equivalence defined in Fig. 6 we also transform both branches into cascading
let-expressions.

The functional interpretation of loops requires slightly more effort, but it is
immediately apparent that imperative loops are mainly syntactic sugar for tail
recursion. Fig. 8 demonstrates this analogy by means of a standard imperative
definition of the factorial function using a while-loop. Here, we need to turn
the loop into a tail-recursive auxiliary function (fwhile) that is applied to the
argument n and the start value f. Upon termination the auxiliary function yields
the factorial.

Single Assignment C (SAC) 219

int fac(int n)

{

f = 1;

while (n>1) {

f = f * n;

n = n - 1;

}

return f;

}

⇐⇒

let fac n =

let f = 1

in let fwhile (f,n) =

if n>1

then let f = f * n

in let n = n - 1

in fwhile (f,n)

else f

in let f = fwhile (f,n)

in f

Fig. 8. Semantic equivalence between SaC and OCaml: while-loops

3 Multidimensional Stateless Arrays

On top of the scalar kernel SaC provides genuine support for truly multidimen-
sional stateless arrays. The section begins with introducing the array calculus
and its incorporation into a concrete programming language (Section 3.1) and
proceeds to the built-in array functions supported by SaC (Section 3.2). The
rest of the section is devoted to with-loops, the SaC array comprehension con-
struct. We first introduce the principles (Section 3.3), then we show a complete
example (Section 3.4) and finally we provide a complete reference of features
(Section 3.5).

3.1 Array Calculus

On top of this language kernel SaC provides genuine support for truly multi-
dimensional arrays. In fact, SaC implements an array calculus that dates back
to the programming language Apl[18,11]. This calculus was later adopted by
other array languages, e.g. J[19,13,20] or Nial[14,21] and also theoretically in-
vestigated under the name ψ-calculus [22,23]. In this array calculus any multi-
dimensional array is represented by a natural number, named the rank, a vector
of natural numbers, named the shape vector, and a vector of whatever data type
is stored in the array, named the data vector. The rank of an array is another
word for the number of dimensions or axes. The elements of the shape vector
determine the extent of the array along each of the array’s dimensions. Hence,
the rank of an array equals the length of that array’s shape vector, and the prod-
uct of shape vector elements equals the length of the data vector and, thus, the
number of elements of an array. The data vector contains the array’s elements
along ascending axes with respect to the shape vector, sometimes referred to as
row-major ordering. Fig. 9 shows a number of example arrays and illustrates the
relationships between rank, shape vector and data vector.

220 C. Grelck

j

k

i

10

7 8 9

1211
1 32

4 5 6

rank: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

⎛
⎝

1 2 3
4 5 6
7 8 9

⎞
⎠ rank: 2

shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

[1, 2, 3, 4, 5, 6]
rank: 1
shape: [6]
data: [1,2,3,4,5,6]

42

rank: 0
shape: []
data: [42]

Fig. 9. Truly multidimensional arrays in SaC and their representation by data vector,
shape vector and rank scalar

More formally, let A be an n-dimensional array represented by the rank scalar
n, the shape vector sA = [s0, . . . , sn−1] and the data vector dA = [d0, . . . , dm−1].
Then the equation

m =
n−1∏
i=0

si

describes the correspondence between the shape vector and the length of the
data vector. Moreover, the set of legal index vectors of the array A is defined as

IVA := { [iv0, . . . , ivn−1] | ∀j ∈ {0, . . . , n− 1} : 0 ≤ ivj < sj} .

An index vector iv = [iv0, . . . , ivn−1] denotes the element dk of the data vector
dA of array A if iv is a legal index vector of A, i.e. iv ∈ IVA, and the equation

k =
n−1∑
i=0

(ivi ∗
n−1∏

j=i+1

sj)

holds. Two arrays A and B are conformable iff they have the same element type
and the same number of elements:

|dA| = |dB|
A vector of natural numbers s is shape-conformable to an array A iff the product
of the elements of the vector equals the number of elements of the array:

n−1∏
i=0

si = |dA|

Single Assignment C (SAC) 221

As already shown in Fig. 9 the array calculus nicely extends to scalars. A scalar
value has the rank zero and the empty vector as shape vector; the data vector
contains a single element, the scalar value itself. This is completely consistent
with the rules sketched out before. The rank determines the number of elements
in the shape vector. As the rank of a scalar is zero, so is the number of elements
in the shape vector. The product of all elements of the shape vector determines
the number of elements in the data vector. The product of an empty sequence
of values is one, i.e. the neutral element of multiplication.

Unifying scalars and arrays within a common calculus allows us to say that
any value in SaC is an array, and as such it has a rank, a shape vector and a
data vector. Furthermore, we achieve a complete separation between data and
structural information (i.e. rank and shape).

3.2 Built-In Operations on Arrays

In contrast to all its ancestors, from Apl to the ψ-calculus, SaC only defines a
very small number of built-in operations on multidimensional arrays. They are
directly related to the underlying calculus:

– dim(a)
yields the rank scalar of array a ;

– shape(a)
yields the shape vector of array a ;

– sel(iv, a)
yields the element of array a at index location iv , provided that iv is a
legal index vector into array a according to the definition above;

– reshape(sv, a)
yields an array that has shape sv and the same data vector as array a ,
provided that sv and a are shape-conformable;

– modarray(a, iv, v)
yields an array with the same rank and shape as array a , where all elements
are the same as in array a except for index location iv where the element
is set to value v .

For the convenience of programmers SaC supports some syntactic sugar to ex-
press applications of the sel and modarray built-in functions:

sel(iv, a) ≡ a [iv]
a = modarray(a, iv, v); ≡ a [iv] = v ;

Fig. 10 further illustrates the SaC array calculus and its built-in functions by a
number of examples. Most notably, selection supports any prefix of a legal index
vector. The rank of the selected subarray equals the difference between the rank
of the argument array and the length of the index vector. Consequently, if the
length of the index vector coincides with the rank of the array, the rank of the
result is zero, i.e. a single element of the array is selected.

222 C. Grelck

vec ≡ [4,5,6,7]

mat ≡
⎛
⎝

0 1 2 3
4 5 6 7
8 9 10 11

⎞
⎠

dim(mat) ≡ 2

shape(mat) ≡ [3,4]

dim(vec) ≡ 1

shape(vec) ≡ [4]

mat[[1,2]] ≡ 6

vec[[3]] ≡ 7

mat[[]] ≡ mat

mat[[1]] ≡ vec

mat ≡ reshape([3,4], [0,1,2,3,4,5,6,7,8,9,10,11])

[[4,5],[6,7]] ≡ reshape([2,2], vec)

Fig. 10. SaC built-in functions in the context of the array calculus

3.3 With-Loop Array Comprehension

With only five built-in array operations (i.e. dim, shape, sel, reshape and
modarray) SaC leaves the beaten track of array-oriented programming lan-
guages like Apl and Fortran-90 and their derivatives. Instead of providing
dozens if not a hundred or more hard-wired array operations such as element-
wise extensions of scalar operators and functions, structural operations like shift
and rotate along one or multiple axes and reduction operations with eligible
built-in and user-defined operations like sum and product, SaC features a single
but versatile array comprehension construct: the with-loop.

With-loops can be used to implement all the above and many more array
operations in SaC itself. We make intensive use of this feature and provide a
comprehensive standard library of array operations. Compared to hard-wired
array support this approach offers a number of advantages. For instance, we can
keep the language design of SaC fairly lean, the library implementations of array
operations do not carve their exact semantics in stone and SaC users can easily
extend and adapt the array library to their individual needs.

With-loops facilitate the specification of map- and reduce-like aggregate ar-
ray operations. They come in three variants, named genarray, modarray and
fold, as illustrated by means of simple examples in Figs. 11, 12 and 13, respec-
tively. Since the with-loop is by far the most important and most extensive
syntactical extension of SaC, we also provide a formal definition of the syntax
in Fig. 14. For didactic purposes we begin with a simplified form of with-loops
here and discuss a number of extensions in the following section.

We start with the genarray-variant in Fig. 11. Any with-loop array com-
prehension expression begins with the key word with (line 1) followed by a
partition enclosed in curly brackets (line 2), a colon and an operator that defines
the with-loop variant, here the key word genarray. The genarray-variant is
an array comprehension that defines an array whose shape is determined by the
first expression following the key word genarray. By default all element values

Single Assignment C (SAC) 223

A = with {
([1,1] <= iv < [4,4]) : e(iv);

}: genarray([5,4], def);

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

[4,0] [4,1] [4,2] [4,3]

=⇒

�def� �def� �def� �def�

�def� �e[iv ← [1, 1]� �e[iv ← [1, 2]� �e[iv ← [1, 3]�

�def� �e[iv ← [2, 1]� �e[iv ← [2, 2]� �e[iv ← [2, 3]�

�def� �e[iv ← [3, 1]� �e[iv ← [3, 2]� �e[iv ← [3, 3]�

�def� �def� �def� �def�

Fig. 11. The genarray-variant of the with-loop array comprehension

are defined by the second expression, the so-called default expression. The shape
expression (i.e. the first expression after the key word genarray) must evalu-
ate to a non-negative integer vector. The example with-loop in Fig. 11, hence,
defines a matrix with 5 rows and 4 columns.

The middle part of the with-loop, the partition (line 2 in Fig. 11), defines a
rectangular index subset of the defined array. A partition consists of a generator
and an associated expression. The generator defines a set of index vectors along
with an index variable representing elements of this set. Two expressions, which
must evaluate to non-negative integer vectors of the same length as the value of
the shape expression, define lower and upper bounds of a rectangular range of
index vectors. For each element of this index vector set defined by the generator,
the associated expression is evaluated with the index variable instantiated ac-
cording to the index position. In the case of the genarray-variant the resulting
value defines the element value at the corresponding index location of the array.

The default expression itself is optional with an element type dependent de-
fault default value, i.e. the fitting variant of zero (false, ’\0’, 0, 0f, 0d for types
bool, char, int, float, double, respectively). If possible the compiler adds the
appropriate value. A default expression may not even be needed if the generator
already covers the entire index set.

The second with-loop-variant is the modarray-variant illustrated in Fig. 12.
While the partition (line 2) is syntactically and semantically equivalent to the
genarray-variant, the definition of the array’s shape and the default rule for
element values that are not contained in the generator-defined index set are
different. The key word modarray is followed by a single expression. The newly
defined array takes its shape from the value of that expression, i.e. we define
an array that has the same shape as a previously defined array. Likewise, the
element values at index positions not covered by the generator are obtained
from the corresponding elements of that array. It is important to note that the
modarray-with-loop does not destructively overwrite the element values of the
existing array, as it would be common in the imperative world. Since SaC is a
purely functional language, we semantically define a new array value that lives
aside the existing one.

224 C. Grelck

B = with {
([1,1] <= iv < [4,4]) : e(iv);

}: modarray(A);

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

[4,0] [4,1] [4,2] [4,3]

=⇒

�A[[0, 0]]� �A[[0, 1]]� �A[[0, 2]]� �A[[0, 3]]�

�A[[1, 0]]� �e[iv ← [1, 1]� �e[iv ← [1, 2]� �e[iv ← [1, 3]�

�A[[2, 0]]� �e[iv ← [2, 1]� �e[iv ← [2, 2]� �e[iv ← [2, 3]�

�A[[3, 0]]� �e[iv ← [3, 1]� �e[iv ← [3, 2]� �e[iv ← [3, 3]�

�A[[4, 0]]� �A[[4, 1]]� �A[[4, 2]]� �A[[4, 3]]�

Fig. 12. The modarray-variant of the with-loop array comprehension

The third with-loop-variant supports the definition of reduction operations.
It is characterised by the key word fold followed by the name of an eligible
reduction function or operator and the neutral element of that function or op-
erator. For certain built-in functions and operators the compiler is aware of the
neutral element, and an explicit specification can be left out. SaC requires fold
functions or operators to expect two arguments of the same type and to yield
one value of that type. Fold functions must be associative and commutative.
These requirements are stronger than in other languages with explicit reduc-
tions (e.g. foldl and foldr in many mainstream functional languages). This is
motivated by the absence of an order on the generator defined index subset and
ultimately by the wish to facilitate parallel implementations of reductions.

B = with {
([1,1] <= iv < [4,4]) : e(iv);

}: fold(⊕, neutr);

[1,1] [1,2] [1,3]

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]

=⇒
�neutr� ⊕ �e[iv ← [1, 1]� ⊕ �e[iv ← [1, 2]� ⊕ �e[iv ← [1, 3]�

⊕ �e[iv ← [2, 1]� ⊕ �e[iv ← [2, 2]� ⊕ �e[iv ← [2, 3]�
⊕ �e[iv ← [3, 1]� ⊕ �e[iv ← [3, 2]� ⊕ �e[iv ← [3, 3]�

Fig. 13. The fold-variant of the with-loop array comprehension

Note that the SaC compiler cannot verify associativity and commutativity
of user-defined functions. It is the programmer’s responsibility to ensure these
properties. Using a function or operator in a fold-with-loop acts as an implicit
assertion of the required properties. To be precise, neither floating point nor
integer machine arithmetic is strictly speaking associative. It is up to the pro-
grammer to judge whether or not overflow/underflow in integer computations
or numerical stability issues in floating point computations are relevant. If so
and the exact order in which a reduction is performed does matter, the fold-
with-loop is not the right choice. Instead, sequential loops as in C should be

Single Assignment C (SAC) 225

used. This is not a specific problem of SaC, but is owed to parallel reduction in
general. The same issues appear in all programming environments that support
parallel reductions, e.g. the reduction clause in OpenMP[24,25] or the collective
operations in Mpi[26].

WithLoopExpr ⇒ with { Partition } : Operator

Partition ⇒ Generator : Expr ;

Generator ⇒ (Expr RelOp Identifier RelOp Expr)

RelOp ⇒ <= | <

Operation ⇒ genarray (Expr [, Expr])
| modarray (Expr)
| fold (FoldOp [, Expr])

FoldOp ⇒ Identifier | BinOp

Fig. 14. Formal definition of the (simplified) syntax of with-loop expressions

3.4 With-Loop Examples

Following the rather formal introduction of with-loops in the previous section
we now illustrate the concept and its use by a series of examples. For instance,
the matrix

A =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49

⎞
⎟⎟⎟⎟⎠

can be defined by the following with-loop:

A = with {

([0,0] <= iv < [5,10]) : iv [[0]] * 10 + iv[[1]];

}: genarray ([5 ,10]);

Note here that the generator variable iv denotes a 2-element integer vector.
Hence, the scalar index values need to be extracted through selection prior to
computing the new array’s element value.

The following modarray-with-loop defines the new array B that like A is a
5 × 10 matrix where all inner elements equal the corresponding values of A
incremented by 50 while the remaining boundary elements are obtained from A
without modification:

226 C. Grelck

B = with {

([1,1] <= iv < [4,9]) : A[iv] + 50;

}: modarray (A);

This example with-loop defines the following matrix:

B =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7 8 9
10 61 62 63 64 65 66 67 68 19
20 71 72 73 74 75 76 77 78 29
30 81 82 83 84 85 86 87 88 39
40 41 42 43 44 45 46 47 48 49

⎞
⎟⎟⎟⎟⎠

Last not least, the following fold-with-loop computes the sum of all elements
of array B:

sum = with {

([0,0] <= iv < [5,10]) : B[iv];

}: fold(+, 0);

which yields 2425.

3.5 Advanced Aspects of With-Loops

So far, we have focussed on the principles of with-loops and restricted ourselves
to a simplified view. In fact, with-loops are much more versatile; Fig. 15 defines
the complete syntax that we now explain step by step.

We begin with a major extension: a with-loop may have multiple partitions
instead of a single one. With multiple partitions, disjoint index subsets of an
array may be computed according to different specifications. For example, the
with-loop

A = with {

([0,0] <= iv < [5, 8]) : iv[[0]] * 10 + iv[[1]];

([0,8] <= iv < [5,10]) : iv [[0]] + iv [[1]];

}: genarray ([5,10], 0);

yields the matrix

A =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 9 10
20 21 22 23 24 25 26 27 10 11
30 31 32 33 34 35 36 37 11 12
40 41 42 43 44 45 46 47 12 13

⎞
⎟⎟⎟⎟⎠

where the left 8 columns are defined according to the first partition and the
right 2 columns according to the second partition. One question that imme-
diately arises when defining multiple partitions is what happens if the index
sets defined by the generators are not pairwise disjoint. Since this question is
generally undecidable for the compiler, we define that the in textual order last
partition that covers a certain index defines the corresponding value.

