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Abstract. We present a first evaluation of our novel approach for non-
deferred reference counting on the Microgrid many-core architecture.
Non-deferred reference counting is a fundamental building block of im-
plicit heap management of functional array languages in general and
Single Assignment C in particular. Existing lock-free approaches for
multi-core and SMP settings do not scale well for large numbers of cores
in emerging many-core platforms. We, instead, employ a dedicated core
for reference counting and use asynchronous messaging to emit reference
counting operations. This novel approach decouples computational work-
load from reference-counting overhead. Experiments using cycle-accurate
simulation of a realistic Microgrid show that, by exploiting asynchro-
nism, we are able to tolerate even worst-case reference counting loads
reasonably well. Scalability is essentially limited only by the combined
sequential runtime of all reference counting operations, in accordance
with Amdahl’s law. Even though developed in the context of Single As-
signment C and the Microgrid, our approach is applicable to a wide range
of languages and platforms.

1 Introduction

Functional programming languages are particularly suitable for concurrent exe-
cution due to their side-effect-free nature. However, when run on a conventional
von Neumann architecture, side effects can ultimately not be avoided. Values
from the functional world need to be manifested in heap memory. Managing this
heap brings back some of the challenges that imperative programming faces when
it comes to concurrent execution. Fortunately, in the context of functional lan-
guages, the added complexity remains confined to the programming language’s
runtime system. Commonly, heap management is implemented by means of de-
ferred garbage collection: heap usage is monitored, and, whenever a high-water
mark is reached, program execution is interrupted and dead objects in the heap
are identified and removed. Following Amdahl’s law, performing garbage col-
lection sequentially would introduce a serious detriment to scalability. Parallel
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garbage collectors [16,5] alleviate this problem to some extent, but their scaling
is limited by the inevitable locking of heap objects during collection.

The functional array language SaC [17,11] uses a different approach to heap
management, namely non-deferred reference counting [4]. Each heap object is
accompanied by a counter that maintains the number of live references during
the object’s life time and de-allocates the heap object as soon as no references are
left. While memory management overhead is nicely parallelised alongside an ap-
plication itself, this technique suffers from a similar problem as deferred garbage
collection: updating the reference counter of a heap object requires exclusive
access. Unfortunately, locking can quickly over-sequentialise a data parallel pro-
gram, leaving most threads waiting for some lock to become available. Lock con-
tention has a progressively detrimental effect on runtime performance as con-
currency increases. Furthermore, performing reference-counting operations on
different cores requires the reference counter to be communicated between cores.
Most emerging many-core architectures support only weak memory consistency.
Thus, accessing a reference counter from different cores involves explicit inval-
idation of caches and synchronisation of memory to ensure a consistent global
view of reference counters. Both aspects are very costly.

With only a small number of threads, as in current mainstream multicores,
locks can be avoided by managing thread-local copies of reference counters [12].
However, the runtime cost for maintaining thread-local reference counters and
collating them into a globally consistent view whenever necessary is linear in
the number of threads. The same holds for memory overhead. On the Microgrid
architecture [3] (or any other many-core system) with its large number of cores
and thousands of hardware threads, one reference counter per object per thread
is not viable as the inflicted overhead would quickly outgrow the actual workload.

In this paper, we present an alternative approach to lock-free concurrent ref-
erence counting that can indeed be efficiently implemented on many-core archi-
tectures in general and specifically on the Microgrid. We make use of two spe-
cific features: exclusive places and delegation. An exclusive place is a dedicated
hardware resource that is guaranteed to run a thread to completion without
interleaving. This ensures single-threaded access to heap objects if all such at-
tempts originate from the same exclusive place. Delegation allows any thread
running on any core to delegate the execution of code to another place, be it ex-
clusive or not. Such delegation requests can be performed synchronous, i.e., the
delegating thread waits for completion of the delegated task, or asynchronous,
i.e., the delegating thread directly continues execution. The use of exclusive
places and delegation for reference counting is based on two observations. Firstly,
reference-counting operations of different threads can be interleaved, as long as
each thread’s reference counting operations remain in order. Secondly, reference
counting operations do not need to be executed before a thread can continue; it
suffices if they are executed eventually. Thus, on the Microgrid we delegate all
reference-counting operations on some heap object to a single exclusive place.
Since the delegation mechanism does guarantee the order of requests, all inter-
leavings are safe.
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Yet, using just delegation has the same drawbacks as using locks would have:
If multiple threads issue a reference-counting request, one thread will be blocked
until the other thread is serviced. In contrast to locks, however, delegation can
alleviate this effect: as the result of the reference-counting operation is not re-
quired for either thread to continue, reference-counting requests can be executed
asynchronously with the main computation. Hence, we make use of asynchronous
delegation. As first experiments show, asynchronous delegation allows us to hide
the latency of reference counting operations for a large range of workloads and
varying numbers of processing cores.

