Engineering Concurrent Software Guided
by Statistical Performance Analysis

Clemens GRELCK ?, Kevin HAMMOND P, Heinz HERTLEIN ©,
Philip HOLZENSPIES P, Chris JESSHOPE #, Raimund KIRNER ¢,
Bernd SCHEUERMANN ¢!, Alex SHAFARENKO ¢, Iraneus TE BOEKHORST ¢
and Volkmar WIESER f

& Institute for Informatics, University of Amsterdam, The Netherlands
b School of Computer Science, University of St Andrews, United Kingdom
¢ BiolD GmbH, Niirnberg, Germany
d School of Computer Science, University of Hertfordshire, United Kingdom
®SAP AG, SAP Research Center Karlsruhe, Germany
£ Software Competence Center Hagenberg (SCCH), Austria

Abstract. This paper introduces the ADVANCE approach to engineering concur-
rent systems using a new component-based approach. A cost-directed tool-chain
maps concurrent programs onto emerging hardware architectures, where costs are
expressed in terms of programmer annotations for the throughput, latency and jit-
ter of components. These are then synthesized using advanced statistical analysis
techniques to give overall cost information about the concurrent system that can
be exploited by the hardware virtualisation layer to drive mapping and scheduling
decisions. Initial performance results are presented, showing that the ADVANCE
technologies provide a promising approach to dealing with near- and future-term
complexities of programming heterogeneous multi-core systems.

Keywords. multicore, software engineering, parallel programming, stream-processing,
statistical performance analysis, virtualization

1. Introduction

Engineering concurrent software to run efficiently on a variety of computing systems
presents major challenges, in particular outside the domain of scalable regular numeri-
cal applications. While today’s small-scale homogeneous multi-core processors already
challenge conventional software engineering tools and techniques, novel approaches are
necessary to make software efficiently and productively utilise massive numbers of het-
erogeneous cores on a chip that will become available in the near future. Figure 1 pro-
vides an overview of the involved challenges with respect to the applications and soft-
ware development tools targeting multicore hardware. The figure further outlines the
work undertaken in the EU-funded ADVANCE project (IST-248828) to address these
problems.

!Corresponding author: Bernd Scheuermann, e-mail: bernd.scheuermann @sap.com

Challenges ADVANCE Approach

« Increasing degree of complexity
«Incresing demand for performance - Separation of concerns supports division of labor: decouple concurrency
L « Increasing masses of data engineering from algorithm engineering
Appllcatlons «Many sequential blocks (not easily parallelizable) + Thorough top-down design
« Often non-deterministic performance "
N 9 ntation - Express performance requirements “on average™ in a probabilistic manner
- Match with statistical performance analysis at execution time
- « Dynamic reconfiguration during execution to match performance requirements
. +Vendor-dependence (low portability) « Support automatic parallelization
Multicore Software- |+ High demand on technical expertise - Provide integrated tool chain and languages for componentization and
Engineering «Poor usability of debugging and profiling tools coordination
* Lack of qualified multicore developers « Increase productivity of multicore developers
A + Foster industrial adoption of multicore software engineering
- Avoid vendor lock-in
« Increasing number of cores
Multicore Hardware « Increasing heterogeneity « Support heterogenous devices including FPGAs and GP GPUs
*Main memory access contention

Figure 1 ADVANCE approach addressing the challenges of multicore computing.

The goal is to create an entire tool chain and multicore development framework
which is built around three pre-existing, originally independent technologies: SAC, S-
NET and SVP. The implicitly data-parallel functional array language SAC [10] com-
bines high productivity software engineering with high runtime performance for rather
regular (sub-)problems. The declarative coordination language S-NET [9] turns SAC-
implemented application kernels into streaming networks of asynchronous components
and, thus, offers a high-level approach to engineering irregularly parallel applications.
Last not least, SVP [1] is a hardware virtualisation technology that efficiently maps con-
current tasks onto massively parallel, heterogeneous chip architectures. SVP serves as
the common execution layer of SAC/S-NET-implemented application programs.

ADVANCE is more than the integration of existing technologies. A major contribu-
tion is a software engineering concept which consistently separates the domains of con-
currency engineering and algorithms engineering. Leveraging the experience of domain
experts shall enhance developers productivity and foster industrial adoption. On every
level, programmers may supply expectations and requirements on extra-functional prop-
erties, such as resource utilisation or power consumption, expressed using statistical an-
notations. These annotations are combined using a static analysis that aims to combine
information about average-case throughput, latency and jitter in a statistically valid way.

2. Statistics-Based Concurrent Software Engineering

Deploying massively parallel applications in an efficient way requires specific tech-
niques, which is the focus of the ADVANCE project. To bring the term massively paral-
lel computing to its real meaning, we have chosen to compose a development flow using
three key technologies in a combined setting. Algorithmic programming is done with a
functional programming language providing implicit data parallelism. This is comple-
mented by concurrency in the large via a coordination language that composes the com-
ponents of algorithmic programming into a streaming application. The smooth operation
on a heterogenous multi-core platform is managed by a virtualisation layer. The approach
we introduce here uses statistical methods to drive such a concurrent stream-processing
system design in a resource-efficient way.