Single Assignment C (SAC) 227

WithLoopExpr ⇒ with { [Partition]+ } : OperatorList

Partition ⇒ Generator [Block] : ExprList ;

Generator ⇒ (Bound RelOp GenVar RelOp Bound [Filter])

Bound ⇒ Expr | .

RelOp ⇒ <= | <

GenVar ⇒ Identifier
| IdentifierVector
| Identifier = IdentifierVector

IdentifierVector ⇒ [[Identifier [, Identifier]*]]

Filter ⇒ step Expr [width Expr]

ExprList ⇒ Expr [, Expr]*

OperatorList ⇒ Operator

| (Operator [, Operator]*)

Operator ⇒ genarray (Expr [, Expr])
| modarray (Expr)
| fold (FoldOp [, Expr])

FoldOp ⇒ Identifier | BinOp

Fig. 15. Formal definition of the full syntax of with-loop-expressions

As in the previous example, it is often handy to access the scalar elements of
the generator variable directly, instead of explicitly selecting elements inside the
associated expression:

A = with {

([0,0] <= [i,j] < [5, 8]) : i * 10 + j;

([0,8] <= [i,j] < [5,10]) : i + j;

}: genarray ([5 ,10]);

In fact, one can even use the generator variable in vector and scalar form in the
same partition.

A significant extension of all with-loop variants concerns the generators.
Rather than defining dense rectangular index spaces, extended generators may
also define sparse periodic patterns of indices. For example, the with-loop

A = with {

([0,0] <= [i,j] < [5,10] step [1,2]) : i * 10 + j;

}: genarray ([5,10], 0);

228 C. Grelck

yields the matrix ⎛
⎜⎜⎜⎜⎝

0 0 2 0 4 0 6 0 8 0
10 0 12 0 14 0 16 0 18 0
20 0 22 0 24 0 26 0 28 0
30 0 32 0 34 0 36 0 38 0
40 0 42 0 44 0 46 0 48 0

⎞
⎟⎟⎟⎟⎠

An additional width specification allows generators to define generalised periodic
grids as in the following example where

A = with {

([0,0] <= iv < [5,10] step [4,4] width [2 ,2]) : 9;

([0,2] <= iv < [5,10] step [4,4] width [2 ,2]) : 0;

([2,0] <= iv < [5,10] step [4,1] width [2 ,1]) : 1;

}: genarray ([5 ,10]);

yields ⎛
⎜⎜⎜⎜⎝

9 9 0 0 9 9 0 0 9 9
9 9 0 0 9 9 0 0 9 9
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
9 9 0 0 9 9 0 0 9 9

⎞
⎟⎟⎟⎟⎠

Expressions that define step and width vectors must evaluate to positive integer
vectors of the same length as the other vectors of the generator. The full range
of generators can be used with all with-loop variants.

In order to give a formal definition of index sets, let a, b, s, and w denote
expressions that evaluate to appropriate vectors of length n. Then, the generator

(a <= iv < b step s width w)

defines the following set of index vectors:

{ iv | ∀j∈{0,...,n−1} : aj ≤ ivj < bj ∧ (ivj − aj) mod sj < wj } .

The last major extension concerns the operator. Actually, with-loops may come
with a list of operators, and a single with-loop may combine multiple variants.
For instance the with-loop

mini , maxi = with {

([0,0] <= iv < [5,10]) : A[iv], A[iv];

}: (fold(min), fold(max));

simultaneously defines the minimum and the maximum value of the previously
defined array A. Each generator is associated with a comma-separated list of
expressions that correspond to the comma-separated list of operators. As this
example illustrates, it is often handy to have the generator-associated expressions
be preceded by a local block of assignments to abstract away complex or common
subexpressions. Hence, the above example could also be written as

mini , maxi = with {

([0,0] <= iv < [5,10]) {

a = A[iv];

}: a, a;

}: (fold(min), fold(max));

Single Assignment C (SAC) 229

In practice, with-loops are often much simpler than they could be. Quite com-
monly they define homogeneous array operations where all elements of the in-
dex space are treated in the same way: a single generator covers the whole index
space. To facilitate specification of the common case, dots may replace the bound
expressions in generators. A dot as lower bound represents the least and a dot
as upper bound represents the greatest legal index vector with respect to the
shape vector of a genarray-with-loop or the shape of the referenced array in a
modarray-with-loop. The lack of a reference shape restricts this feature in the
case of a fold-with-loop to the lower bound. Here, a dot represents a vector of
zeros with the same length as the vector defining the upper bound.

4 Programming Methodology

So far we have introduced the most relevant language features of SaC. In this
section, we explain the methodology of programming in SaC, i.e. how the lan-
guage features can be combined to write actual programs. We begin with the
array type system of SaC (Section 4.1) and proceed to explain overloading (Sec-
tion 4.2) and user-defined types (Section 4.3). At last, we explain the two major
software engineering principles advocated by SaC: the principle of abstraction
(Section 4.4) and the principle of composition (Section 4.5).

4.1 Array Type System

In Section 2 we introduced the basic types mostly adopted from C (i.e. int,
float, double, char and bool). In Section 3 we discussed how to create arrays,
but we carefully avoided any questions regarding the exact type of some integer
matrix or double vector. We catch up with this deficit now.

...

...int int[1] int[42]

int[.]

int[]

int[.,.]

int[1,1] int[3,7]

rank: dynamic
AUD Class:

shape: static

shape: dynamic

AKD Class:
rank: static
shape: dynamic

AKS Class:
rank: static

*

Fig. 16. The SaC array type system with the subtyping hierarchy

While SaC is monomorphic in scalar types including the base types of arrays,
any scalar type immediately induces a hierarchy of array types with subtyping.
Fig. 16 illustrates this type hierarchy for the example of the base type int.
The shapely type hierarchy has three levels characterised by different amounts

230 C. Grelck

of compile time knowledge about shape and rank. On the lowest level of the
subtyping hierarchy (i.e. the most specific types) we have complete compile time
knowledge on the structure of an array: both rank and shape are fixed. We call
this class AKS for array of known shape.

On an intermediate level of the subtyping hierarchy we still know the rank of
an array, but abstract from its concrete shape. We call this class AKD for array
of known dimension. For example, a vector of unknown length or a matrix of
unknown size fall into this category. Note the special case for arrays of rank zero
(aka scalars). Since there is only one vector of length zero, the empty vector, the
shape of a rank-zero array is automatically known and the type int[] is merely
an uncommon synonym for int.

Each type hierarchy also has a most common supertype that neither prescribes
shape nor rank at compile time. We call such types AUD for array of unknown
dimension. The syntax of array types is motivated by the common syntax for
regular expressions: the Kleene star in the AUD type stands for any number of
dots, including none.

4.2 Overloading

SaC supports overloading with respect to the array type hierarchy. The example
in Fig. 17 shows three overloaded instances of the subtraction operator, one for
20× 20-matrices, one for matrices of some shape and one for arrays of any rank
and shape. As usual in subtyping there is a monotony restriction. For any two
instances F1 and F2 of some function F with the same number of parameters
and the same base types for each parameter either each parameter type of F1

is a subtype of the corresponding parameter type of F2 or vice versa. Function
instances with different numbers of parameters are distinguished syntactically
and there is no such restriction.

int[20,20] (-) (int [20,20] A, int [20,20] B) {...}

int[.,.] (-) (int[.,.] A, int[.,.] B) {...}

int[*] (-) (int[*] A, int[*] B) {...}

Fig. 17. Overloading with respect to the array type hierarchy

If necessary, function applications are dynamically dispatched to the most
specific instance available. For example, if we apply the subtraction operator,
under the definition of Fig. 17, to two integer matrices of unknown shape (AKD
class), we can statically rule out the third instance because the second instance
fits and is more specific. However, we can not rule out the first instance as the
argument matrices at runtime could turn out to be of shape 20 × 20 and then
the more specific first instance must be preferred over the more general second
instance.

Single Assignment C (SAC) 231

4.3 User-Defined Types

SaC supports user-defined types in very much the same way as many other
languages: any type can be abstracted by a name. Following our general design
principles, SaC adopts the C syntax for type definitions. For example, a type
complex for complex numbers can be defined as a two-element vector by the
following type definition:

typedef double [2] complex;

This type definition induces a further complete subtyping hierarchy with over-
loading. In contrast to C, however, SaC user-defined types are real data types
and not just type synonyms. Values require explicit conversion between the defin-
ing type and the defined type or vice versa. Such conversions use the familiar
syntax of C type casts. In fact, this notation is mainly intended as an implemen-
tation vehicle for proper conversion functions. Fig. 18 illustrates programming
with user-defined types by an excerpt from the standard library’s module for
complex arithmetic.

typedef double [2] complex;

complex toc(double real , double imag)

{

return (complex) [real , imag];

}

double real(complex cpx)

{

return ((double [2]) cpx)[[0]];

}

double imag(complex cpx)

{

return ((double [2]) cpx)[[1]];

}

complex (+) (complex a, complex b)

{

return toc(real(a) + real (b), imag(a) + imag(b));

}

complex (*) (complex a, complex b)

{

return toc(real(a) * real(b) - imag(a) * imag(b),

real(a) * imag(b) + imag(a) * real(b));

}

Fig. 18. Basic definitions for complex numbers: type definition, conversion functions
making use of the type cast notation and overloaded definitions of arithmetic operators
based on the conversion functions introduced before

232 C. Grelck

A few restrictions apply to user-defined types. The defining type must be an
AKS type, i.e. another scalar type or a type with static shape, as in the case of
type complex defined above. We have been working on removing this restriction
and supporting truly nested arrays, i.e. arrays where the elements are again
arrays of different shape and potentially different rank. For now, however, this
is an experimental feature of SaC; details can be found in [27].

4.4 The Principle of Abstraction

As pointed out in Section 3.2 SaC only features a very small set of built-in array
operations. Commonly used aggregate array operations are defined in SaC itself
in a completely generic way. Although not built-in, aggregate array operations
are applicable to arguments of any rank and shape. A prerequisite for this design
are the shape-generic programming capabilities of with-loops. As introduced in
Sections 3.3 and 3.5, all relevant syntactic positions of with-loops may host
arbitrary expressions. In the examples so far we merely used constant vectors
for the purpose of illustration. In practice, with-loops are key to shape- and
rank-generic definitions of array operations.

Fig. 19 demonstrates the transition from a shape-specific implementation
over a shape-generic implementation to a rank-generic implementation taking
element-wise subtraction of two arrays as a running example. The first (over-
loaded) instance of the subtraction operator is defined for 20× 20 integer matri-
ces. It makes use of a single with-loop and essentially maps the built-in scalar
subtraction operator to all corresponding elements of the two argument arrays.
As the shape of the matrix is fixed, we can simply use constant vectors in the
syntactic positions for result shape, lower bound and upper bound.

Of course, it is neither productive nor elegant or even possible to explicitly
overload the subtraction operator for each potential argument array shape. The
second instance in Fig. 19 sticks to the two-dimensional case, but abstracts from
the concrete size of argument matrices. This generalisation immediately raises an
important question: how to deal with argument arrays of different shape? There
are various plausible answers to this question, and the solution adopted in our
example is to compute the element-wise minimum of the shape vectors of the
two argument arrays. With this solution we safely avoid out-of-bound indexing
while at the same time restricting the function domain as little as possible. The
resulting vector shp is used both in the shape expression of the genarray-with-
loop and as upper bound in the generator. Since indexing in SaC always starts at
zero, we can stick to a constant vector as lower bound. Note that the generator-
associated expression remains unchanged from the shape-specific instance.

One could argue that in practice, it is very rare to encounter problems that
require more than 4 dimensions, and, thus, we could simply define all relevant
operations for one, two, three and four dimensions. However, for a binary oper-
ator that alone would already require the definition of 16 instances. Hence, it is
of practical relevance and not just theoretical beauty to also abstract from the
rank of argument arrays, not only the shapes, and to support fully rank-generic
programming.

Single Assignment C (SAC) 233

int[20,20] (-) (int [20,20] A, int [20,20] B)

{

res = with {

([0,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray([20,20], 0);

return res;

}

int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min(shape(A), shape(B));

res = with {

([0,0] <= iv < shp) : A[iv] - B[iv];

}: genarray(shp , 0);

return res;

}

int[*] (-) (int[*] A, int[*] B)

{

shp = min(shape(A), shape(B));

res = with {

(0*shp <= iv < shp) : A[iv] - B[iv];

}: genarray(shp , 0);

return res;

}

Fig. 19. Three overloaded instances of the subtraction operator for arrays of known
shape (AKS, top), arrays of known dimension (AKD, middle) and arrays of unknown
dimension (AUD, bottom)

The third instance of the subtraction operator in Fig. 19 demonstrates this
further abstraction step. Apart from using the most general array type int[*],
the rank-generic instance is surprisingly similar to the rank-specific one. The
main issue is an appropriate definition of the generator’s lower bound, i.e. a
vector of zeros whose length equals that of the shape expression. We achieve this
by multiplying the shape vector with zero.

So far, we expected argument arrays to be at least of the same shape. With a
rank-generic type, however, we must also consider argument arrays of different
rank. What would happen if we apply the subtraction operator to a 10-element
vector and a 5×5-matrix? The shapes of the argument arrays are, consequently,
[10] and [5,5], respectively. Assuming an implementation of the minimum
function along the lines of the subtraction operator discussed here, we obtain
[5] as the minimum of the two vectors. Thus, the with-loop defines a 5-element
vector whose elements are homogeneously defined as the subtraction of the cor-
responding elements from the argument arrays A and B. Since A is a vector and
we select using a 1-element index vector, selection yields a scalar. As array B
is a matrix, selection with a 1-element index vector yields a (row) vector. As
a consequence, the subtraction in the body of the with-loop does not refer to

234 C. Grelck

the built-in scalar subtraction, but recursively back to the rank-generic instance.
Whereas the type of this instance suggests to support a scalar and a vector argu-
ment, the definition inevitably leads to non-terminating recursion. We can easily
avoid this by defining two more overloaded instances of the subtraction operator
that cover the cases where one argument is scalar, as shown in Fig. 20.

int[*] (-) (int A, int [*] B)

{

shp = shape(B);

res = with {

(0*shp <= iv < shp) : A - B[iv];

}: genarray(shp , 0);

return res;

}

int[*] (-) (int[*] A, int B)

{

shp = shape(A);

res = with {

(0*shp <= iv < shp) : A[iv] - B;

}: genarray(shp , 0);

return res;

}

Fig. 20. Additional overloaded instances of the subtraction operator as they are found
in the SaC standard library

It is one of the strengths of SaC that the exact behaviour of array operations
is not hard-wired into the language definition. This sets SaC apart from all
other languages with dedicated array support. Alternative to our above solution
with the minimum shape, one could argue that any attempt to subtract two
argument arrays of different shape is a programming error as in Fortran-90
or Apl. The same could be achieved in SaC by comparing the two argument
shapes and raising an exception if they differ. The important message here is
that SaC does not impose a particular solution on its users: anyone can provide
an alternative array module implementation with the desired behaviour.

A potential wish for future versions of SaC is support for a richer type system,
in which shape relations like equality can be properly expressed in the array
types. For example, matrix multiplication could be defined with a type signature
along the lines of

double[a,c] matmul(double[a,b] X, double[b,c] Y)

This leads to a system of dependent array types that we have studied in the
context of the dependently typed array language Qube [28,29]. However, how
to carry these ideas over to SaC in the presence of overloading and dynamic
dispatch requires a plethora of future research.