The remainder of this paper is structured as follows. The next section gives a
brief introduction to SaC and motivates the use of reference counting for heap
management. An overview of the Microgrid architecture is given in section 3.
Next, we present our distributed approach for non-deferred reference counting
in section 4. In section 5 we discuss experimental results. We discuss related
work in section 6 before we conclude in section 7.

2 SAC and Non-deferred Reference Counting

Single Assignment C, or SaC for short, is a data-parallel, purely functional
programming language with a strong emphasis on processing truly multidimen-
sional arrays. While on the syntactic level SaC very much resembles ANSI C,
the semantics of SaC is based on the principle of context-free substitution of ex-
pressions rather than the step-wise manipulation of state. This choice facilitates
far-reaching compiler-directed program transformations for optimisation [10] and
parallelisation [8]. We refer the interested reader mainly to [11] for a thorough
introduction to the design rationale of SaC, the ambivalence of functional and
imperative interpretation of C-like code and the essence of code transformation
in the SaC compiler.

It is a design principle of SaC not to provide aggregate array operations as
built-in operations, but rather SaC features a versatile array comprehension
construct to define such aggregate operations in SaC itself. Figure 1 shows a

with {( lower bound1 ≤ idxvec < upper bound1 ) : exp1 ;
. . .

( lower boundn ≤ idxvec < upper boundn ) : expn ;
} : genarray (shape , default)

Fig. 1. The with-loop: array comprehensions in SaC. Here, lower bound and
upper bound denote expressions that must evaluate to integer vectors of equal length.
They define a rectangular (generally multidimensional) index set. The identifier idxvec
represents elements of this set, similar to loop variables in for-loops. However, no order
is defined on these index sets, making the with-loop a truly data-parallel construct.
An index set specification is called a generator and it is associated with an arbitrary
SaC expression. It creates a mapping between index vectors and values, in other words
an array.
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i n t [ 6 , 7 ] , i n t fun ( i n t [ 6 , 7 ] A, i n t [ 6 , 7 ] B)
2 {

tmp = foo ( A) ;
4 C = with {

( [ 3 , 0 ] <= i v < [ 6 , 4 ] ) : bar ( A, i v ) ;
6 ( [ 0 , 4 ] <= i v < [ 6 , 7 ] ) : B[ i v ] ;

} : genarray ( [ 6 , 7 ] , tmp ) ;
8 r e tu rn ( C , foo ( C ) ) ;

}

Fig. 2. Example with-loop

simplified form of with-loop. Essentially, a with-loop maps expressions on a
multi-dimensional index space to define the elements of a multi-dimensional
array.

Figure 2 shows an example SaC function named fun featuring a with-loop
that defines a 6 × 7 matrix C using two generators and the default element. Each
element of the lower left 3 × 4 submatrix is defined by the application of function
bar to the argument array A and the index vector iv. The right 6 × 3 submatrix
is “copied” from the corresponding elements of the argument matrix B while all
remaining elements, i.e. the upper left 3 × 4 submatrix are defined by the default
value tmp. Note that the function fun has two return values, C and foo(C). We
assume that both functions foo and bar are defined elsewhere in the code. We
use a contrived example here to expose most relevant reference counting related
features in a relatively short and simple program fragment.

As with any other functional language, automatic memory management is a
core feature of SaC. Still, the setting substantially differs from that of most
functional languages that are based on algebraic data types. Whereas deeply
nested, pointer-interconnected structures made up of large numbers of relatively
small entities prevail in main-stream functional languages, SaC programs rather
deal with a much smaller number of mostly very large data structures that in
turn are either not nested at all or are characterised by a small nesting level. As
a consequence, conventional deferred garbage collection techniques are not suit-
able for SaC, and we use non-deferred reference counting instead. This choice
has two essential advantages: Large chunks of memory can be reclaimed as early
as possible and not only once heap space is exhausted. Moreover, suitable oper-
ations can immediately reuse the memory of argument arrays for storing result
arrays. If the elements of a result array are actually identical with those of the
reused argument array, any copying of data from argument to result array can
be avoided entirely.