Figure 2 provides an overview of the ADVANCE Systems Architecture. The top
row shows the compilation route. Source code in the form of annotated S-Net/SaC pro-

Compilation Route
S-Net/SaC Object Object Hardware
S-Net/SaC i
Source | Compiler Wiy Mapping +SVP = Platform
S-Net/SaC T -
+CAL S-Net/saC A'ZV”amA'C
. scAL & aptation
Analysis ——s Markov — Runtime

Route /1 R Model ‘i Measurement
Statistical Performance I

Analysis

Aggregated Ageregation

Measurements
+SVP

Measurements
+SVP

Feedback Route

Figure 2 Overview of ADVANCE Systems Architecture

grams is compiled to annotated object code, which is then mapped onto a heterogeneous
hardware platform using the SVP virtualisation layer. Runtime profiling information is
used to support dynamic adaptation/re-mapping. It is also used to aggregate performance
information for specific virtual hardware (described in SVP). This forms the feedback
route shown on the bottom of the diagram. Finally, these aggregated measurements are
combined with user-supplied annotations in S-Net (in the form of CAL, described be-
low). Statistical analysis then generates additional CAL annotations for the S-Net/SaC
compilers and a Markov model assisting the dynamic adaptation.

2.1. SAC — Single Assignment C

SAC [10] is a strict, purely functional programming language that combines a C-style
syntax with high-level support for processing multi-dimensional stateless arrays. Despite
using highly abstract notations for array-based computations, the SAC design is geared
towards generating highly efficient executable code, thus combining high productivity
in software engineering with high performance in program execution. Furthermore, the
data parallel nature of SAC facilitates fully compiler-directed parallelisation for multi-
core/multi-processor systems [6] as well as for NVidia graphics accelerators [12]. Fig. 3
illustrates the high level of abstraction of SAC array programming through a generic
convergence check. Essential SAC features such as call-by-value parameter passing for
arrays, fully automatic memory management, architecture-agnostic programming and
fully automatic parallelisation for different architectures set SAC apart from most other
array-oriented languages (e.g. Fortran-90, ZPL [3], CAF [17], UPC [21] or Chapel [4]).

bool converge (double[*] old, double[x] new, double eps) {
return(all(abs(old-new) < eps));

}

Figure 3 SAC convergence check: The function converge accepts argument arrays of any shape including any
number of dimensions (type double[*]); its definition makes heavy use of pre-defined array operations from
the SAC standard library, namely element-wise extensions of standard scalar operators and functions as well
as conjunctivec Boolean reduction (all).

2.2. S-NET

S-NET [9] is a declarative coordination language that turns both legacy sequential func-
tions and implicitly parallel code into streaming networks of asynchronous stateless com-

ponents. Each component, or box in S-NET terminology, is connected to the rest of the
network by two typed streams: a single input stream and a single output stream. Messages
are organised as collections of label-value pairs (records). The operational behaviour of
a box is characterised by a stream transformer function that maps a single record from
the input stream to a possibly empty sequence of records on the output stream. Boxes
execute fully asynchronously: as soon as a record is available on the input stream, the
box starts computing and, potentially, producing records on the output stream.

Streaming networks are inductively constructed from boxes using a small combi-
nator language. S-NET identifies four construction principles: serial and parallel (static)
composition as well as serial and parallel (dynamic) replication. Fig. 4 shows an example
S-NET streaming network. As a pure coordination language, S-NET leaves box imple-
mentations to a separate box language, SAC in the context of ADVANCE. Implementa-
tions of S-NET are described in [8,7] while example applications can be found in [11,18].
We chose S-NET for our research in the context of ADVANCE because of its high-level
declarative nature and the fact that unlike many other coordination approaches, S-NET
achieves a near-complete separation of concerns between component engineering and
concurrency engineering.

net example {

box A (...); box B (...);
box C (...); box D (...); . D

} &
.. Cl<i>x<done> .. D; B

connect A|B

Figure 4 Example of an S-NET streaming network of asynchronous components: The network combinators
“dot-dot”, “bar”, “star” and “blink” denote serial composition, parallel composition, serial replication and
parallel replication, respectively. Boxes A, B, C and D, are declared locally within network example. For
brevity, we omit their type declarations here.

2.3. SVP

SVP is the hardware virtualisation layer used in the ADVANCE project. The motivation
for virtualisation in this work is the separation of concerns between the expression of
concurrency in the coding of an application and the mapping and scheduling of that
concurrency in the execution it. Without this separation of concerns, concurrency issues
force the application to coded at a granularity that matches the target chosen, making it
not portable to other different targets without recoding it. Our approach is to adapt the
mapping of components described in S-NET based on the feedback route identified in
Figure 1, so this generality in the capture of concurrency is necessary. The key abstraction
in SVP is the concept of place, an opaque handle on a resource, which is dynamically
acquired and bound to a concurrent section of the code. A place represents a contract with
the code to provide a set of execution resources or some execution capability to achieve
a specific goal. It may be a thread, a core, a cluster of cores, a function implemented
in logic or even a proxy for a given computational requirement. Maximal concurrency
is captured in the SVP notation [1] and is transformed by a combination of compilation
and run-time system into a granularity that amortises the overheads associated with its
implementation on a given target. That run-time system has even been implemented in
part in the binary code for the microgrid [14].