Single Assignment C (SAC) 235

4.5 The Principle of Composition

The generic programming examples of the previous section open up an avenue
to define a large body of array operations by means of with-loops. For instance,
Fig. 21 shows the definition of a generic convergence check. Two argument arrays
new and old are deemed to be convergent if for every element (reduction with
logical conjunction) the absolute difference between the new and the old value
is less than a given threshold eps.

bool is_convergent (double [*] new , double [*] old , double eps)

{

shp = min(shape(new), shape(old));

res = with {

(. <= iv < shp) : abs(new[iv] - old[iv]) < eps;

}: fold(&&);

return res;

}

Fig. 21. Rank-generic definition of a convergence check

While defining the convergence check as in Fig. 21 is a viable approach, it lacks
a certain elegance: we indeed re-invent the wheel with the minimum shape com-
putation, that is actually only needed for the element-wise subtraction, for which
we have already solved the issue with the code shown in Fig. 20. A closer look
into the with-loop quickly reveals that we deal with a computational pipeline
of basic operations on array elements. This can be much more elegantly and
concisely expressed following the other guiding software engineering principle in
SaC: the principle of composition.

bool is_convergent (double [*] new , double [*] old , double eps)

{

return all(abs(new - old) < eps);

}

Fig. 22. Programming by composition: specification of a generic convergence check

As demonstrated in Fig. 22, the compositional specification of the conver-
gence check is entirely based on applications of predefined array operations from
the SaC standard library: element-wise subtraction, absolute value, element-
wise comparison and reduction with Boolean conjunction. This example demon-
strates how application code can be designed in an entirely index-, loop-, and
comprehension-free style.

Ideally the use of with-loops as versatile but accordingly complex language
construct would be confined to defining basic array operations like the ones used
in the definition of the convergence check. And, ideally all application code would

236 C. Grelck

solely be composed out of these basic building blocks. This leads to a highly
productive software engineering process, substantial code reuse, good readability
of code and, last not least, high confidence into the correctness of programs. The
case study on generic convolution developed in Section 5 further demonstrates
how the principle of composition can be applied in practice.

5 Case Study: Convolution

In this section we illustrate the ins and outs of SaC programming by means of a
case study: convolution. Following a short introduction to the algorithmic princi-
ple (Section 5.1) we show a variety of implementations of individual convolution
steps that illustrate the principles of abstraction and composition. (Sections 5.2–
5.5). Finally, we extend our work to an iterative process (Section 5.6).

5.1 Algorithmic Principle

Convolution follows a fairly simple algorithmic principle. Essentially, we deal
with a regular, potentially multidimensional grid of data cells, as illustrated in
Fig. 23. Convolution is an iterative process on this data grid: in each iteration
(often referred to as temporal dimension in contrast to the spatial dimensions
of the grid) the value at each grid point is recomputed as a function of the
existing old value and the values of a certain neighbourhood of grid points. This
neighbourhood is often referred to as stencil, and it very much characterises the
convolution.

Fig. 23. Algorithmic principle of convolution, shown is the 2-dimensional case with a
5-point stencil (left) and a 9-point stencil (right)

In Fig. 23 we show two common stencils. With a five-point stencil (left) only
the four direct neighbours in the two-dimensional grid are relevant. By includ-
ing the four diagonal neighbours we end up with a nine-point stencil (right) and
so on. In the context of cellular automata these neighbourhoods are often re-
ferred to as von Neumann neighbourhood and Moore neighbourhood, respectively.
With higher-dimensional grids, we obtain different neighbourhood sizes, but the
principle can straightforwardly be carried over to any number of dimensions.

Since any concrete grid is finite, boundary elements leaves essentially two
choices: cyclic boundary conditions and static boundary conditions. In the former

Single Assignment C (SAC) 237

case the neighbourship relation is defined round-robin, i.e., the left neighbour of
the leftmost element is the rightmost element and vice versa. In the latter case
the grid is surrounded by a layer of elements that remain constant throughout
the convolution process.

In principle, any function from a set of neighbouring data points to a single
new one is possible, but in practice variants of weighted sums prevail. The algo-
rithmic principle of convolution has countless applications in image processing,
computational sciences, etc.

5.2 Convolution Step with Cyclic Boundary Conditions

As a first step in our case study of implementing various versions of convolution
in SaC, we restrict ourselves to nearest neighbours and to the arithmetic mean
of these neighbour values as the compute function, i.e. a weighted sum where all
weights are identical. Furthermore, we use cyclic boundary conditions for now
and leave static boundary conditions for later. With these fairly simple convolu-
tion parameters, we aim at shape- and rank-generic SaC implementations that
are based on the software engineering principles of abstraction and composition.
Whenever possible we employ an index-free programming style that treats arrays
in a holistic way rather than as loose collections of elements.

double[.] convolution_step (double[.] A)

{

R = A + rotate(1, A) + rotate(-1, A);

return R / 3.0;

}

Fig. 24. 1-dimensional index-free convolution step

With the code example in Fig. 24 we start with an index-free and shape-
but not rank-generic implementation of a single convolution step. The function
convolution step expects a vector of double precision floating point numbers
and yields a (once) convolved such vector. The implementation is based on the
rotate function from the SaC standard library. It rotates a given vector by a
certain number of elements towards ascending or descending indices. Rotation
towards ascending indices means moving the rightmost element of the vector (the
one with the greatest index) to the leftmost index position (the one with the
least index). This implements cyclic boundary conditions almost for free. Adding
up the original vector, the left-rotated vector and the right-rotated vector yields
the convolved vector. The only task left is the division of each element by 3.0 to
obtain the arithmetic mean. This implementation of 1-dimensional convolution
makes use of a total of five data-parallel operations: two rotations, two element-
wise additions and one element-wise division.

238 C. Grelck

double[*] convolution_step (double[*] A)

{

R = A;

for (i=0; i<dim(A); i++) {

R = R + rotate(i, 1, A) + rotate(i, -1, A);

}

return R / tod(2 * dim(A) + 1);

}

Fig. 25. Rank-generic convolution step

We now generalise the one-dimensional convolution to the rank-generic con-
volution shown in Fig. 25. We use the same approach with rotation towards
ascending and descending indices, but now we are confronted with a variable
number of axes along which to rotate the argument array. We solve the problem
by using a for-loop over the number of dimensions of the argument array A,
which we obtain through the built-in function dim. In each dimension we ro-
tate A by one element towards ascending and towards descending indices. Here,
we use an overloaded, rank-generic version of the rotate function that takes
the rotation axis as the first argument in addition to the rotation offset and the
array to be rotated as second and as third argument, respectively.

The original argument array and the various rotated arrays are again summed
up as in the one-dimensional solution. To eventually compute the arithmetic
mean we still need to divide array R by the number of arrays we summed up. This
number can easily be obtained through the dim function, as shown in Fig. 25.
Since the SaC standard library currently restricts itself to defining arithmetic
operators on identical argument types, we must explicitly convert the resulting
integer to double using the conversion function tod. Of course, we could extend
the standard library by all kinds of type combinations, but we refrain from this
for two reasons. Firstly, it would substantially increase the size of the corre-
sponding module due to combinatorial explosion. Secondly, it would reduce the
programmer’s reflection on the types involved.

5.3 Convolution Step with Static Boundary Conditions

With a rank-generic, index-free convolution step for cyclic boundary conditions
at hand we aim at carrying over these ideas to the case of static boundary
conditions. For didactic purposes we again begin with the one-dimensional case
shown in Fig 26. While the signature of the convolution step function remains
as before, we now consider only the inner elements of the argument array A to
be proper grid points and all boundary elements to form the constant halo.

Implementation-wise, we simply replace the applications of the rotate function
in the code of Fig. 24 by corresponding applications of the shift function. The
shift function is very similar to the rotate function with the exception that
vector elements are not moved round-robin. Instead, elements moved out of the
vector on one side are discarded while default values are moved into the vector

Single Assignment C (SAC) 239

double[.] convolution_step (double[.] A)

{

conv = (A + shift(1, A) + shift(-1, A)) / 3.0;

inner = tile(shape(conv) - 2, [1], conv);

res = embed(inner , [1], A);

return res;

}

Fig. 26. 1-dimensional convolution step with static boundary conditions

from the other side. The default value in the version of shift used here is zero;
other overloaded variants of the shift function in the SaC standard library
allow the programmer to explicitly provide a default value.

Unlike the cyclic boundary case, however, we are not yet done with the com-
putation in line 3. Treating all arrays in a holistic way, that computation includes
the boundary elements of the arrays in the computation. This is algorithmically
wrong as the halo elements shall remain constant throughout all iterations. To
achieve this, we explicitly “correct” the boundary elements in lines 5 and 6. We
do this by first creating the array of all inner elements (i.e. the “real” grid points)
and then embedding this array within the original array A. We make use of two
more functions from the SaC standard array library:

– double[*] tile(int[.] shp, int[.] offset, double[*] array)
yields the subset of array of shape shp beginning at index offset ;

– double[*] embed(double[*] small, int[.] offset, double[*] big)
yields an array of the same shape as big . The elements are those of big ex-
cept for the elements from index offset onwards for the shape of small

which are taken from small .

In Fig. 27 we generalise the one-dimensional convolution kernel with static
boundary conditions to a rank-generic implementation. We adopt the same ap-
proach as in the case of cyclic boundary conditions in Section 5.2 and make use
of a for-loop over the rank of the argument array. The 3-ary, multidimensional
variant of the shift function is an extension of the 2-ary, one-dimensional func-
tion used so far that is fully analogous to the corresponding extension of the
rotate function used previously.

The correction of the boundary elements can be carried over from the one-
dimensional to the multidimensional case with almost no change, thanks to the
rank-invariant definitions of the library functions tile and embed. The only
modification stems from the need to use a vector of ones whose length equals
the rank of the argument array. For any rank-specific implementation we could
simply use the corresponding vector constant as in Fig. 26, but for a rank-generic
solution we need a small trick: we multiply the shape vector of the argument
array by zero, which yields an appropriately sized vector of zeros, and then add
one to obtain the desired vector of ones.

240 C. Grelck

double[*] convolution_step (double[*] A)

{

conv = A;

for (i=0; i<dim(A); i++) {

conv = conv + shift(i, 1, A) + shift(i, -1, A);

}

conv = conv / tod(2 * dim(A) + 1));

vector_of_ones = shape(conv) * 0 + 1;

inner = tile(shape(conv) - 2, vector_of_ones , conv);

res = embed(inner , vector_of_ones , A);

return res;

}

Fig. 27. Rank-generic convolution step with static boundary conditions

5.4 Red-Black Convolution

An algorithmic variant of convolution is called red-black convolution. In red-
black convolution the grid is bipartite with each grid point either belonging to
the red or to the black set. Convolution is then computed alternatingly on the
red and on the black grid points while the other values are simply carried over
from the previous iteration. Typically, the red and black sets are not randomly
distributed over the index set of the grid, but themselves follow some regular
alternating pattern along one or multiple axes.

double[*] redblack_step (bool [*] mask , double[*] A)

{

A = where(mask , convolution_step (A), A);

A = where(!mask , convolution_step (A), A);

return A;

}

Fig. 28. Red-black convolution

Fig. 28 shows a highly generic SaC implementation of a red-black convolu-
tion step where the choice of red and black grid points is abstracted into an
additional parameter in form of a Boolean mask. We consecutively apply the
convolution step function to the red and to the black elements by restricting
its effect using the where function from the SaC standard library:

– double[*] where(bool[*] mask, double[*] then, double[*] else)
yields the array of the same shape as the Boolean array mask whose elements
are taken from the corresponding elements of array then where the mask is
true and from else where not.

Single Assignment C (SAC) 241

The where function resembles the Fortran-90 language construct of the same
name: Our implementation of red-black convolution can easily be combined with
static and with cyclic boundary conditions.

5.5 Stencil-Generic Convolution

In all examples so far we have anticipated a direct-neighbour stencil, i.e., we
had two neighbours in the one-dimensional case, four neighbours in the two-
dimensional case, six neighbours in the three-dimensional case and so on. In this
final escalation step we aim at abstracting from the concrete shape of the stencil
and support arbitrary dynamic neighbourhoods. We return to cyclic boundary
conditions for simplicity, but the idea for correcting the boundary elements for
static boundary conditions, as introduced in Section 5.3 can be carried over
straightforwardly.

double[*] convolution_step (double[*] A, double[*] weights)

{

R = with {

(0*shape(weights) <= iv < shape(weights)) :

weights[iv] * rotate(shape(weights)/2-iv, A);

} : fold(+);

return R;

}

Fig. 29. Neighbourhood-generic, rank-generic convolution step

The convolution step function shown in Fig. 29 is parameterised over a
multidimensional array of weights. Although the type system of SaC does not
allow us to express this restriction formally, we anticipate that the argument
array A and the array weights have the same rank. For example, let us consider
to convolve a matrix. Then the weight matrix

⎛
⎝

0.0 0.2 0.0
0.2 0.2 0.2
0.0 0.2 0.0

⎞
⎠

would represent the 5-point stencil that we have used so far. The weight matrix
allows us to easily define any neighbourhood and, of course, to give different
weights to different neighbourship relations. The weight array is also not re-
stricted to three elements per axis; we could easily include neighbourship rela-
tions including the left-left neighbour, etc.

The algorithmic idea behind the code in Fig. 29 is a generalisation of the
approach taken so far using a for-loop over the rank of the argument array. We
use a with-loop over the shape of the weight array. For instance, the weight
matrix above would induce a 3×3 index space for the fold-with-loop. For each
element of this index space (i.e. for each element of the weight array) we rotate

242 C. Grelck

the argument array into the direction of that weight’s position in the array of
weights. Returning to the above example, we rotate the argument array one
element up and one element left for the upper left element of the weight matrix.
For the central element of the weight matrix (index [1,1]) we do not rotate the
argument at all, etc.

double[*] rotate(int[.] offsets , double [*] A)

{

for (i=0; i < min(shape(offsets)[0], dim(A))) {

A = rotate(i, offsets [i], A);

}

return A;

}

Fig. 30. Generically defined multidimensional rotation

The alert reader will have noticed that the rotation function used in Fig. 29
is again an overloaded variant of the rotation functions used so far; we show its
definition in Fig. 30. This function makes use of a vector of rotation offsets. The
first element of the offset vector determines the rotation offset along the first
axis of the argument array and so on. Accordingly, we use a for-loop over the
minimum of the length of the offset vector and the argument array rank. For
each rotation offset we apply the previous version of rotate on the corresponding
array axis. If the offset vector length is less than the argument array rank, trailing
axes of the argument array remain unrotated; surplus offsets are ignored. We
end up with a total of nine rotated and weighted arrays. The fold-with-loop
eventually sums them up using the overloaded element-wise plus operator on
arrays, which yields the convolved array.

5.6 Multiple Convolution Steps

Until now we have only looked at individual convolution steps. Convolution,
however, is an iterative process of such steps. In the simplest case the number of
iterations is given and thus known a-priori. Fig. 31 shows the SaC implementa-
tion of this scenario: we simply employ a for-loop to repeatedly apply individual
convolution steps to the grid.

Computing an a-priori known number of convolution steps is a typical bench-
mark situation. In practice, it is often relevant to continue with the convolution
until a certain fixed point is reached, i.e. continue until for no grid point the
current iteration’s value differs from the previous iteration’s value by more than
a given threshold. Fig. 32 shows our SaC implementation. As the number of
convolution steps to be performed is a-priori unknown, we use a do-while-loop.

Single Assignment C (SAC) 243

double[*] convolution (double [*] A, int iter)

{

for (i=0; i<iter; i++) {

A = convolution_step (A);

}

return A;

}

Fig. 31. Convolution with given number of iteration steps

Of course, the argument array could in principle meet the convergence crite-
rion right away, which would call for a while-loop instead of a do-while-loop,
but we consider this a pathological case and, hence, stick to the do-while-loop.
As the loop predicate we use the is convergent function introduced in Sec-
tion 4.5. The convergence test needs to refer to both the old and the new version
of the data grid, hence we introduce the local variable A old.

double[*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step (A_old);

}

while (! is_convergent (A, A_old , eps));

return A;

}

Fig. 32. Convolution with convergence test

6 Case Study: Differentiation

Our second case study looks into numerical differentiation along one or two axes.
We begin with simple SaC definitions (Section 6.1). They motivate a language
extension of SaC called the axis control notation (Section 6.2). Finally, we apply
this notation to numerical differentiation (Section 6.3).

6.1 Differentiation in 1 and 2 Dimensions

In its simplest form numerical differentiation is based on a function, given as
a vector of function values, and the constant difference between two argument
values. The first derivation of the function is then defined as a vector that is one
element shorter than that representing the function itself. The values are the
differences between neighbouring function values divided by their distance.