Figure 3 shows pseudo C code compiled from the example in Figure 2. We
focus on memory management aspects of compiled code and keep the genera-
tion of efficiently executable C loop nestings from SaC with-loops opaque; the
interested reader is referred to [9] for details. The argument arrays A and B carry
reference counters that have at least the value 1 as in the calling context of the
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1 i n t [ 6 , 7 ] , i n t [ 6 , 7 ] fun ( i n t [ 6 , 7 ] A, i n t [ 6 , 7 ] B)
{

3 i n c r c ( A, 1 ) ;

5 tmp = foo ( A) ;

7 i f ( g e t r c (B) == 1) {
C = B;

9 f o r ( i v = [ 0 , 0 ] to [ 3 , 4 ] ) { C [ i v ] = tmp ; }
f o r ( i v = [ 3 , 0 ] to [ 6 , 4 ] ) { i n c r c ( A , 1 ) ;

11 C [ i v ] = bar ( A, i v ) ; }
}

13 e l s e {
C = ma l l oc ( . . . ) ;

15 f o r ( i v = [ 0 , 0 ] to [ 3 , 4 ] ) { C [ i v ] = tmp ; }
f o r ( i v = [ 3 , 0 ] to [ 6 , 4 ] ) { i n c r c ( A , 1 ) ;

17 C [ i v ] = bar ( A, i v ) ; }
f o r ( i v = [ 0 , 4 ] to [ 6 , 7 ] ) { C [ i v ] = B[ i v ] ; }

19 }

21 i n c r c ( C , 1 ) ;
i n c r c ( A, −1);

23 i n c r c ( B, −1);

25 r e tu rn ( C , foo ( C ) ) ;
}

Fig. 3. Pseudo C code generated from example in Figure 2

function fun the corresponding arrays must appear in argument position. The
values can be higher, of course, if the arrays are also referenced elsewhere.

Our reference counting scheme implements a caller-increments/callee decre-
ments policy. So, at the end of the computation of fun each reference counter
must have a value one less than at call time. At compile time we count the
number of references of A and B. A appears twice in the body of fun, once
in the first application of foo and again in the with-loop. Thus, as fun has
only received one conceptual reference from the caller (the caller increment),
we have to increment the reference counter of A by one to cater for the second
reference. This is encoded by means of the pseudo operation incrc. B only ap-
pears in the with-loop, hence we leave the reference counter as is. Following the
caller-increments/callee decrements principle, the reference counter of A will be
decremented during the evaluation of foo.

The SaC compiler generates two code variants for the with-loop, one that
reuses the argument array B for storing the result array C and one that allocates
fresh memory. The decision which code to execute is taken at runtime by query-
ing the value of B’s reference counter (getrc). Note that this choice can generally
not be made at compile time as the number of references to B outside the current
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function context is unknown and depends among others on the call site of foo.
If the reuse is successful, we not only avoid a costly memory allocation, but can
also leave out all the code that is merely concerned with copying values from the
argument array to the result array. Within the with-loop, we need to add code
that increments the reference counter of A in each iteration because, following
our guiding principle, the function bar will decrease the reference counter of its
argument and we must avoid the premature de-allocation of A.

After the reuse conditional, we increment the reference counter of C as we have
two occurrences of C in the subsequent code. Note that the reference counter of
C initially will be 1. In the reuse case this is obvious, and in the non-reuse case
the reference counter is initialised to this value. In contrast, both the reference
counters of A and B are decremented since these arrays are no longer needed after
completion of the with-loop. Whether or not they are also de-allocated solely
depends on the existence of further references outside the context of foo. The
interested reader is referred to [13] for a more thorough discussion of reference
counting in SaC.

3 The Microgrid and the SVP Concurrency Model

The Microgrid is a customisable many-core chip architecture. It is based on
single-issue, in-order RISC cores. Cores are hardware multi-threaded and capable
of context switching between threads at each pipeline cycle. A context switch
is triggered by any long latency instruction such as memory accesses, floating
point operations or synchronisations and, thus, hides the instruction’s latency
and prevents pipeline stalls. Cores are clustered in rings we call places to allow
for efficient thread mapping and communication of inter-thread dependencies.
Figure 4 shows a block diagram of the Microgrid configuration we used in our
experiments.

The Microgrid is actually a hardware implementation of a more general fine-
grained concurrency model named SVP for Self-adaptive Virtual Processor [14].