244 C. Grelck

double[.] dfDx(double [.] vec , double delta)

{

return (drop([1], vec) - drop([-1], vec)) / delta;

}

Fig. 33. 1-dimensional numerical differentiation

Fig. 33 shows a straightforward implementation of 1-dimensional differenti-
ation as a SaC function dfDx. Rather than making use of a with-loop for its
definition we follow the SaC methodology and apply the principles of abstrac-
tion (Section 4.4) and composition (Section 4.5). The principle of abstraction
mainly materialises itself in the form of the function drop that we introduce
alongside its counterpart, the take function:

– double[*] drop(int[.] dv, double[*] a)
drops as many elements from each axis of the argument array a as given
by the drop vector dv . The first element of the drop vector determines how
many elements to drop from the outermost axis of the array and so on.
Positive drop values drop leading elements while negative drop values drop
trailing elements. If the length of the drop vector exceeds the rank of the
array, excess drop values are ignores; if the drop vector is shorter than the
rank of the array, trailing axes of the array remain untouched. Dropping
more elements than an array has along any axis results in zero elements
alongside that axis and in an overall empty result array.

– double[*] take(int[.] tv, double[*] a)
takes as many elements from each axis of the argument array a as given
by the take vector tv . All small prints are equivalent to those of the drop
function.

double[.,.] dfDy(double[.,.] mat , double delta)

{

return with {

(. <= xv <= .): dfDx(mat[xv], delta);

}: genarray(take([1], shape(mat)));

}

double[.,.] dfDx(double[.,.] mat , double delta)

{

return transpose (dfDy(transpose (mat), delta));

}

Fig. 34. 2-dimensional numerical differentiation

Single Assignment C (SAC) 245

In the same way as a unary function can be represented as a vector of function
values, a binary function can be represented as a matrix of values. This gives
us two directions for numerical differentiation, typically referred to as x and y.
Fig. 34 shows SaC functions to differentiate a binary function with respect to
the first parameter (dfDx) and the second parameter (dfDy).

Differentiating a binary function with respect to the second parameter means
computing differences alongside the inner dimension of the matrix mat. In other
words we interpret the matrix as a column vector of row vectors, apply our 1-
dimensional differentiation function dfDx (Fig. 33) to each row vector and end
up with a column vector of derivatives. Differentiating a binary function with
respect to the first parameter (dfDx in Fig. 34) could be achieved in a similar
way, but we instead advertise the SaC methodology and define it based on the
dfDy function and matrix transposition.

6.2 Axis Control Notation

The definition of the function dfDy in the previous section represents a common
pattern in array programming that can be generalised as a three step process:

1. interpret a rank k array as an array of rank m of (equally shaped) arrays of
rank n with m+ n = k;

2. individually apply some function to each of the inner arrays;
3. laminate the partial results to form the overall result array.

Fig. 35 illustrates this pattern by a 3-dimensional example. We start with a
4 × 4 × 4-cube of elements. We then (re-)interpret this cube as 4 × 4-matrix of
4-element vectors, apply some function individually to each of the 16 vectors
and laminate the 16 result vectors back into a 4 × 4 × 4-cube.

split
some
function laminate

Fig. 35. The split-compute-laminate algorithmic pattern

In Fig. 35 we assume the function to be uniform, i.e. shape-preserving. This is
not required, and Fig. 36 illustrates the split-compute-laminate principle with a
reduction operation. In this example we interpret the 4× 4× 4-cube as a vector
of four 4 × 4-matrices. In the second step each matrix is individually reduced
to a scalar value, and in the third step these scalar values are laminated into
a 4-element vector. While compute functions do not need to preserve the shape of

246 C. Grelck

split laminate
some
function

Fig. 36. The split-compute-laminate pattern with non-uniform function

the argument, they are nonetheless restricted: the shape of the result must not
depend on anything but the shape of the argument.

SaC provides specific support for the common algorithmic pattern of split-
compute-laminate through the axis control notation [30]. We sketch out the two
syntactic extensions in Fig. 37. First, we extend array selection such that an
index vector may contain dots instead of expressions. Semantically, a dot in
an index vector means to select all elements in the corresponding dimension of
the array selected from. This extension allows us to select entire subarrays of an
array not only in trailing dimensions (as with index vectors that are shorter than
the array’s rank), but in any choice of dimension. Note that vectors containing
dots are not first-class values, but are exclusively permitted in index position.

Expr ⇒ ...

| Expr [SelVec]
| { FrameVec -> Expr }

SelVec ⇒ [DotOrExpr [, DotOrExpr]*]

FrameVec ⇒ Id | [DotOrId [, DotOrId]*]

DotOrExpr ⇒ . | Expr

DotOrId ⇒ . | Id

Fig. 37. Syntax of axis control notation

The other extension shown in Fig. 37 is an expression in curly brackets that
defines a particular mapping from a set of indices represented by the vector left of
the arrow to a set of values defined by the expression on the right hand side of the
arrow. The extent of the index set is implicitly derived from the corresponding
variables appearing in index position in the right hand side expression.

We illustrate the axis control notation the very concise definition of the
transpose function shown in Fig. 38. The frame vector [i,j] defines a 2-
dimensional index space whose boundaries are given by the reversed shape of mat
through i and j appearing in index position on the right hand side. A complete
account of the axis control notation can be found in [30].

Single Assignment C (SAC) 247

double[.,.] transpose (double [.,.] mat)

{

return {[i,j] -> mat[[j,i]]};

}

Fig. 38. Definition of matrix transpose with axis control notation

6.3 Differentiation with Axis Control Notation

In this section we demonstrate how the definitions of our differentiation functions
from Section 6.1 benefit from the axis control notation as shown in Fig. 39.
Both functions, dfDY and dfDx, clearly benefit from the axis control notation
that enables much conciser and more readable definitions. In particular, the
definitions now expose the same symmetries as the underlying mathematical
problem they implement. In dfDy we interpret the argument matrix as a column
vector of row vectors and apply 1-dimensional differentiation to each row vector.
In dfDx we interpret the argument matrix as row vector of column vectors and
accordingly apply 1-dimensional differentiation to each column vector.

double[.,.] dfDy(double[.,.] mat , double delta)

{

return {[i,.] -> dfDx(mat[[i,.]], delta)};

}

double[.,.] dfDx(double[.,.] mat , double delta)

{

return {[.,j] -> dfDx(mat[[.,j]], delta)};

}

Fig. 39. 2-dimensional differentiation with axis control notation

7 Modules

This section introduces the module system of SaC, that provides the necessary
features for programming-in-the-large. Since SaC only provides very few built-
in operations, the SaC standard library with its extensive support for high-
level array operations is instrumental for writing even short programs. Hence,
some familiarity with the module system is essential. We start with introducing
the concept of name spaces (Section 7.1). We proceed with explaining several
ways of making symbols from other name spaces available and discuss their
differences in the context of function overloading (Sections 7.2 and 7.3). At last,
we show how to write modules and make symbols available to other name spaces
(Section 7.4).

248 C. Grelck

7.1 Name Spaces

Name spaces are a common mechanism to resolve name clashes when symbols
with the same name are defined in different modules of an application. In SaC
every module defines a name space. Any program (featuring a main function),
adds a name space main. In a multi-module application any symbol can uniquely
be identified by its qualified name consisting of the name space and the symbol
name connected by a double colon (as in C++).

double , double sincos(double val)

{

return (Math ::sin(val), Math ::cos(val));

}

Fig. 40. Using symbols from other name spaces with qualified identifiers

Fig. 40 shows a simple example: we define a function sincos that simultane-
ously yields the sine and the cosine of a given value by applying the correspond-
ing individual functions from the SaC standard library, more precisely the Math
module. Functions sin and cos are identified by their qualified names.

7.2 The Use Directive

Qualified names quickly become unhandy if symbols are frequently used, in par-
ticular when names are not as short as in the previous example. Therefore, SaC
supports ways to automatically resolve name spaces and let the compiler gener-
ate qualified identifiers internally. The programmer, still, needs to define a search
space for the compiler to look for symbols. By means of the directive

use name_space all;

preceding all definitions in a module/program all symbols defined in the given
module are made known locally. With this technique our sincos function can
be re-written as in Fig. 41.

use Math: all;

double , double sincos(double val)

{

return (sin(val), cos(val));

}

Fig. 41. Making all symbols from another module available in the current name space
with the use directive

Symbols must not have multiple definitions within the search space as that
would make their resolution ambiguous. An exception are functions with different
argument counts or different argument base types. In the presence of overloading
such functions are considered different symbols.

Single Assignment C (SAC) 249

Nonetheless, more stringent control over which symbols to make available
from what modules is required in practice. Therefore, the key word all in the
use-directive can be replaced by a comma-separated list of identifiers embraced
in curly brackets. Alternatively, the key words all except followed by a list of
symbols allows us to explicitly exclude a set of named symbols from the search
space. Fig. 42 illustrates these features by a further variation of the running ex-
ample. We now explicitly choose the symbols sin and tan from the Math module
while all other math support comes from an alternative FastMath module.

use Math: {sin , tan};

use FastMath : all except {sin , tan};

double , double sincos(double val)

{

return (sin(val), cos(val));

}

Fig. 42. Making specific symbols from different name spaces available in the current
name space with the qualified use directive

Functions can only be added to or removed from the symbol search space
by their name. The module system does currently not distinguish overloaded
instances of a function based on the number or the types of parameters.

7.3 The Import Directive

The use-directive adds symbols to the search space of the SaC compiler. While
very handy in practice, it needs to be used with some care in order to avoid
ambiguities (and thus compiler error messages) in the resolution of function
symbols. Such an ambiguity arises whenever the same function name is defined
in two name spaces, and both are used from a third name space. If the two
function definitions differ in the number or the base types of parameters, function
applications in the third name space can still be disambiguated. In contrast,
purely shapely overloading can generally not be resolved at compile time, but
warrants a runtime decision. Combining multiple shapely overloaded instances of
the same function across name space boundaries, thus, may change the meaning
of a function a-posteriori, potentially violating the intentions of the developers of
the original modules. Therefore, we disallow using shapely overloaded functions.

Nonetheless, shapely overloading across module boundaries when used cor-
rectly and consciously, can be a very powerful mechanism, and the import-
directive supports exactly this. Whereas the use-directive makes symbols from
another name spaces accessible in the current name space, the import-directive
clones symbols from other name spaces in the current name space. As a conse-
quence, the compiler constructs a completely new dispatch tree that takes all
imported instances as well as the locally defined instances equally into account.

250 C. Grelck

import foomod: {foo};

int [42] foo(int[42] x) { ... }

int[.] foo(int[.] x) { ... }

int bar(int[*] a)

{

...

b = foo(a);

...

}

Fig. 43. Shapely overloading across name spaces with the import-directive

Fig. 43 illustrates this be means of a small example. We first import the
potentially already overloaded definition of foo from the name space foomod.
Afterwards, we further overload the function foo with two more definitions, one
for integer vectors of length 42 and one for integer vectors of arbitrary length.
When we dispatch the application of foo in the body of function bar all instances
of foo are equally considered, regardless whether they are locally defined or
imported. The import-directive supports the same syntactic variations as the
use-directive; both directives can be freely interspersed.

7.4 Defining Modules

A SaC module differs from a program in two aspects: the absence of a main
function and a module header consisting of the key word module, the module
name and a semicolon. Fig. 44 shows a simple example. We pick our convolution
case study from Section 5 up and provide a module Convolution defining two
overloaded instances of a function convolution computing either a fixed number
of iterations or a variable number of iterations with convergence check as in
Figs. 31 and 32, respectively. Before actually defining the new function instances,
however, we need to make a number of functions defined elsewhere available that
we need to define convolution, e.g. the various implementations of individual
convolution steps or the convergence check. And of course, we require the basic
array support from the standard library. The choice of selective or general use or
import of symbols into the current name space is mainly motivated to showcase
the various syntactic options.

The most interesting aspect of a module is the question which symbols are
made available outside and which are kept hidden within the module . Two
directive, provide and export, give programmers fine-grained control over this
question. By default any symbol defined in a module is only accessible in the
module itself. The provide directive makes symbols available to be used in
other name spaces; the export directive makes symbols available for both use
or import. Thus, the owner of a module decides whether or not functions can
be shapely overloaded later with all consequences on semantics. The provide

Single Assignment C (SAC) 251

module Convolution ;

use Array: all;

import ConvolutionStep : all;

use Convergence : {is_convergent };

provide all except {convolution };

export {convolution };

double[*] convolution (double [*] A, int iter) {...}

double[*] convolution (double [*] A, double eps) {...}

Fig. 44. Example of a module implementation that bundles the two generic convolution
functions developed in Section 5.6

and export directives support the same features for symbol selection as the
corresponding use and import directives.

In the example of Fig. 44 we export the two instances of the convolution
function. More for didactic purposes we choose also to provide all other symbols
defined in the current module. Note that we import (not use) the symbols from
module ConvolutionStep. As a consequence, they are cloned in the current
module and hence can be provided as genuine symbols of module Convolution.
Again, our example rather illustrates the various options our module system
provides; in practice one would rather only provide the convolution functions.

8 Input and Output

In this chapter we sketch out the principles of SaC’s support for input/output
in particular and for stateful computations in general. We begin with the user
perspective on basic file I/O (Section 8.1), then shown how imperative-appearing
I/O constructs can safely be integrated into the functional context of SaC (Sec-
tion 8.2) and conclude with a complete I/O example with proper error checking
and handling (Section 8.3).

8.1 Basic File I/O

Integration of I/O facilities into SaC is guided by two seemingly conflicting
design principles. On the one hand, we aim at extending to look-and-feel of C
programming to I/O-related SaC code; on the other hand, it is crucial to retain
SaC’s status as a pure functional language on the semantic level and not to
restrain any optimisation potential.

Just as with the language kernel, programmers with a background in imper-
ative programming should not be bothered by the conceptual troubles of ma-
nipulating the state of devices in a state-free environment. We certainly do not
want our programmers to familiarise themselves with theoretically demanding

252 C. Grelck

concepts such as monads [31,32] and uniqueness types [33,34]. And we definitely
do not want to rely on our programmers being experts in category theory to
write a hello world program in SaC. Instead, any C programmer should be able
to write I/O-related code in SaC even without the need to learn a new API.

import StdIO: all;

import ArrayIO: all;

int main ()

{

a = 42;

b = [1,2,3,4,5];

errcode , outfile = fopen("filename ", "w");

fprintf(outfile , "a = %d\n", a);

fprint(outfile , b);

fclose(outfile);

return 0;

}

Fig. 45. Example for doing file input/output in SaC

Fig. 45 shows a simple file I/O example written in SaC. For now, we ignore
all potential semantic issues of the code and merely emphasise the similarities
between SaC and C proper. First, we import all symbols from the two relevant
SaC modules of the standard library. In the main function we begin with opening
a file using a clone of C’s fopen function. Like its C counterpart fopen expects
two character strings as arguments. The first denotes the name of the file to be
opened, and the second determines the file mode. In the example, we open the
file filename for writing. The supported file modes are identical with C proper.
In fact, the SaC fopen function is merely a wrapper for the C fopen function
called through SaC’s foreign language interface [35].

Unlike C, the SaC fopen function makes use of the support for multiple
return values and yields two values: a file handle (outfile) and an error code
(errcode). For the sake of simplicity, we expect the opening of the file to succeed
and ignore the error code for now. We will discuss a complete example with
proper error checking in Section 8.3.

Having opened the file, we write some text and a scalar value to the file using
the fprintf function, that again is a clone of the corresponding C function. Next
we write an entire array to the file using the SaC-specific function fprint. Since
the C fprintf family of functions have no support for array-related conversion
specifiers, we add the fprint family of functions for array output. Finally, we

Single Assignment C (SAC) 253

close the file using the usual fclose function. The example demonstrates how
well we achieve our first aim: supporting I/O in way that is familiar to C pro-
grammers.

8.2 Imperative I/O vs Functional Semantics

Right now, it seems much less clear how we achieve our second aim: functionally
sound I/O. After all, many I/O functions do not even yield a value and would
be dead code in a purely functional interpretation. Worse, the textual order of
statements now matters: there is an implicit execution order not enforced by
data dependencies. The solution is surprisingly simple, nonetheless. In analogy
to the interpretation of C-style loops as syntactic sugar for tail recursion code
like in Fig. 45 is nothing but an imperative illusion of a purely functional code.
Fig. 46 shows its functional interpretation. In essence, the compiler automatically
establishes the necessary data dependencies that describe the intended execution
order in a functionally sound way.