Cluster 
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COMA
directory

COMA
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DDR Channel

Root directory

DDR Channel

Root directory

DDR Channel

Root directory

DDR Channel

Fig. 4. The layout of a 128 core Microgrid
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The SVP model is based on the concept of thread families. A family consists
of one or more threads that execute the same procedure. Still, each thread has
an independent control flow, optionally dependent on a unique index within the
family. Any thread can create subordinate families, which take arguments in a
similar way as functions do. The arguments to a family of threads are passed on
to each thread upon creation and are read-only within the subordinate family.
Families of threads can either be created detached or non-detached. In the latter
case the parent thread waits for termination of the child family and signals re-
source reclamation; in the former case the child family terminates independently
and resources are released implicitly and immediately.

Furthermore, families of threads can be created at a specific place. This is
called delegation. The SVP model distinguishes two kinds of places. On generic
places all families run concurrently up to exhaustion of cores and hardware
threads. On exclusive places each family runs to completion without interleav-
ing with other families. Cores in the SVP model have access to a distributed
memory. While the address space is shared, there is no implicit consistency be-
tween memory writes and reads performed by different threads. Consistency is
only guaranteed between parent and child threads at the points of creation and
synchronisation.

As mentioned before, the Microgrid is effectively a hardware implementation
of the SVP concurrency model. On the Microgrid thread family parameters are
stored in a hardware family table while information about each individual thread
is stored in a hardware thread table. Both are configurable, a typical Microgrid
supports up to 32 families and 256 threads per core. If a family of threads is
created across multiple cores then a family table entry is allocated on each of the
cores. The Microgrid has slightly stronger memory consistency than required by
the SVP model. It allows a program to explicitly request system-wide consistency
if needed at the expense of increased on-chip network traffic.

The delegation network implements deterministic routing: exclusive families
created by a single thread execute in the order they were issued. Similarly, exclu-
sive families issued by a parent thread before a child thread is created are started
and complete before any of the child thread’s exclusive families. The processing
order of exclusive creates issued by unrelated threads is non-deterministic.

Exclusion is negotiated by dedicating a single family context to all exclusive
delegations. This way all exclusive delegations are made sequential. A queueing
mechanism is required in hardware to avoid having the creating thread wait
when the exclusive place is busy.

4 Our Approach: Asynchronous Reference Counting

Our approach for asynchronous non-deferred reference counting is based on two
key observations. First, if communicating reference counting state is costly, it
may be cheaper to communicate a reference counting operation to the core where
the current state of the reference counter resides as opposed to communicating
the reference counting state like in classical approaches. On the Microgrid, this
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can be achieved with minimal overhead using delegation. The idea is to spawn
a dedicated thread for the reference counting operation only and delegate that
thread to a reference counting core that is statically assigned to the heap object
whose reference counter is to be manipulated. By using exclusive creates, we
ensure exclusive access to the reference counting state, efficiently managed in
hardware, including the queueing of waiting threads.

Second, although it is important to keep the reference counter accurate dur-
ing program execution, most threads do not actually require knowledge of the
current state of the reference counter. That state is only required for reuse oper-
ations, which are relatively infrequent during data-parallel operations. This ob-
servation motivates us to perform reference counting operations asynchronously.
As we already perform reference counting by separate threads, spawning these
threads asynchronously is rather simple. Even more, delegation is ordered be-
tween cores on the Microgrid. Thus, even though operations are performed asyn-
chronously, they still remain in order, ensuring a valid, yet slightly delayed ref-
erence counting state at all times.

For reuse operations, however, a synchronous approach is required. In this
case, the issuing thread is actually interested in the current state of a heap
object’s reference counter. Thus, the issuing thread has to wait for the reference
counting operation to finish. Again, as reuse decisions are relatively infrequent
with respect to workload connected to the subject of the decision, such delay can
be tolerated, in particular as long as other threads are still ready to compute.

We use a fixed assignment of reference counting places to memory addresses.
Each heap object’s reference counter is created at its corresponding place and
remains there until the object is freed. Furthermore, we use only two operations:
An asynchronous incrc operation and a synchronous getrc operation. The for-
mer expects a heap object and an offset as arguments; it asynchronously updates
the heap object’s reference counter by delegating a thread using a detached cre-
ate to the exclusive place that is assigned to the heap object. That thread, once
having gained exclusive access, increments the heap object’s reference counter
by the given offset (positive or negative).

Apart from updating a heap object’s reference counter, the incrc operations
also takes care of deallocating no longer needed heap objects. As soon as the
reference counter drops to zero, the incrc operation notifies the heap man-
ager that the object is no longer needed. This operation, as well, is performed
asynchronously to ensure that the reference counting place as soon as possible
becomes available again for other pending reference counting operations. For the
getrc operation we use a similar approach. However, instead of a detached cre-
ate, we use a synchronous create that allows the issuing thread for the reference
counting operation to complete. Furthermore, the getrc operation only expects
a heap object as argument; it yields the current value of the reference counter
of that heap object as its result.

Note here that the returned state is accurate with respect to the inquiring
thread’s timeline. However, there may still be other pending reference counting
requests. Thus, the getrc operation might produce false negatives in that it
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returns a reference counter greater than one, although the object actually is no
longer referenced by any other thread. The opposite, a false positive where the
getrc operation returns a reference counting state of one although other threads
still access the object can be excluded. As reference counting operations by a
single thread are always processed in order, the returned value is accurate with
respect to that thread, i.e. the inquiring thread holds only a single reference. All
other threads then can no longer hold any references, as their local number of
references must have dropped to zero. Otherwise, the global reference counting
state would need to be at least two.

5 Evaluation

To evaluate our approach, we have first conducted a study using a synthetic
benchmark to characterise the scaling behaviour and to quantify the impact of
reference counting on runtime behaviour on many-core architectures. Using a
synthetic benchmark rather than some real-world computational kernel allows
us to study the behaviour of our approach in a controlled setting. However, to
show the applicability of our technology outside of the clean room, we include a
two dimensional FFT kernel in our experiments.

We have produced our measurements using revision 4196 of the cycle accurate
Microgrid simulator and revision 3.2 of the Microgrid toolchain1. Our specific
platform illustrated in Figure 4 consists of 128 cores, arranged in 8 places of 1, 1,
2, 4, 8, 16, 32 and 64 cores. Each core has split 8K/8K L1 caches for instructions
and data, two cores share an FPU and four cores share a 64K unified L2 cache.
These are connected to a cache-only memory architecture (cache lines migrated
to point of use), with 4 directories and 4 DDR channels to backing store. Each
core supports up to 256 hardware threads. Timings are scaled to simulate 1.2GHz
cores and DDR3-2400 channels.

We have recorded full traces of the processor states during simulation and
have post-processed these traces to compute pipeline utilisation and resource
usage. The benchmark code itself was compiled using the Microgrid back-end
of the SaC research compiler sac2c revision 171282. For concurrent execution,
we have sampled the state of the Microgrid only for the runtime of the relevant
data-parallel operation(s). For dedicated sequential execution, we present whole
program figures as the standard back-end of the SaC compiler does not support
this feature. This difference, however, does not affect the validity of our results.

5.1 Synthetic Kernel

Our synthetic kernel is shown in Figure 5. Given an input vector vect, the with-
loop computes a new vector of the same length. Each element of the result is

1 The Microgrid simulator and toolchain are available on request from the CSA group
at the Institute for Informatics of the University of Amsterdam.

2 The SaC research compiler sac2c is freely available for non-commercial use from
http://www.sac-home.org.

http://www.sac-home.org
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i n t work ( i n t i , i n t [ . ] v e c t )
2 {

r = 0 ;
4 f o r ( j =0; j<v e c t [ [ i ] ] ; j++) {

r = r +1;
6 }

r e tu rn ( r ) ;
8 }

10 r e s u l t = with {
( [ 0 ] <= [ i ] <= shape ( v e c t ) ) : work ( i , v e c t ) ;

12 } : genarray ( shape ( v e c t ) , 0 ) ;

Fig. 5. Source code of the synthetic benchmark used for evaluating non-deferred ref-
erence counting on the Microgrid

computed by concurrently applying the function work to the current index i and
the input vector vect. The function work is given in lines 1–8; it encodes a se-
lection of the i-th element from the argument vector vect. In order to model
different workloads, selection is implemented by means of a for-loop that consec-
utively increments a counter, starting at zero, until the value at the i-th position
in vect is reached. Thus, the total runtime of work is largely determined by the
values in the vector vect.

From a reference counting perspective, the above benchmark encodes a worst
case scenario. All threads created due to the with-loop first emit two reference
counting operations: The caller increment issued before the application of work
and the callee decrement issued directly after the read from vect in line 4. Note
here that in SaC other than in C there is only a single read operation from vect.
Due to the purely functional semantics of SaC, it is a valid optimisation to store
the read operation’s result in a local variable, which is then used for consecutive
checks of the termination condition of the for-loop.