FileSystem , int main(FileSystem theFileSystem)

{

a = 42;

b = [1,2,3,4,5];

theFileSystem , errcode , outfile

= fopen(theFileSystem , "file_name ", "w");

outfile = fprintf(outfile , "a = %d\n", a);

outfile = fprint(outfile , b);

theFileSystem = fclose(theFileSystem , outfile);

return (theFileSystem , 0);

}

Fig. 46. Functional interpretation of the I/O code in Fig. 45, compiler-inserted inter-
mediate code typeset in italics

The main function has an extended signature: it now receives a representation
of the file system and yields, in addition to the usual integer return code, a
potentially modified representation of the file system. Likewise, all I/O-related
functions in the body of main receive additional arguments and yield additional
values. The fopen function takes the file system as an additional argument
and yields a modified file system (representation). Assuming opening of the
file succeeds, the new file system differs from the old file system in exactly this
property: the named file was closed and is now open for writing.

254 C. Grelck

The two output functions fprintf and fprint take the file handle as before,
but additionally return the file handle. This creates a data dependency from
the call to fopen over fprintf and fprint to the final closing of the file by
fclose. In analogy to fopen, the fclose function takes the file system as an
additional parameter and yields a modified file system, in which the file is no
longer open but closed. This final state of the file system is eventually returned
to the execution environment.

The SaC compiler actually does these transformations to deal with a proper
functional representation of code when it comes to optimisation. Conceptually
and technically, our solution is based on a variant of uniqueness types [34,36] as
developed for I/O in the functional language Clean. The types of theFileSystem
and outfile are uniqueness types, and one can easily verify that every definition
(left hand side use) of one these variables has exactly (at most) one reference
(right hand side use). The main difference to uniqueness types in Clean lies in the
fact that the entire conceptual complexity of dealing with state in a functional
context is hidden in a number of modules from the SaC standard library (and
of course corresponding compiler support). Actually doing I/O in an application
program is as simple as in imperative languages while under the hood everything
is safe and clean. The non-expert programmer does not need to understand the
ins and outs of safe functional I/O.

The SaC compiler does check the uniqueness property, but for the normal
user it is close to impossible to produce a uniqueness violation. As long as a
programmer merely makes use of the various I/O modules of the SaC standard
library, the automatic (internal) expansion of code along the lines of Fig. 46 prior
to uniqueness checking almost inevitably leads to correct code. Thus, program-
mers are usually not bothered with cryptic uniqueness-related error messages. In
some cases the uniqueness checker can, however, detect common programming
errors, e.g. missing or repeated closing of files. A more complete coverage of SaC
I/O can be found in [36].

A particular issue is the combination of input/output, where a particular exe-
cution order is important, with SaC’s data-parallel with-loops, where a concrete
execution order is deliberately not guaranteed, nor even defined. Due to space
limitations we refer the interested reader to [37] for a comprehensive discussion
of this aspect of SaC.

8.3 File I/O with Error Checking

In our initial I/O example in Fig. 45 we deliberately skipped all error checking
and crossed fingers that opening the file succeeds. We now extend the simple
file I/O example with proper error checking making use of the SysErr module
from the standard library. This module essentially replaces C’s errno variable.
Fig. 47 shows the complete example.

We remember that the fopen function yields an error code in addition to
the file handle Unlike in Fig. 45, we now check this error code before making
use of the file handle. The fail function discriminates success codes from failure

Single Assignment C (SAC) 255

import StdIO: all;

import ArrayIO: all;

import SysErr: all;

int main ()

{

a = 42;

b = [1,2,3,4,5];

errcode , outfile = fopen("file_name ", "w");

if (fail(errcode)) {

fprintf(stderr , "%s\n", strerror (errcode));

}

else {

fprintf(outfile , "a = %d\n", a);

fprint(outfile , b);

fclose(outfile);

}

return 0;

}

Fig. 47. Complete I/O example with error checking

codes and yields a Boolean value suitable for use in a predicate. Upon failure
we print a message to stderr. Just as in C, stdout, stdin and stderr are file
handles that are always open for writing or reading. In SaC they are so-called
global objects : stateful entities that follow the same visibility and scoping rules as
functions. They can be accessed anywhere in function bodies and are subject to
use/import from other name spaces and provide/export to other name spaces.
For more information on global objects we refer the interested reader to [36].
The strerror function is identical to its C counterpart and yields a problem
description in the string form. Note that we do not close the file in the first
branch as we have not (successfully) opened it either. The second branch is
analogous to Fig. 45.

9 Foreign Language Interfaces

This section describes SaC’s foreign language interfaces. They allow SaC code
to interoperate with existing or yet to be developed C code. Two such interfaces
exist that are equally important in practice: the c4sac interface allows SaC
code to call C functions (Section 9.1) while the sac4c interface supports the
compilation of SaC modules such that they can be embedded within larger C
applications (Section 9.2).

256 C. Grelck

9.1 Calling C from SAC

The c4sac interface is an indispensable feature for making SaC communicate
with the outside world. Most I/O functions introduced in Section 8 are merely
SaC wrappers for the corresponding C functions. It would not only be very
cumbersome to re-implement I/O support from scratch in SaC, we would also
inevitably re-invent the wheel and simply waste engineering effort. Instead, we
aim at reusing existing implementations as much as possible and seek to excel
in core areas of SaC.

external double cos(double x);

#pragma linkwith "m"

#pragma linksign [0,1]

external double , double sin_cos(double x);

#pragma linksign [1,2,3]

#pragma linkobj "src/Math/mymath"

external syserr , File fopen(string filename , string mode);

#pragma linkobj "src/File/fopen.o"

#pragma effect theFileSystem

#pragma linkname "SACfopen "

#pragma linksign [0,1,2,3]

external int , ... scanf(string format);

#pragma linkobj "src/File/scanf.o"

#pragma effect stdin

external void fprint(File &file ,

int dim , int[.] shp , int[*] array)

#pragma refcounting [4]

Fig. 48. Examples of foreign function declarations from the SaC standard library

Fig. 48 illustrates the c4sac foreign language interface by three examples from
different modules of the SaC standard library. Foreign function declarations
like the ones in Fig. 48 may appear interspersed with SaC function definitions
throughout SaC modules. In principle, a pure declaration starting with the key
word external followed by standard SaC function header and terminated by a
semicolon suffices. In practice, the SaC compiler often needs some more infor-
mation to seamlessly integrate an imperative foreign function into the functional
world of SaC. Several pragmas serve this purpose.

Our first example is the cos function from SaC’s Math module, obviously a
foreign declaration for the corresponding cos function from the C math library
libm. Most math functions are easy targets for SaC’s foreign language inter-
face as they directly expose a functional interface computing a new scalar value
from an existing scalar value with call-by-value parameter passing. Nonetheless,

Single Assignment C (SAC) 257

someone needs to tell the SaC compiler to link an executable program with libm
as soon as the cos function is used anywhere. This is done with the linkwith-
pragma.

The linksign-pragma is more complex. It describes a mapping of SaC pa-
rameters and results to those of the corresponding C function. A vector defines
for each result and parameter in textual order from left to right onto which
position of the C function it is mapped. This pragma allows us to map C func-
tions that return multiple values through reference parameters into proper SaC
functions with multiple return values. The numbers in the vector stand for the
positional parameters of the corresponding C function, where zero represents the
explicit return position.

So, in the case of the sin function the linksign-pragma merely specifies
the expected, i.e. the SaC function is mapped to a C function with the same
function type. To illustrate the linksign-pragma Fig. 48 also contains a foreign
declaration of an artificial function sin cos that simultaneously yields the sine
and the cosine of a given value. While in SaC this can elegantly by expressed
with two return types, there is no equivalent C type. The linksign-pragma
makes the SaC compiler expect the existence of a C function

void sin_cos(double *sin , double *cos , double x)
and generate corresponding function calls. It is even possible to map one return
value and one parameter onto the same parameter location of the C function.
In this way C functions that take a pointer and manipulate the data behind the
pointer can properly be used from SaC.

Unlike sin and cos, no function sin cos is defined in libm. Hence, the SaC
compiler needs to be informed where to locate code order to generate appropriate
linker calls. This is the purpose of the linkobj-pragma.

The third declaration in Fig. 48 makes the fopen function, extensively dis-
cussed in Section 8.1, available in SaC. The effect-pragma tells the SaC
compiler that this function makes an implicit side effect on the global object
theFileSystem. This information is essential for the compiler to generate ex-
plicit data dependencies as shown in Section 8.2.

More adaptation between C and SaC is required due to the different ap-
proaches to error reporting. The SaC fopen function explicitly yields an error
condition while the C fopen function yields NULL and sets the global errno
variable. This difference requires a thin wrapper layer implemented in C. This
wrapper can obviously not be named fopen. Thus, the linkname-pragma allows
us to manipulate the name of the function that is actually called by the SaC
compiler in place of fopen. The linksign-pragma again merely describes the
default: the error condition is returned via the C function’s result while the file
handle is implemented as a reference parameter in the first parameter position
and the other parameters follow in order.

The foreign declaration of the scanf function demonstrates how variable argu-
ment lists from C are mapped to SaC. Three dots on the left hand side indicate
that scanf yields an unknown number of results in addition to the usual inte-
ger value returned by C’s scanf function. These are always mapped to trailing

258 C. Grelck

reference parameters of the corresponding C function and, thus, to the expected
type signature of scanf in C.

Our last example shows the declaration of a rank-generic print function for
arrays. We use a function like this to implement the fprint function for arrays
that we used throughout our examples in Section 8. Here, we expose the struc-
tural properties of the argument array explicitly. The ampersand marks the first
parameter as a reference parameter. This triggers the addition of a correspond-
ing result value as explained in Section 8.2. The refcounting-pragma declares
the function to take care of reference counting for the fourth argument, i.e. the
array to be printed. In this case the anticipated prototype of the C function
changes such that 2 C parameters implement the one SaC parameter, the first
being a pointer to the array itself (in flat, contiguous representation), the other
being a pointer to an integer number that exposes the reference counter of the
array. While this feature obviously requires in-depth understanding of the SaC
memory management subsystem, it allows the expert user to safely implement
destructive array updates and take similar advantages of reference counting as
the SaC compiler itself does. In Section 10.4 we explain SaC memory manage-
ment in greater detail.

With the facilities of the c4sac language interface we have made most of the
standard C library functions from libc and libm available in SaC. These are
extended by a range of array-specific functions implemented in C, e.g. for inout
and output of arrays.

9.2 Calling SAC from C

Equally important to the c4sac interface, though for different reasons, is the
sac4c interface that makes entire SaC modules available within otherwise C-
implemented applications. Of course, we promote to use SaC to implement whole
applications, but we must acknowledge that transition to SaC is substantially
eased if programmers can choose to only implement parts of an application in
SaC. This also allows us to concentrate on application aspects like compute-
intensive kernels, for which SaC is tailor-made, and avoid engineering effort to
be directed into directions that are not the core of our research, say for example
support for GUI-based applications.

In principle, any standard SaC module can be used from C code, but it needs
some mending to expose and publish a C-compatible interface. For this purpose
we provide a separate tool as part of the SaC installation: sac4c. This tool
takes a compiled SaC module as an argument and generates among others a C
header file with the type and function declarations exposed by the module. Fur-
thermore, sac4c generates the necessary linker information regarding all directly
and indirectly needed SaC modules as well as all further object files dependent
through the c4sac interface.

Fig. 49 shows a simple example of C code making use of the Convolution
module defined in Section 7.4. At first, we include two header files, one pro-
viding the necessary generic declarations of the sac4c interface, the other being
generated by the sac4c tool. In the example we compute 99 convolution steps

Single Assignment C (SAC) 259

#include "sac4c.h"

#include "Convolution.h"

int main(int argc , char *argv [])

{

double *matrix;

SACarg *arg , *iter , *res;

int rank;

matrix = C_code_that_creates_matrix(1024, 1024);

SACinit(argc , argv);

arg = SACARGconvertFromDoublePointer(matrix , 2, 1024, 1024);

iter = SACARGconvertFromIntScalar(99);

Convolution__convolution2(&res , arg , iter);

rank = SACARGgetDim(res);

assert(rank ==2);

matrix = SACARGconvertToDoubleArray(res);

plot(matrix);

SACfinalize ();

return 0;

}

Fig. 49. Example C code making use of the sac4c foreign language interface

on a 1024 × 1024 double precision floating point matrix. Before starting any
computations, however, we must initialise the SaC runtime system by a call to
the SACinit function; upon completion the runtime system should be shutdown
by a call to SACfinalize.

At the center of Fig. 49 we can identify the call to our SaC-implemented
convolution function. The C function name has automatically been derived from
the SaC module name and the SaC function name with two underscores in
between (double underscores are not permitted in SaC identifiers). The trailing
number 2 helps to resolve SaC function overloading with different arity and
declares the function to be binary. The C prototype of the function is

void Convolution__convolution2(

SACarg **res , SACarg *mat , SACarg *iter);

Functions made available through the sac4c interface are always void-functions
and exchange arguments and results with the C world through a dedicated ab-
stract type SACarg. This type helps us to expose SaC overloading both on base
type and on shape to the C world. The sac4c interface comes with a range of func-
tions that convert C arrays (contiguous, uniform chunks of memory) into SaC

260 C. Grelck

arrays and vice versa. Towards SaC the naked C pointer is equipped with SaC-
style multidimensional shape information. On the way back structural properties
of result arrays can be queried and, eventually, flat C arrays extracted for fur-
ther analysis or processing. C arrays handed over to SaC must not be touched
thereafter; C arrays obtained from SaC are guaranteed to be alias-free.

10 Compilation Technology

In this section we discuss the fundamental challenges of compiling SaC source
code into competitive executable code for a variety of parallel computing ar-
chitectures and outline how compiler and runtime system address these issues.
Following an overview of the compiler architecture (Section 10.1) we concentrate
on type inference and specialisation (Section 10.2), optimisation (Section 10.4)
and code generation for various parallel architectures (Section 10.5). In place of
a proper evaluation, Section 10.6 provides an annotated bibliography covering
programmability, productivity and performance issues across a wide range of
problems and target architectures.

10.1 The SAC Compiler at a Glance

Despite the intentional syntactic similarities, SaC is far from merely being a
variant of C. SaC is a complete programming language, that only happens to
resemble C in its look and feel. A fully-fledged compiler is needed to implement
the functional semantics and to address a series of challenges when it comes to
achieving high performance.

Fig. 50 shows the overall internal organisation of the SaC compiler sac2c. It
is a many-pass compiler around a central slowly morphing abstract intermedi-
ate code representation. We chose this design to facilitate concurrent compiler
engineering across multiple individuals and institutions. Today, we have around
200 compiler passes, and Fig. 50 only shows a macroscopic view of what is really
going on behind the scenes. The SaC compiler, however, is very verbose with
respect to its efforts: the interested programmer can stop compilation after any
pass and have the internal representation printed as annotated SaC source code.

As a first step, usual lexicographic and syntactic analyses transform textual
source code into an abstract syntax tree. All remaining compilation steps work
on this internal representation, that is subject to a number of lowering steps.
Over the years, we have developed a complete, language-independent compiler
engineering tool suite, that has successfully been re-used in other projects [38]
as well as in a series of courses on compiler construction at the University of
Amsterdam. In the following, however, we leave out such engineering concerns
and rather take a conceptual view on the SaC compilation process.

The first major code transformation shown in Fig. 50 is named functionalisa-
tion. Here, we turn the imperative(-looking) source code into a more functional
representation. For instance, C-style branches turn into functional condition-
als, and C-style loops become proper tail-recursive functions, as explained in

Single Assignment C (SAC) 261

Function Inlining

Dead Code Removal
Common Subexpression Elimination
Constant Propagation
Constant Folding
Copy Propagation
Algebraic Simplification
Loop Unrolling

Loop Invariant Removal
Memory Reuse

With−Loop Unrolling
With−Loop Invariant Removal
With−Loop Folding
With−Loop Scalarisation
With−Loop Fusion
Automatic Array Padding
Index Vector Elimination

Array Elimination

Code Generator
SMP Multi−Core

Functionalisation

High−Level
Optimisations

Memory Management

Type Specialisation
Type Inference

De−Functionalisation

Parallelisation

Code Generator
Sequential

Code Generator
MicroGrid

Code Generator
CUDA

Backend Compiler Backend Compiler Backend Compiler Backend Compiler
NVidia CmuTCANSI CANSI C

Scanner / Parser

Fig. 50. Organisation of the compilation process

Section 2.2. Likewise, we augment state-based code with the missing data de-
pendencies, as outlined in Section 8.2. All these transformations are eventually
undone prior to code generation in a de-functionalisation step.