We have designed our synthetic kernel with two tunable parameters: tuning
the length of the input vector vect allows us to influence the number of created
threads and thus the number of reference counting operations emitted. As each
thread contains one call to work with vect as argument, we get two reference
counting operations per thread. As the first argument of work, the index i, is a
scalar, it is not heap allocated and thus not reference counted.

The second tunable parameter is the value used for the elements of vect. Each
thread performs three operations per loop iteration. Thus, the overall workload
per thread can be computed as roughly three times the value of the elements
of vect. For our experiments, we use a single number for all vector elements,
thereby encoding a uniform workload.

In our program, the main computation only results in a single thread family.
Hence, the family table can be kept small at the computing place. Due to a
current limitation of the architecture, which prevents asynchronous queueing of
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detached families, we use two-level creates to implement asynchronous creates
at exclusive places. In this scheme the work thread detaches a thread at a non-
exclusive proxy place; the detached thread in turn issues a synchronous create at
an exclusive place. We thus simulate queueing in software by allowing multiple
families at the proxy place to wait simultaneously for the exclusive place. This is
less efficient than hardware queueing, but offers an advantage for our evaluation:
the number of active threads at the proxy place indicates the number of pending
requests to the exclusive place. With this scheme, we can easily tune the number
of family entries at the proxy place used for reference counting to compensate
for contention. To benchmark our program we use 256 family entries per core.

Figures 6 and 7 show the results for a vector of 512 elements and a value of 100.
This corresponds to a total of 1024 reference counting operations and a workload
of about 150k instructions. The left hand side of both figures presents the results
for the executables as produced by the SaC compiler. On the right hand side,
we have repeated the same measurements with hand patched executables where
all reference counting operations have been removed.

We have first measured runtime and pipeline efficiency for a fully sequen-
tial version of the benchmark that does not expose any concurrency. Further-
more, we have used classical reference counting by direct manipulation of a
reference counter in memory for these measurements. As direct comparison of
Figure 6a and Figure 6b shows, reference counting in the sequential case in-
troduces an overhead of about 200k cycles. Apart from the actual cost of the
reference counting operations, we mainly attribute this overhead to the reduced
pipeline efficiency. The Microgrid does not feature sophisticated branch predic-
tors or memory pre-fetching stages. Instead, it relies on concurrency to hide the
latencies of branches and memory loads.

As expected, adding concurrency and our asynchronous approach to reference
counting therefore leads to improved runtime behaviour even on a single core.
Figures 6c and 6d both show significant improvement over their sequential coun-
terparts. By offloading reference counting to a dedicated asynchronous core, we
have reduced the incurred overhead to less than 50k cycles.

An interesting artefact is the relatively low pipeline utilisation at the begin-
ning of the data-parallel section when reference counting is enabled. We attribute
this to queueing effects. Each thread has to successfully enqueue two reference
counting operations before it can start computing its workload. It seems that
due to the scheduling chosen by the architecture most threads only manage to
enqueue their first request before the request queue is full. Thus, threads initially
have to wait for reference counting operations to complete.

The version of our benchmark without reference counting exhibits almost lin-
ear scaling with increasing numbers of cores as Figures 6f to 7h show. For the
runtimes with reference counting enabled, as shown on the left hand side, how-
ever, scaling is less favourable and it hits a limit at about 4 cores. Furthermore,
we can observe that the number of pending reference counting operations (the
dotted lines in the figure) increases with the number of cores. This effect culmi-
nates in Figure 7a where for the first time the reference counting queue remains
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(c) 1 core, with reference counting
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(d) 1 core, no reference counting
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(e) 2 cores, with reference counting
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(f) 2 cores, no reference counting
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(g) 4 cores, with reference counting
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Fig. 6. Benchmark results for a vector of 512 elements and a workload of 100 additions.
Thin lines show the number of threads computing the actual workload; dotted lines
represent the number of pending reference counting operations; thick lines give the
average pipeline utilisation across cores that compute the workload. We start with
fully sequential code and then continue with parallel code for 1, 2 and 4 cores. In the
left column we show results for the code generated by our compiler, in the right column
for code where we manually removed all reference counting operations. We continue
this in Figure 7 for larger numbers of cores.
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(a) 8 cores, with reference counting
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(b) 8 cores, no reference counting
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(c) 16 cores, with reference counting

 0

 100

 200

 300

 400

 500

 200  250  300  350  400  450
 0

 20

 40

 60

 80

 100

nu
m

be
r o

f t
hr

ea
ds

pi
pe

lin
e 

ut
ili

sa
tio

n 
(%

)

clock cycles (thousands)

(d) 16 cores, no reference counting
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(e) 32 cores, with reference counting
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(f) 32 cores, no reference counting
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(g) 64 cores, with reference counting
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Fig. 7. Benchmark results for a vector of 512 elements and a workload of 100 additions.
Thin lines show the number of threads computing the actual workload; dotted lines
represent the number of pending reference counting operations; thick lines give the
average pipeline utilisation across cores that compute the workload. Continuing from
Figure 6 we show results for using 8, 16, 32 and 64 cores. In the left column we show
results for the code generated by our compiler, in the right column for code where we
manually removed all reference counting operations.
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fully loaded during the entire data-parallel section; the reference counting op-
erations dominate the overall execution. This is a consequence of the necessity
to perform all reference counting operations sequentially. Our software imple-
mentation of the asynchronous reference counting operations requires roughly
100 cycles each leading to 100k cycles in total. This observation enables us to
predict the best possible speedup by means of Amdahl’s law: it equates to the
ratio between workload and reference counting time which, in our example, are
300 and 100 cycles per element, respectively.

This ratio of 1.5 in fact is the limiting factor for the speedups observed as
shown in Figure 8. To confirm our explanation, we repeated the same experi-
ment for larger vectors and with varying ratios between workload and reference
counting times. Figure 8 shows three different experiments in total. Besides our
initial experiment, it also contains an experiment on a 4096-element vector with
the same ratio of 1.5, and an experiment with a ratio of 15 (1000 iterations).
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4096,1000 w/o refcnt.
4096,100 w/o refcnt.
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4096,1000
4096,100
512,100

Fig. 8. Observed speed up for varying numbers of threads and workload sizes compared
to the runtimes on a single core with reference counting operations removed

A first observation is that increasing the number of elements and, thus, the
overall load has no impact on speedups even though it entails an eightfold in-
crease in the number of threads created. Increasing the number of iterations to
1000, and with it the ratio between workload and reference counting time to a
factor of roughly 15, directly impacts scaling. Even more, we can see that our pre-
dicted speedup factor is reached when using 64 cores. This demonstrates nicely
that the architecture is capable of hiding all the workload (roughly 12M cycles)
behind the sequential program fragment due to reference counting (roughly 800k
cycles). For completeness, we have included the results for running the bench-
mark with reference counting operations removed, as well. For 100 iterations we
observe close to linear scaling while 1000 iterations scale perfectly linear.

5.2 2-Dimensional FFT

As a representative of a real-world computational kernel, we chose 2-dimensional
FFT. In fact, our code is a stripped-down version of the NAS benchmark FT [1],
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(a) Sequential, with reference counting
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(b) Sequential, no reference counting
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(c) 1 core, with reference counting
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(d) 32 cores, with reference counting

Fig. 9. Results for a two dimensional FFT on a 128 × 128 complex matrix

which implements 3-dimensional FFT. We restrict ourselves here to the 2-di-
mensional case and a relatively small problem size due to the computational
complexity of cycle-accurate simulation of the Microgrid. In essence, our kernel
transforms a matrix of complex numbers by applying 1-dimensional FFTs to each
row vector, then transposing the result matrix and again applying 1-dimensional
FFTs to each row vector, i.e. the former column vectors. We implement the
1-dimensional FFTs using the Danielson-Lanczos algorithm, which recursively
decomposes the argument vector into the vectors of even- and odd-indexed ele-
ments. A detailed discussion of the SaC implementation of this benchmark can
be found in [7].

Figure 9 shows our experimental results for running the 2d-FFT kernel on
a matrix of 128 × 128 double precision complex numbers. The baseline perfor-
mance for fully sequential execution with classical reference counting is given in
Figure 9a. The three phase nature of our implementation can be nicely observed
in the pipeline utilisation graph. During the first phase, the computation of FFT
on the rows of the input, we achieve an efficiency of just above 20%. This is fol-
lowed by a short phase, the transpose operation, with efficiency dropping below
10% before it goes back to 20% for the second round of FFT on the columns. The
low pipeline utilisation is to be expected as FFT and to an even larger degree
transpose operations are memory bound.

Note here that the fully sequential version without reference counting is ac-
tually slower than the version with reference counting. We attribute this to the
unexploited memory reuse potential when reference counting is disabled. The



200 S. Herhut et al.

same effect can be observed across 2, 4, 8, 16, 32 and 64 cores. An implemen-
tation using our concurrent reference counting scheme consistently outperforms
the version without any form of reference counting. We omit the details here due
to space limitations.