10.2 Type Inference and Specialisation

This part of the compiler implements the array type system outlined in Sec-
tion 4.1. It annotates types to local variables and checks type declarations pro-
vided. Furthermore, the type inference system resolves function dispatch in the
context of subtyping and overloading. Where possible function applications are
dispatched statically; where necessary appropriate code is generated to make the
decision at runtime. More information on this aspect of the SaC compiler can
be found in [39].

The other important aspect handled by this part of the compiler is function
specialisation. Shape- and rank-invariant specifications are a key feature of SaC.
It is sort of obvious that the less we know at compile time about structural prop-
erties of arrays, the less efficiently will the generated code perform at runtime.

262 C. Grelck

We are faced with the classical trade-off between abstraction and performance.
Specific concerns are, for instance, how to generate code to operate on arrays
whose rank is unknown at compile time and, hence, for whom no static nesting
of loops can be derived, or how to generate efficient code from lists of generators
when cache hierarchies demand arrays to be traversed in linear storage order.

From a software engineering point of view, all code should be written in a
rank-generic (AUD) or at least shape-generic (AKS) way. From a compiler per-
spective, however, shape-specific code offers much better optimisation opportu-
nities, can do with a much leaner runtime representation and generally shows
considerably better performance. A common trick to reconcile abstract program-
ming with high runtime performance is specialisation. In fact, the SaC compiler
aggressively specialises rank-generic code to rank-specific (shape-generic) code
and again shape-generic code into shape-specific code.

double[*] convolution (double [*] A, int iter) {...}

double[*] convolution (double [*] A, double eps) {...}

specialize convolution (double [1024 ,1024] A, int iter)

specialize convolution (double [1024 ,1024] A, double eps)

Fig. 51. Helping the compiler with specialisation directives: while both instances of the
convolution function (see Section 5.6) are defined in a rank-generic way, the compiler
is advised to generate specialisations for 1024 × 1024-matrices

Specialisation can only be effective to the extent that rank and shape infor-
mation is somehow accessible by the compiler. While sac2c makes every effort
to infer the shapes needed, there are scenarios in which the required informa-
tion is simply not available in the code. For instance, argument arrays could be
read from files. Other common examples arise from any use of the sac4c for-
eign language interface described in Section 9.2. Hence, full compiler support for
generating shape-generic and rank-generic executable code cannot be avoided.

More than occasionally, however, programmers do know or can at least make
an educated guess as to which array shapes will be relevant at runtime. Spe-
cialisation directives, as shown in Fig. 51, allow us to give hints to the compiler
which shapes will be relevant at runtime without compromising the rank- and
shape-generic programming methodology and code base. The compiler creates
the recommended specialisations in addition to those that it would generate by
itself and transparently integrates them into the function dispatch mechanism.

The code in Fig. 51 completes our running example on convolution. Starting
out in Section 5.6 we defined the two instances of the convolution function that
either compute a given number of iterations or continue to iterate until a given
convergence threshold is reached. In Section 7.4 we showed how these functions
can be abstracted into a SaC module. We then demonstrated in Section 9.2
how this SaC module can be made available to be used from a C-implemented
application. In the example of Fig. 49 we ran convolution on 1024×1024-matrices.

Single Assignment C (SAC) 263

In this scenario the shape of the array to be convolved is statically known in the
C code, but there is no way for the SaC compiler to know. Hence, it is forced to
execute a rank-generic implementation of convolution, which is likely to deliver
poor performance. The specialisation directives of Fig. 51 turn the tide and make
the sac4c interface dynamically select the highly optimised binary convolution
code for 1024 × 1024-matrices.

SAC Compiler

SAC
Module

Executable Program

Dynamic Specialisation
Controller

Specialisation

Request

Queue Registry

Function

Dispatch

file
request

lookup
dispatch
function

and link

retrieve

inspect

with

link with

Code
Intermediate

link
with

generate

load

create

update

Shared
Library (.so)

Fig. 52. Architecture of the SaC adaptive compilation framework

There are a number of scenarios, however, that rule out the helping hand of
the programmer as well. For instance, the provider of some module and the user
of that module could simply be distinct, or the nature of an application rules
out the availability of shape information until the application is actually run.
To address these cases we have devised the adaptive compilation infrastructure
sketched out in Fig. 52.

The essential idea is to postpone specialisations until application runtime.
When generic functions execute, they file a specialisation request that includes
the full set of array shapes appearing in the concrete application. One or more
specialisation controllers asynchronously take care of such requests, retrieve the
partially compiled intermediate code from the corresponding SaC (binary) mod-
ules, run essential parts of the SaC compilation tool chain with all knowledge
available at application runtime and eventually generate a specialised and highly
optimised binary implementation of the function that initiated the request.

The running application is then dynamically linked with that new code, and
the function dispatch mechanism is updated to include the new specialisation.
When the same function is applied again to arguments of the same shapes, the
specialised implementation will be chosen by the dispatch mechanism instead of
the generic one. The whole approach is based on the (realistic) assumption that

264 C. Grelck

in many applications the number of different array shapes actually appearing is
limited, even though at compile time no educated guess can be made on which
shapes may and may not be relevant. A complete description and evaluation of
our adaptive compilation framework can be found in [40]

10.3 High-level Optimisations

As apparent from a short glimpse at Fig. 50, high-level program optimisations
constitute a major part of the SaC compiler and account for a substantial frac-
tion of compiler engineering. Only the most prominent and/or relevant trans-
formations are actually included in Fig. 50. They can coarsely be classified into
two groups: (variations of) standard textbook optimisations and SaC-specific
optimisations related to arrays.

The compositional programming methodology advocated by SaC creates a
particular compilation challenge. Without dedicated compiler support it inflicts
the creation of many temporary arrays at runtime, which adversely affects per-
formance: large quantities of data must be moved through the memory hierar-
chy to perform almost negligible computations per array element. We quickly
hit the memory wall and see our cores mainly waiting for data from memory
rather than computing. With individual with-loops as basis for parallelisation,
compositional specifications also incur high synchronisation and communication
overhead.

As a consequence, the major theme of the array optimisation lies in condens-
ing many light-weight array operations, more technically with-loops, into much
fewer heavy-weight with-loops. Such techniques universally improve a number
of ratios that are crucial for performance: the ratio between computations and
memory operations, the ratio between computations and loop overhead and,
in case of parallel execution, the ratio between computations and synchronisa-
tion and communication overhead. We identified three independent optimisation
cases and address each one with a tailor-made program transformation:

– with-loop-folding [41] identifies computational pipelines where the result
of one with-loop is referenced in a subsequent with-loop. If so, the ref-
erence in the second with-loop is replaced by the corresponding element
definition from the first with-loop. Multi-generator with-loops and offset
computations on index vectors make this a non-trivial undertaking. A good
example is the convergence check in Fig. 22. Naive compilation would yield
three temporary intermediate arrays before the final reduction is computed.
With-loop-folding transforms the code into a single with-loop similar to
the one shown in Fig. 21.

– with-loop-fusion [42] aims at with-loops that compute (data-)independent
values based on a common or overlapping argument set. A typical exam-
ple would be searching for the least and for the greatest value in an ar-
ray. Naive compilation would yield one with-loop each, and the common
argument array would be pumped through the entire memory hierarchy
twice. With-loop-fusion, as the name suggests, fuses such with-loops into a

Single Assignment C (SAC) 265

single multi-operator with-loop traversing argument arrays only once. For
instance, with-loop-fusion manages to fuse the convolution step and the
convergence check in Fig. 32 into a single with-loop after properly resolv-
ing the data dependency between the convolution step and the convergence
check

– with-loop-scalarisation [43] joins nested with-loops, where the element value
of an outer with-loop is itself a with-loop-defined array. Naive compilation
would materialise a temporary array for each index of the outer with-loop.
Arrays of complex numbers, for instance, lead to this situation as each com-
plex number itself again is an array, i.e. a 2-element vector (see Section 4.3).

These optimisations are essential for making the compositional programming
style advocated by SaC feasible in practice; a survey can be found in [44].

Other array-specific optimisations aim at avoiding the creation of small vec-
tors used for indexing purposes (index vector elimination [45]) or optimise the
cache utilisation in the context of densely stored multi-dimensional arrays (array
padding [46]) to name just two. Moreover, the SaC compiler puts considerable
effort into compiling complex generator sets of with-loops, potentially with mul-
tiple strided generators, etc, into an abstract representation that traverses the
involved arrays in linear storage order whenever possible. This technique [47] is
crucial to effectively utilise cache hierarchies essential for achieving good perfor-
mance on modern systems.

The textbook optimisations first and foremost act as enablers of the array-
specific optimisations. They create larger optimisation contexts (e.g. function in-
lining, loop unrolling), do all sorts of partial evaluation (e.g. constant folding and
propagation, loop unrolling, algebraic simplification) or aim at avoiding superflu-
ous computations (e.g. dead code removal, common subexpression elimination,
loop invariant removal). While these optimisations are common in industrial-
strength C compilers, the functional semantics of SaC allows us to apply them
much more aggressively than what is possible in imperative environments.

10.4 Memory Management

Stateless arrays require memory resources to be managed automatically at run-
time. This is a key ingredient of any functional language, and it is well under-
stood how to design and implement efficient garbage collectors [48,49,50]. So, the
stress here is rather on arrays. In serious applications arrays often require large
contiguous chunks of memory, easily hundreds of MegaBytes and more. Such
sizes require many design decisions in memory management to be reconsidered,
e.g. they rule out copying garbage collectors.

On a more conceptual level we need to deal with the aggregate update prob-
lem [51]. Often an array is computed from an existing array by only changing
a few elements. Or, imagine a recurrence relation where vector elements are
computed in ascending index order based on their left neighbour. A straight-
forward functional implementation would need to copy large quantities of data
unchanged from the “old” to the “new” array. As any imperative implemen-
tation would simply overwrite array elements as necessary, the functional code

266 C. Grelck

could never achieve competitive performance. Of course, one could also question
the unboxed, dense in-memory representation silently assumed here, but this is
likewise well known to be no solution.

As a domain-specific solution for array processing, SaC uses non-deferred
reference counting [52] for garbage collection. Each array is augmented with
a reference counter, and the generated code is likewise augmented with refer-
ence counting instructions that dynamically keep track of how many conceptual
copies of an array exist. Compared with other garbage collection techniques
non-deferred reference counting has the unique advantage that memory can im-
mediately be reclaimed as soon as it turns into garbage. All other techniques
in one way or another decouple the identification and reclamation of dead data
from the last operation that makes use of the data.

Only non-deferred reference counting supports a number of optimisations that
are crucial for achieving high performance in functional array programming. The
ability to dynamically query the number of references of an array prior to some
eligible operation creates opportunities for immediate memory reuse. Take for
example a simple arithmetic operator overloaded for arrays like subtraction as
discussed in Section 4.4. The definition of subtraction on arrays is point-wise
and the result array requires exactly the same amount of memory as any of the
two argument arrays. If one of them shows a reference counter value of one prior
to computing subtraction, that argument array’s memory can immediately be
reused to store the result array. As a consequence, not only a costly memory
allocation is avoided, but also the memory footprint of the operation is reduced
by one third leading to much better cache hierarchy utilisation on typical cache-
based computing systems.

In other cases we may not only be able to reuse memory but also to reuse the
data already present in that memory. Consider a with-loop as in the following
SaC code fragment:

b = with {

(. <= iv < shape(a) / 2) : a[iv] + 1;

}: modarray (a);

Here, an array b is computed from an existing array a such that the upper left
corner (in the 2-dimensional case) is incremented by one while the remaining
elements are copied from a proper. If we can reuse the memory of a to store b,
we can effectively avoid to copy all those elements that remain the same in b as
in a. Such techniques are important prerequisites to compete with imperative
languages in terms of performance. A survey on SaC memory management can
be found in [53].

Unlike other garbage collection techniques, non-deferred reference counting
still relies on a heap manager for allocations and de-allocations. Standard heap
managers are typically optimised for memory management workloads charac-
terised by many fairly small chunks. In array processing, however, extremely
large chunks are common, and they are often handled inefficiently by standard

Single Assignment C (SAC) 267

heap managers. Therefore, SaC comes with its own heap manager tightly in-
tegrated with compiler and runtime system and properly equipped for multi-
threaded execution [54].

10.5 Parallelisation and Code Generation

An important (non-coincidental) property of with-loops is that evaluation of
the associated expression for any element of the union of index sets is completely
independent of all others. This allows the compiler to freely choose any suitable
evaluation order. We thoroughly exploit this property in the various with-loop-
optimisations described above, but in the end the main motivation for this design
is ease of parallelisation.

In contrast to auto-parallelisation in the imperative world, our problem is
not to decide where code can safely be executed in parallel, but we still need
to decide where and when parallel execution is beneficial to reduce program
execution times. The focus on data-parallel computations and arrays helps here
(which is among others why we chose this path in the first place). We do know
the index space size of an operation before actually executing it, which is better
than in typical divide-and-conquer scenarios.

It is crucial to understand, the with-loop does not prescribe parallel execu-
tion, it merely opens up opportunities for compiler and runtime system. They
still need to make an autonomous decision as whether to make use of this op-
portunity or not. This sets us apart from many other approaches, may they be
as explicit as OpenMP directives or as implicit as par and seq in Haskell.

Different target architectures require entirely different code generators. In all
cases, the SaC compiler does not generate architecture-specific machine code
but rather architecture-specific variations of C code. The final step of machine
code generation is left to a highly customisable backend compiler tailor-made for
a given computing platform. While this design choice foregoes certain machine-
level optimisation opportunities, we found it to be a reasonable compromise
between engineering effort and support for a variety of computing architectures
and operating systems.

The SaC compiler currently supports four different compilation targets. The
default target is plain sequential execution. Any ISO/ANSI-compliant C com-
piler may serve as backend code generator. This flexibility allows us to choose
the best performing C compiler on each target architecture, e.g. the Intel com-
piler for Intel processors, the Oracle compiler for Niagara systems or GNU gcc
for AMD Opteron based systems. It would be extremely challenging to compete
with these compilers in terms of binary code quality.

For symmetric multi-core multi-processor systems we again target standard
ANSI/ISO C with occasional calls to the PThread library. Conceptually, the
SaC runtime system follows a fork-join approach, where a program is gener-
ally executed by a single master thread. Only computationally-intensive kernels,
in intermediate SaC code conveniently represented by with-loops already en-
hanced and condensed through high-level optimisation, are effectively run in
parallel by temporarily activating a set of a-priori created worker threads. The

268 C. Grelck

synchronisation and communication mechanisms implementing the transition
between single-threaded and multi-threaded execution modes and vice versa are
highly optimised to exploit properties of cache coherence protocols found in to-
day’s multi-core multi-processor systems. Compilation for these kinds of parallel
systems is thoroughly described in [55,56].

As our approach to organising multithreaded execution is not dissimilar from
implementations of OpenMP, we recently experimented with alternatively gen-
erating C code with OpenMP directives [57]. One result of this work is that
(maybe not surprisingly) the tailor-made and highly tuned synchronisation mech-
anisms of the PThread-based implementation yield slightly better performance.
The OpenMP-based code generator may still prove handy for supporting future
chip architectures that may not meet our assumptions on cache coherence and
memory consistency, but are supported by OpenMP. In either case, PThread-
or OpenMP-based code generation, we benefit from the same range of choices
to select the most appropriate backend C compiler for binary code generation.

Our support for GPGPUs, the SaC compiler’s third target architecture, is
based on the CUDA framework [58]. In this case, our design choice to leave
binary code generation to an independent C compiler particularly pays off: one is
effectively bound to NVidia’s custom-made CUDA compiler for code generation.

A number of issues need to be taken into account when targeting graphics
cards in general and the CUDA framework in particular that are quite different
from generating multithreaded code as before. First CUDA kernels, i.e. the code
fragments that actually run on the accelerator, are restricted by the absence of a
runtime stack. Consequently, with-loops whose bodies contain function applica-
tions that cannot be eliminated by the compiler, e.g. through inlining, disqualify
for being run on the graphics hardware. Likewise, there are tight restrictions on
the organisation of C-style loop nestings that rule out the transformations for
traversing arrays in linear order that are vital on standard multi-core systems.
This requires a fairly different path through the compilation process early on.
Last but certainly not least, data must be transferred from host memory to
device memory and vice versa before the GPU can participate in any computa-
tions, effectively creating a distributed memory. It is crucial for achieving good
performance to avoid superfluous memory transfers. The SaC compiler takes all
this into account and drastically facilitates the utilisation of many-core graphics
accelerators in practice. Details can be found in [59].

The fourth and final target architecture currently supported by the SaC com-
piler is the MicroGrid architecture [15]. While fairly different from GPGPUs
from a computer architecture point of view, it is not dissimilar to CUDA from
a code generator perspective. Like CUDA it comes with an architecture-specific
programming language embedded into the C language, named μTC, and the
corresponding compiler toolchain [60]. The MicroGrid exposes less restrictions
on generated C code, but it requires us to expose fine-grained concurrency to the
hardware. In essence, the right hand side of Fig. 2 can be seen to illustrate this
approach. Whereas in the multithreaded approach the SaC compiler takes con-
siderable effort to adapt the fine-grained concurrency exposed on the program

Single Assignment C (SAC) 269

level to the generally much coarser-grained actually available concurrency on the
executing hardware platform, the MicroGrid efficiently deals with fine-grained
concurrency in hardware. Details can be found in [61,62].

10.6 Experimental Evaluation

To the potential disappointment of our readers space limitations prevent us
from any decent analysis as to what extent the SaC compiler achieves its aim
of competing with C and Fortran in terms of runtime performance. Instead
we refer the interested reader to a number of publications that have exactly
this intention. Typically, they put software engineering concerns into context
with runtime performance on diverse computing machinery comparing SaC with
various other programming languages.

[63] experiments with anisotropic filters and single-class support vector ma-
chines from an industrial image processing pipeline. Performance figures are
reported from standard commodity multi-core servers and GPGPUs and show
competitive performance with respect to hand-coded C implementations and
highly customised image processing libraries. [64] investigates scalability issues
of the SaC multithreaded runtime system for a number of smaller benchmarks
on the Oracle T3-4 server with up to 512 hardware threads. [59] analyses the
performance of the GPGPU code generator for a variety of benchmarks.

[65] compares SaC with Fortran-90 in terms of programming productiv-
ity and performance on multi-core multi-processor systems for unsteady shock
wave interactions. [66] again compares SaC with Fortran-90, this time based
on the Kadomtsev-Petiviashvili-I equations (KP-I) that describe the propaga-
tion of non-linear waves in a dispersive medium. Last not least, [67] and [68]
describe SaC implementations of the NAS benchmarks [69] FT (3-dimensional
fast-Fourier transforms) and MG (multigrid), respectively. They show sequen-
tial performance for the SaC code that is competitive with the hand-optimised
Fortran-77 reference implementations of the two benchmarks and good scala-
bility on multi-processor systems of the pre-multi-core era.

11 Related Work

Given the wide range of topics around the design and implementation of SaC
that we have covered in this article, there is a plethora of related work that
is impossible to do justice in this section. Hence, the selection inevitably is
subjective and incomplete.

General-purpose functional languages such as Haskell, Clean, Sml or
OCaml all support arrays in one way or another on the language level. Or
more precisely, they support (potentially nested) vectors (1-dimensional arrays)
in our terminology. However, as far as implementations are concerned, arrays are
rather side issues and design decisions are taken in favour of list- and tree-like
data structures. This rules out to achieve competitive performance on array-
based compute-intensive kernels.

270 C. Grelck

The most radical step is taken by the ML family of languages: arrays come
as stateful, not as functional data structures. To the same degree as this choice
facilitates compilation, it looses most appealing characteristics of a functional
approach. The lazy functional languages Haskell and Clean both implement
fully functional arrays, but investigations have shown that in order to achieve
acceptable runtime performance arrays must not only be strict and unboxed (as
in SaC), but array processing must also adhere to a stateful regime [70,71,72],
i.e. state monads[31] or uniqueness types[33]. While conceptually more elaborate
than the ML approach to arrays, monads and uniqueness types likewise enforce
an imperative programming style where arrays are explicitly created, copied and
removed.

Data Parallel Haskell [73] is an extension of vanilla Haskell with particular
support for nested vectors (arrays in Haskell speak). Data Parallel Haskell
mainly aims at irregular and sparse array problems and inhomogeneous nested
vectors in the tradition of Nesl[74]. Likewise, it adopts Nesl’s flattening opti-
misation that turns nested vectors into flat representations.

One project that must be acknowledged in the context of SaC is Sisal[75,76].
Sisal was the first approach to high-performance functional array programming,
and, arguably, it is the only other approach that aims at these goals as strin-
gently as SaC. Sisal predates SaC by about a decade, and consequently, we
studied Sisal closely in the early years of the SaC project. Unfortunately, the
development of Sisal effectively ended with version 1.1 around the time the first
SaC implementation was available. Further developments, such as Sisal 2.0[77]
and Sisal-90 [78], were proposed, but have never been implemented.

SaC adopted several ideas of Sisal, e.g. the dispense of many great but
implementation-wise costly functional features from currying to higher-order
functions and lazy evaluation or non-deferred reference counting to address the
aggregate update problem. In many aspects, however, SaC goes far beyond
Sisal. Examples are support for truly multi-dimensional arrays instead of 1-
dimensional vectors (where only vectors of the same length can be nested in
another vector), the ability to define generic abstractions on array operations
or the compositional programming style. This list could be extended, but then
the comparison is in a sense both unfair and of limited relevance given that
development of Sisal ended many years ago.

An interesting offspring from the Sisal project is SaC’s namesake SA-C also
called Sassy[79,80]. Independently of us and around the same time the originators
of SA-C had the idea of a functional language in the spirit of Sisal but with
a C-inspired syntax. Thus, we came up with same name: Single Assignment C.
Here, the similarities end, even from a syntactic perspective. Despite the almost
identical name, SaC and SA-C are very different programming languages.

SaC’s implementation of the calculus of multi-dimensional arrays is closely
related to interpreted array languages like Apl[11,12], J [13] or Nial[14]. In [81]
Bernecky argues that array languages are in principle well suited for data parallel
execution and thus should be appropriate for high-performance computing. In
practice, language implementations have not followed this path. The main show

Single Assignment C (SAC) 271

stopper seems to be the interpretive nature of these languages that hinders
code-restructuring optimisations as prominently featured by SaC (Section 10.3).
While individual operations could be parallelised, the ratios between productive
computation and organisational overhead are often infavourable.

Dynamic (scripting) languages like Python are very popular these days. Con-
sequently, there are serious attempts to establish such languages for compute-
intensive applications[82,83]. Here, however, it is very difficult to achieve high
performance. Like the Apl-family of languages the highly dynamic nature of
programs renders static analysis ineffective. It seems that outside the classical
high-performance community, programmers are indeed willing to sacrifice per-
formance in exchange for a more agile software engineering process. Often this
is used to explore the design space, and once a proper solution is identified, it
is re-implemented with low-level techniques to equip production code with the
right performance levels. This is exactly where we see opportunities for SaC:
combine agile development with high runtime performance through compilation
technology and save the effort of re-implementation and the corresponding con-
sistency issues. Much of the above likewise holds for the arguably most used
array language of our time: MatLab and its various clones.

12 Conclusions and Perspectives

We have presented the ins and outs of the programming language Single Assign-
ment C (SaC), covering the whole range of issues from general motivation over
language design to programming methodology. In essence, SaC combines array
programming technology with functional programming principles and a C-like
look-and-feel. In two cases studies on convolution and numerical differentiation
we have demonstrated how the SaC methodology supports the engineering of
concise, abstract, high-level, reusable code.

However, language design is just one side of the coin. One may even say that
this is the easy part. The flip side of the coin is do develop the necessary compiler
technology to meet our over-arching objective: competing with the performance
of C and Fortran throughout a variety of parallel computing platforms. How
to achieve this goal is the real research question behind the SaC project.

An important insight to this end is that before even looking into generating
parallel code competitive sequential performance is of paramount importance.
Sequential performance is crucial because we aim at exploiting parallel hardware
to generate actual performance gains over existing implementations, not to over-
come our own shortcomings in sequential performance. While this sounds more
than plausible, it truly is a challenge, and a challenge more often avoided than
one may think.

Nonetheless, the ability to fully automatically generate code for various paral-
lel architectures, from symmetric multi-core multi-processors to GPGPU accel-
erators is arguably one of SaC’s major assets. In a standard software engineering
process the job is less than half done when a first sequential prototype yields

272 C. Grelck

correct results. Every targeted parallel architecture requires a different paralleli-
sation approach using different APIs, tools and expertise. Explicit parallelisa-
tion is extremely time-consuming and error-prone. Typical programming errors
manifest themselves in a non-deterministic way that makes them particularly
hard to find. Targeting different kinds of hardware, say multi-core systems and
GPGPU-accelerators inevitably clutters the code and creates particular mainte-
nance issues. With SaC the job is done as soon as a sequential program is ready.
Multiple parallel target architectures merely require recompilation of the same
source code base with different compiler flags.

Much has been achieved since the principal ideas of SaC were first pro-
posed [84]. In Section 10 we sketched out the most important aspects of com-
pilation technology that we have developed to the present day. A series of case
studies, further more, A lot of work, nonetheless, lies ahead of us. The contin-
uous development of new parallel architectures keeps us busy just as further
improvements of the language and of our compilation infrastructure. Work is
currently on-going in many directions, small and large. We conclude this article
with sketching out a few of them.

For now, the choice of a target architecture is exclusive. We can either gener-
ate code to make use of multiple CPU cores or code to exploit a single GPGPU
accelerator. One of our current threads of work is to combine these technolo-
gies to make use of multiple GPGPUs and multi-core CPUs at the same time.
This work also accounts for current hardware trends to combine CPU and GPU
technologies on-chip.

Another area of on-going work is to exploit the capabilities of vector regis-
ters and vector operations available in most of today’s processors. The most
prominent example are Intel’s Streaming SIMD Extensions (SSE) for the x86
architecture, but similar features are included in all modern processor designs.
At the moment, SaC does not explicitly exploits these facilities and leaves their
potential to be exploited by the backend compiler. Since the SaC compiler has
a much better understanding of its intermediate code than any backend C com-
piler could ever derive from the generated code, it would be desirable to generate
vector instructions explicitly in sac2c. Unfortunately, the multitude of ISA ex-
tensions and APIs is rather cumbersome. We also need to extend the set of SaC
base types to take full advantage of vector registers. Currently, we explore ways
to support user-defined bit widths for numerical values.

Fig. 3 in the very beginning of this article already outlined two directions of
on-going work. As of now, SaC does not support network-interconnected clusters
or, generally, distributed memory architectures. Despite the multicore revolution,
it is always attractive to combine multiple complete systems for even larger com-
putational tasks. On the other end of the design space we envision a growing
relevance of reconfigurable hardware to address tomorrow’s demands on energy
efficiency. One can even think of reconfigurable areas in general-purpose pro-
cessors. Right now, programming reconfigurable hardware requires a completely
different tool and mind set than conventional software engineering. However,
SaC intermediate code appears to be a suitable starting point for compilation.

Single Assignment C (SAC) 273

Our namesake SA-C/Sassy (see Section 11) took a similar approach about a
decade ago, but was presumably ahead of its time. It is fair to say that our
efforts into both directions are still in their infancy.

On the language level a number of features are highly desirable. As the partic-
ipants of the CEFP summer school (painfully) learned during the lab sessions,
the monomorphic type system for array base types is suboptimal. While it is
easy to define new types in SaC, dealing with arrays of user-defined types is
less easy. All support for our advocated compositional programming methodol-
ogy is based on shape-generic but base-type-monomorphic function definitions
in the SaC standard library. These are, of course, not available to (arrays of)
user-defined types and need to be provided for each such type by its originator.
Polymorphism on base types would immediately solve this issue, but realisation
in the context of shapely polymorphism, overloading and the strong desire not to
loose on the performance side of the coin create a challenging research question
that is currently under investigation.

Another type system issue has been discussed already: the SaC array type sys-
tem does not support the specification of relationships of the shapes of function
arguments and results. For example, matrix multiplication can only be specified
for 2-dimensional arrays of any shape, whereas the algorithm requires the y-axis
extent of the first argument to coincide with the x-axis extent of the second ar-
gument. Furthermore, the algorithm reveals that the result matrix has the same
size along the x-axis as the first argument matrix and the same size on the y-axis
as the second argument matrix. This knowledge is lost in the type system due to
a lack of expressiveness. Similar shape relations are common place across SaC
standard array operations, e.g. take, drop or where. Capturing such shape rela-
tions in the type system leads to dependent array types that we have studied in
the context of (more experimental) array language Qube [28,29]. However, how
to carry these ideas over to SaC in the presence of overloading and dynamic
dispatch is non-trivial.

Of course, as functional programmers we have a longer wish list for the feature
set of SaC. While SaC will always put the emphasis on arrays, it would be
highly desirable to support tuples, lists and trees, nonetheless. Likewise, higher-
order functions are certainly worthwhile some implementation effort. Currently,
the fold-with-loop are the only place where functions appear in an (almost)
expression position, but this is very restricted and does not allow for abstractions
like a general reduction function or operator. Not adopting the general concept of
higher-order functions was an early design decisions to facilitate compilation into
efficient code. However, restricted support for higher-order functions such that
the compiler could in practice resolve them may nonetheless bring a considerable
gain in expressiveness.

Acknowledgements. The work described in this paper is the result of more
than 15 years of research and development conducted by an ever changing group
of people working at a variety of places. From the nucleus at the University of
Kiel, Germany, in the mid-1990s the virus spread to the University of Lübeck,
Germany, the University of Hertfordshire, England, the University of Toronto,

274 C. Grelck

Canada, the University of Amsterdam, Netherlands, and recently to Heriot-Watt
University, Scotland. Apart from the internal funds of these universities, three
European projects have been instrumental in supporting our activities: Æther,
Apple-CORE and Advance.

First and foremost, I would like to thank Sven-Bodo Scholz for many years of
intense and fruitful collaboration. The original proposal of a no-frills functional
language with a C-like syntax and particular support for arrays was his [84].
Apart from the name and these three design principles not too much in today’s
SaC resembles the original proposal, though.