Figure 9c shows the runtime behaviour of a concurrent implementation run-
ning on a single core. The observed reference counting behaviour greatly differs
from our synthetic benchmark. Instead of a high initial reference counting load
that tails off during program runtime, we observe continuous, yet low frequency
reference counting throughout the runtime of the benchmark.

The changed pattern relates well to the different reference counting distribu-
tion in FFT. Whereas our synthetic benchmark first issues all reference counting
operations and then computes the workload, FFT starts with an increment of
the argument due to the initial function call but then immediately processes
some workload before further reference counting operations are emitted. Thus,
reference counting operations and the computation of the actual workload are
better interleaved, resulting in a lower pressure on the reference counting queue.

As expected, the pressure on the queue grows with increasing numbers of
cores until a maximum is reached at 32 cores, shown in Figure 9d. At this stage,
we can observe a constant reference counting load and further scaling becomes
constrained by Amdahl’s law. This finding matches our previous experience with
the synthetic benchmark. As before, the architecture is able to hide the 45 million
cycles of workload in 14 million cycles of reference counting operations.

6 Related Work

Although we are aware of recent work on using non-deferred reference counting
in the context of object-oriented languages [15], we did not come across any work
of non-deferred reference counting in the context of distributed shared memory
systems. However, the underlying principles of our approach, i.e. shipping com-
putation to data and exploiting asynchronous communication for latency hiding,
have been applied to related problems in distributed systems before.

One example in this setting is the multi kernel paradigm adopted by the
Barrelfish operating system [2] for multi- and many-core systems. In Barrelfish,
instead of using a single global kernel and shared state, the operating system
is built around a communicating network of kernels. Each computing resource
is managed by its own kernel and state is replicated using message passing.
Similar to our approach, operating system services are delegated to responsible
cores that hold the corresponding state instead of communicating the state. The
motivation here, like for us, is scalability.

Similar, but on a significantly larger scale, distributed file systems have to con-
tend with typically large objects (files) replicated in storage across several applica-
tions (clients). Usually, metadata and directories are maintained separately from
the data, with tables that keep track of which clients currently hold a copy of each
file. Storage reclamation after path deletion can only occur when the last client
has dropped its replica of the corresponding file. The Hadoop distributed file sys-
tem [18] and the Google File System [6] are particular examples of distributed



Concurrent Non-deferred Reference Counting on the Microgrid 201

file systems that employ a scheme closely related to our approach. In both, ob-
jects are file data blocks and are distributed across a set of data nodes. Separate
from these, name nodes hold the metadata and reference information. When data
nodes duplicate data or create new data they must inform the name node of the ex-
istence of new copies through heartbeat messages. Client applications can enquire
through a name node to know how many copies of a data block exist. On each
name node, heartbeats are handled in order but asynchronously, except when an
application requests a flush-and-sync of pending heartbeats. This is similar to our
asynchronous updates/synchronous read scheme.

7 Conclusion

We have presented a novel approach for concurrent non-deferred reference count-
ing on many-core architectures. Instead of locks and exclusive regions, we employ
exclusive processing units for reference counting. We communicate the reference
counting operation to the core where the associated state is stored rather than
communicating state between cores. In a many-core setting, this greatly reduces
reference counting related overheads. Furthermore, we use asynchronous com-
munication where possible to hide the latencies involved.

As a first evaluation shows, our approach is able to tolerate even worst-case
reference counting scenarios. The scaling behaviour of our synthetic benchmark
is dominated by the combined sequential runtime of the inflicted reference count-
ing operations. According to Amdahl’s law, this is the best possible behaviour
we can expect as reference counting operations must be performed sequentially.
Nonetheless, there is room for improvement. The current implementation of our
approach encodes the asynchronous communication protocol between cores in
software. For a purely hardware based solution, we expect the sequential run-
times of reference counting operations to be reduced by at least a factor of 4. This
would directly reflect in a four-fold increase in the expected maximum speedups.

Yet, ultimately reference counting remains the bottleneck. In particular for
data-parallel operations as investigated here, the bursts of reference counting
operations typical for SPMD style code may dominate runtime behaviour. Our
future research in this context, therefore, concentrates on further reducing the
number of reference counting operations on shared data in data-parallel codes.

We believe our approach is well suited for task-parallelism, as well. The less
structured interleaving of reference counting operations and workloads found
in task-parallel applications should allow for even better exploitation of asyn-
chronism for hiding reference counting overheads. However, an extension of our
approach to support less structured settings remains future work.
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