My special thanks go to those who helped to shape SaC by years of continued
work: Dietmar Kreye, Robert Bernecky, Stephan Herhut and Kai Trojahner.
Over the years many more have contributed to advancing SaC to its current
state. I take the opportunity to thank (in roughly temporal order) Henning
Wolf, Arne Sievers, Sören Schwartz, Björn Schierau, Helge Ernst, Jan-Hendrik
Schöler, Nico Marcussen-Wulff, Markus Bradtke, Borg Enders, Michael Werner,
Karsten Hinckfuß, Steffen Kuthe, Florian Massel, Andreas Gudian, Jan-Henrik
Baumgarten, Theo van Klaveren, Daoen Pan, Sonia Chouaieb, Florian Büther,
Torben Gerhards, Carl Joslin, Jing Guo, Hraban Luyat, Abhishek Lal, Artem
Shinkarov, Santanu Dash, Daniel Rolls, Zheng Zhangzheng, Aram Visser, Tim
van Deurzen, Roeland Douma, Fangyong Tang, Pablo Rauzy and Miguel Diogo
for their invaluable work.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38
(1965)

2. Sutter, H.: The free lunch is over: A fundamental turn towards concurrency in
software. Dr. Dobb’s Journal 30 (2005)

3. Meuer, H., Strohmaier, E., Simon, H., Dongarra, J.: 38th top500 list (2011),
www.top500.org

4. Intel: Product Brief: Intel Xeon Processor 7500 Series. Intel (2010)
5. AMD: AMD Opteron 6000 Series Platform Quick Reference Guide. AMD (2011)
6. Koufaty, D., Marr, D.: Hyperthreading technology in the netburst microarchitec-

ture. IEEE Micro 23, 56–65 (2003)
7. Sun/Oracle: Oracle’s SPARC T3-1, SPARC T3-2, SPARC T3-4 and SPARC T3-1B

Server Architecture. Whitepaper, Oracle (2011)
8. Shin, J.L., Huang, D., Petrick, B., et al.: A 40 nm 16-core 128-thread SPARC SoC

processor. IEEE Journal of Solid-State Circuits 46, 131–144 (2011)
9. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-

threaded execution. Int. Journal of Parallel Programming 34, 383–427 (2006)
10. Grelck, C., Scholz, S.B.: SAC: Off-the-Shelf Support for Data-Parallelism on Mul-

ticores. In: Glew, N., Blelloch, G. (eds.) 2nd Workshop on Declarative Aspects of
Multicore Programming (DAMP 2007), Nice, France, pp. 25–33. ACM Press (2007)

11. Falkoff, A., Iverson, K.: The Design of APL. IBM Journal of Research and Devel-
opment 17, 324–334 (1973)

12. International Standards Organization: Programming Language APL, Extended.
ISO N93.03, ISO (1993)

www.top500.org

Single Assignment C (SAC) 275

13. Hui, R.: An Implementation of J. Iverson Software Inc., Toronto (1992)
14. Jenkins, M.: Q’Nial: A Portable Interpreter for the Nested Interactive Array Lan-

guage Nial. Software Practice and Experience 19, 111–126 (1989)
15. Bousias, K., Guang, L., Jesshope, C., Lankamp, M.: Implementation and Evalua-

tion of a Microthread Architecture. J. Systems Architecture 55, 149–161 (2009)
16. Schildt, H.: American National Standards Institute, International Organization

for Standardization, International Electrotechnical Commission, ISO/IEC JTC 1:
The annotated ANSI C standard: American National Standard for Programming
Languages C: ANSI/ISO 9899-1990. McGraw-Hill (1990)

17. Kernighan, B., Ritchie, D.: The C Programming Language. Prentice-Hall (1988)
18. Iverson, K.: A Programming Language. John Wiley (1962)
19. Iverson, K.: Programming in J. Iverson Software Inc., Toronto (1991)
20. Burke, C.: J and APL. Iverson Software Inc., Toronto (1996)
21. Jenkins, M., Jenkins, W.: The Q’Nial Language and Reference Manual. Nial Sys-

tems Ltd., Ottawa (1993)
22. Mullin, L.R., Jenkins, M.: A Comparison of Array Theory and a Mathematics

of Arrays. In: Arrays, Functional Languages and Parallel Systems, pp. 237–269.
Kluwer Academic Publishers (1991)

23. Mullin, L.R., Jenkins, M.: Effective Data Parallel Computation using the Psi Cal-
culus. Concurrency — Practice and Experience 8, 499–515 (1996)

24. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Transactions on Computational Science and Engineering 5
(1998)

25. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming. MIT Press (2008)

26. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message Passing Interface. MIT Press (1994)

27. Douma, R.: Nested Arrays in Single Assignment C. Master’s thesis, University of
Amsterdam, Amsterdam, Netherlands (2011)

28. Trojahner, K., Grelck, C.: Dependently Typed Array Programs Don’t Go Wrong.
Journal of Logic and Algebraic Programming 78, 643–664 (2009)

29. Trojahner, K.: QUBE — Array Programming with Dependent Types. PhD thesis,
University of Lübeck, Lübeck, Germany (2011)

30. Grelck, C., Scholz, S.B.: Axis Control in SAC. In: Peña, R., Arts, T. (eds.) IFL
2002. LNCS, vol. 2670, pp. 182–198. Springer, Heidelberg (2003)

31. Wadler, P.: Comprehending Monads. Mathematical Structures in Computer Sci-
ence 2 (1992)

32. Peyton Jones, S., Launchbury, J.: State in Haskell. Lisp and Symbolic Computa-
tion 8, 293–341 (1995)

33. Smetsers, S., Barendsen, E., van Eekelen, M., Plasmeijer, M.: Guaranteeing Safe
Destructive Updates through a Type System with Uniqueness Information for
Graphs. Technical report, University of Nijmegen, Nijmegen, Netherlands (1993)

34. Achten, P., Plasmeijer, M.: The ins and outs of Clean I/O. Journal of Functional
Programming 5, 81–110 (1995)

35. Grelck, C.: Integration eines Modul- und Klassen-Konzeptes in die funktionale
Programmiersprache SAC – Single Assignment C. Master’s thesis, University of
Kiel, Germany (1996)

36. Grelck, C., Scholz, S.B.: Classes and Objects as Basis for I/O in SAC. In: 7th
International Workshop on Implementation of Functional Languages (IFL 1995),
B̊astad, Sweden, pp. 30–44. Chalmers University of Technology, Gothenburg (1995)

276 C. Grelck

37. Herhut, S., Scholz, S.B., Grelck, C.: Controllling Chaos — On Safe Side-Effects in
Data-Parallel Operations. In: 4th Workshop on Declarative Aspects of Multicore
Programming (DAMP 2009), Savannah, USA, pp. 59–67. ACM Press (2009)

38. Grelck, C., Scholz, S., Shafarenko, A.: Asynchronous Stream Processing with S-Net.
International Journal of Parallel Programming 38, 38–67 (2010)

39. Scholz, S.B.: Single Assignment C — efficient support for high-level array oper-
ations in a functional setting. Journal of Functional Programming 13, 1005–1059
(2003)

40. Grelck, C., van Deurzen, T., Herhut, S., Scholz, S.B.: Asynchronous Adaptive Op-
timisation for Generic Data-Parallel Array Programming. Concurrency and Com-
putation: Practice and Experience (2011)

41. Scholz, S.-B.: WITH-Loop-Folding in SAC - Condensing Consecutive Array Oper-
ations. In: Clack, C., Hammond, K., Davie, T. (eds.) IFL 1997. LNCS, vol. 1467,
pp. 72–92. Springer, Heidelberg (1998)

42. Grelck, C., Hinckfuß, K., Scholz, S.B.: With-Loop Fusion for Data Locality and Par-
allelism. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS, vol. 4015,
pp. 178–195. Springer, Heidelberg (2006)

43. Grelck, C., Scholz, S.-B., Trojahner, K.: With-Loop Scalarization – Merging Nested
Array Operations. In: Trinder, P., Michaelson, G.J., Peña, R. (eds.) IFL 2003.
LNCS, vol. 3145, pp. 118–134. Springer, Heidelberg (2004)

44. Grelck, C., Scholz, S.B.: Merging compositions of array skeletons in SAC. Journal
of Parallel Computing 32, 507–522 (2006)

45. Bernecky, R., Herhut, S., Scholz, S.-B., Trojahner, K., Grelck, C., Shafarenko, A.:
Index Vector Elimination – Making Index Vectors Affordable. In: Horváth, Z.,
Zsók, V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 19–36. Springer,
Heidelberg (2007)

46. Grelck, C.: Improving Cache Effectiveness through Array Data Layout Manipu-
lation in SAC. In: Mohnen, M., Koopman, P. (eds.) IFL 2000. LNCS, vol. 2011,
pp. 231–248. Springer, Heidelberg (2001)

47. Grelck, C., Kreye, D., Scholz, S.B.: On Code Generation for Multi-Generator
WITH-Loops in SAC. In: Koopman, P., Clack, C. (eds.) IFL 1999. LNCS, vol. 1868,
pp. 77–94. Springer, Heidelberg (2000)

48. Wilson, P.R.: Uniprocessor Garbage Collection Techniques. In: Bekkers, Y., Cohen,
J. (eds.) IWMM 1992. LNCS, vol. 637, pp. 1–42. Springer, Heidelberg (1992)

49. Jones, R.: Garbage Collection: Algorithms for Automatic Dynamic Memory Man-
agement. John Wiley (1999)

50. Marlow, S., Harris, T., James, R.P., Peyton Jones, S.: Parallel generational-copying
garbage collection with a block-structured heap. In: 7th Int. Symposium on Mem-
ory Management (ISMM 2008), Tucson, AZ, USA, pp. 11–20. ACM (2008)

51. Hudak, P., Bloss, A.: The Aggregate Update Problem in Functional Program-
ming Systems. In: 12th ACM Symposium on Principles of Programming Languages
(POPL 1985), New Orleans, USA, pp. 300–313. ACM Press (1985)

52. Collins, G.E.: A Method for Overlapping and Erasure of Lists. CACM 3, 655–657
(1960)

53. Grelck, C., Trojahner, K.: Implicit Memory Management for SaC. In: 16th Inter-
national Workshop on Implementation and Application of Functional Languages,
IFL 2004, Lübeck, Germany, pp. 335–348. University of Kiel, Institute of Computer
Science and Applied Mathematics (2004); Technical Report 0408

Single Assignment C (SAC) 277

54. Grelck, C., Scholz, S.B.: Efficient Heap Management for Declarative Data Parallel
Programming on Multicores. In: 3rd Workshop on Declarative Aspects of Multicore
Programming (DAMP 2008), San Francisco, CA, USA, pp. 17–31. ACM Press
(2008)

55. Grelck, C.: A Multithreaded Compiler Backend for High-Level Array Program-
ming. In: 2nd International Conference on Parallel and Distributed Computing
and Networks (PDCN 2003), Innsbruck, Austria, pp. 478–484. ACTA Press (2003)

56. Grelck, C.: Shared memory multiprocessor support for functional array processing
in SAC. Journal of Functional Programming 15, 353–401 (2005)

57. Zhangzheng, Z.: Using OpenMP as an Alternative Parallelization Strategy in SAC.
Master’s thesis, University of Amsterdam, Amsterdam, Netherlands (2011)

58. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Ap-
proach. Morgan Kaufmann (2010)

59. Guo, J., Thiyagalingam, J., Scholz, S.B.: Breaking the GPU programming barrier
with the auto-parallelising SAC compiler. In: 6th Workshop on Declarative Aspects
of Multicore Programming (DAMP 2011), Austin, TX, USA. ACM Press (2011)

60. Bernard, T., Grelck, C., Jesshope, C.: On the compilation of a language for general
concurrent target architectures. Parallel Processing Letters 20, 51–69 (2010)

61. Herhut, S., Joslin, C., Scholz, S.B., Grelck, C.: Truly Nested Data-Parallelism:
Compiling SAC to the Microgrid Architecture. In: 21st Symposium on Implemen-
tation and Application of Functional Languages (IFL 2009), South Orange, NJ,
USA. Seton Hall University (2009)

62. Herhut, S., Joslin, C., Scholz, S.-B., Poss, R., Grelck, C.: Concurrent Non-deferred
Reference Counting on the Microgrid: First Experiences. In: Hage, J., Morazán,
M.T. (eds.) IFL 2010. LNCS, vol. 6647, pp. 185–202. Springer, Heidelberg (2011)

63. Wieser, V., Grelck, C., Haslinger, P., Guo, J., Korzeniowski, F., Bernecky, R.,
Moser, B., Scholz, S.: Combining high productivity and high performance in image
processing using Single Assignment C on multi-core cpus and many-core gpus.
Journal of Electronic Imaging (to appear)

64. Grelck, C., Douma, R.: SAC on a Niagara T3-4 Server: Lessons and Experiences.
In: 15th Int. Conference on Parallel Computing (ParCo 2011), Ghent, Belgium
(2011)

65. Rolls, D., Joslin, C., Kudryavtsev, A., Scholz, S.-B., Shafarenko, A.: Numeri-
cal Simulations of Unsteady Shock Wave Interactions Using SaC and Fortran-
90. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 445–456. Springer,
Heidelberg (2009)

66. Shafarenko, A., Scholz, S.B., Herhut, S., Grelck, C., Trojahner, K.: Implementing
a Numerical Solution of the KPI Equation using Single Assignment C: Lessons
and Experiences. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS,
vol. 4015, pp. 160–177. Springer, Heidelberg (2006)

67. Grelck, C., Scholz, S.B.: Towards an Efficient Functional Implementation of the
NAS Benchmark FT. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp.
230–235. Springer, Heidelberg (2003)

68. Grelck, C.: Implementing the NAS Benchmark MG in SAC. In: Prasanna, V.K.,
Westrom, G. (eds.) 16th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2002), Fort Lauderdale, USA. IEEE Computer Society Press (2002)

69. Bailey, D., et al.: The NAS Parallel Benchmarks. International Journal of Super-
computer Applications 5, 63–73 (1991)

70. van Groningen, J.: The Implementation and Efficiency of Arrays in Clean 1.1. In:
Kluge, W.E. (ed.) IFL 1996. LNCS, vol. 1268, pp. 105–124. Springer, Heidelberg
(1997)

278 C. Grelck

71. Zörner, T.: Numerical Analysis and Functional Programming. In: 10th Interna-
tional Workshop on Implementation of Functional Languages (IFL 1998), London,
UK, University College, pp. 27–48 (1998)

72. Chakravarty, M.M., Keller, G.: An Approach to Fast Arrays in Haskell. In: Jeuring,
J., Jones, S.L.P. (eds.) AFP 2002. LNCS, vol. 2638, pp. 27–58. Springer, Heidelberg
(2003)

73. Peyton Jones, S., Leshchinskiy, R., Keller, G., Chakravarty, M.: Harnessing the mul-
ticores: Nested data parallelism in Haskell. In: IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS 2008),
Bangalore, India, pp. 383–414 (2008)

74. Blelloch, G., Chatterjee, S., Hardwick, J., Sipelstein, J., Zagha, M.: Implementation
of a Portable Nested Data-Parallel Language. Journal of Parallel and Distributed
Computing 21, 4–14 (1994)

75. McGraw, J., Skedzielewski, S., Allan, S., Oldehoeft, R., et al.: Sisal: Streams and
Iteration in a Single Assignment Language: Reference Manual Version 1.2. M 146.
Lawrence Livermore National Laboratory, Livermore (1985)

76. Cann, D.: Retire Fortran? A Debate Rekindled. CACM 35, 81–89 (1992)
77. Oldehoeft, R.: Implementing Arrays in SISAL 2.0. In: 2nd SISAL Users Confer-

ence, San Diego, CA, USA, pp. 209–222. Lawrence Livermore National Laboratory
(1992)

78. Feo, J., Miller, P., Skedzielewski, S.K., Denton, S., Solomon, C.: Sisal 90. In: Con-
ference on High Performance Functional Computing (HPFC 1995), Denver, CO,
USA, pp. 35–47. Lawrence Livermore National Laboratory, Livermore (1995)

79. Hammes, J., Draper, B., Böhm, A.: Sassy: A Language and Optimizing Compiler
for Image Processing on Reconfigurable Computing Systems. In: Christensen, H.I.
(ed.) ICVS 1999. LNCS, vol. 1542, pp. 83–97. Springer, Heidelberg (1999)

80. Najjar, W., Böhm, W., Draper, B., Hammes, J., et al.: High-level Language Ab-
straction for Reconfigurable Computing. IEEE Computer 36, 63–69 (2003)

81. Bernecky, R.: The Role of APL and J in High-Performance Computation. APL
Quote Quad. 24, 17–32 (1993)

82. van der Walt, S., Colbert, S., Varoquaux, G.: The numpy array: A structure for
efficient numerical computation. Computing in Science & Engineering 13 (2011)

83. Kristensen, M., Vinter, B.: Numerical Python for scalable architectures. In: 4th Con-
ference on Partitioned Global Address Space Programming Model (PGAS 2010).
ACM Press, New York (2010)

84. Scholz, S.B.: Single Assignment C – Functional Programming Using Imperative
Style. In: 6th International Workshop on Implementation of Functional Languages
(IFL 1994), pp. 21.1–21.13. University of East Anglia, Norwich (1994)

	Single Assignment C (SAC) High Productivity Meets High Performance
	Introduction and Motivation
	Core Language Design
	A Functional Subset of ISO C
	Functional Semantics vs C-Like Syntax

	Multidimensional Stateless Arrays
	Array Calculus
	Built-In Operations on Arrays
	With-Loop Array Comprehension
	With-Loop Examples
	Advanced Aspects of With-Loops

	Programming Methodology
	Array Type System
	Overloading
	User-Defined Types
	The Principle of Abstraction
	The Principle of Composition

	Case Study: Convolution
	Algorithmic Principle
	Convolution Step with Cyclic Boundary Conditions
	Convolution Step with Static Boundary Conditions
	Red-Black Convolution
	Stencil-Generic Convolution
	Multiple Convolution Steps

	Case Study: Differentiation
	Differentiation in 1 and 2 Dimensions
	Axis Control Notation
	Differentiation with Axis Control Notation

	Modules
	Name Spaces
	The Use Directive
	The Import Directive
	Defining Modules

	Input and Output
	Basic File I/O
	Imperative I/O vs Functional Semantics
	File I/O with Error Checking

	Foreign Language Interfaces
	Calling C from SAC
	Calling SAC from C

	Compilation Technology
	The SAC Compiler at a Glance
	Type Inference and Specialisation
	High-level Optimisations
	Memory Management
	Parallelisation and Code Generation
	Experimental Evaluation

	Related Work
	Conclusions and Perspectives
	References