2.4. Statistical Performance Annotations

Where real-time computing requires the worst-case latency to be bounded (e.g. [15]),
in our setting we are instead interested in reasoning about the short-term average-case
behaviour of the system. We must thus design an annotation language that is also capable
of expressing the statistical behaviour of system components, and devise approaches that
can aggregate this information. CAL (Constraint Aggregation Language) [20] allows
us to write a set of behaviour assertions for each system component, each of which is
guarded by some context condition. We use annotations at the component level to reason
about the behaviour of the system at the coordination level. For example, The context
condition describes the component input, i.e., the properties of input streams and system
configurations for which the assertions are valid. For example, we can declare a system
component BOX1 which produces for each input message of type (a,b) an output
message whose type is (c, d):

CAL example (see left): The time
Eiiv?gi (fa,b) => (c,d)): complexity of the latency (denoted
$a :=: {Type(rank(l), shape($n))} $$TO) of the component BOX1 in
use case the input object a is a vec-
Sn <= 50 => $3T0 :=: Sn"2; tor (rank (1)) depending on the
$n > 50 => $$TO0 :=: $n"2 / $$nthreads;
ong ™ length of the vector ($n).

In case the length of the vector a is at most 50, then the time complexity of the latency is
the square of the lengths ($$TO0 :=: $n”2). However, if the length of the vector a is
more than 50, then the time complexity of the latency is the square of the length divided
by the number of available threads ($$Snthreads). The ratio behind this CAL annota-
tion can be, for example, that the component processes short vectors serially but switches
to a parallel processing for larger arrays, with the intention to avoid the parallelisation
overhead for smaller computational tasks. The comment on the annotation overhead, de-
pending on the required level of detail for performance evaluations, the amount of needed
CAL annotations might be quite significant. However, at the current stage of research it
is not clear how much annotations of useful precision can be produced automatically by
the component compiler.

2.5. Statistical Analysis

The purpose of the statistical analysis is to determine overall execution costs for systems
of components. Knowing the cost of individual components and how they contribute to
the overall cost allows us to identify bottlenecks in the system and—ideally—eliminate
them by dynamically adapting placement. We are interested in three key cost metrics: i)
latency, i.e. how long a component takes before it responds to some input; ii) jitter, the
variation in latencies; and iii) throughput, how much can be processed by the system in
some given time period.

The ADVANCE approach combines measurement with statistically-based analysis
as follows. We can easily construct probability distribution functions for the latency of
a component by repeated measurement of this component, either in isolation, or as part
of a larger system. Where possible, we also measure correlations between latencies of
communicating components. This enables the identification of those (combinations of)
components that contribute most strongly to final output latency and that are thus critical

for an optimal placement strategy. Ideally, all the measurement and the statistical pro-
cessing should be done at run-time so that we can arrive at a good adaptive placement.
However, this is unlikely to be practical, since sampling will perturb execution times,
and large numbers of measurements may be needed. Instead, we combine off-line mea-
surement of individual components with composition rules to form a statistical model
of the cost-behaviour of the system. At run-time, we correlate this model with the ac-
tual performance to identify placement optimisations. This approach is aimed at making
resource allocation the largest contributor of run-time cost-variations.

The composed model is based on inference rules for (annotated) component types.
Let T = {{{(a,b),d)} denote the type for a component which maps elements of type a
onto elements of type b at cost distribution J. Variant types can be expressed by adding
triplets to a set of types. Every triplet describes a path through the system, where en-
try and exit points are denoted by element types and the cost for the path is speci-
fied. Using this notation, we can define the transitive type combination Ty ® Tp as
T4 ®Tp = flatten{((a,d), 04 ®dp) | ((a,b),54) € TaA{{c,d),dp) A\b = c}. This can
be intuitively understood as the combinations of all paths through the networks A and
B respectively. The cost combinators flatten and & must take into account correlations
between cost distributions they combine. They represent independent and consecutive
path combinations, respectively, and are defined below. With these definitions, we can
now describe the inference rules for annotated network types:

(Serial Composition) (Parallel Composition) (Repitition Composition)
TF ATy T+ B:Tp TH ATy '+ B:Tp TkF ATy v C ran(dom(Ty)) free(n)
I'A.. BTy ®Tp '~ A || B:flatten(T4 UTg) Tink A\ v Q71 Ta

Since the number of iterations in a repetitive network is not known a priori, a free
variable n is introduced to be able to propagate the constraint of the number of iterations
outward. There can be predictions for n specified in CAL. If not, at run-time, values of
n must be observed to find predictors for future values of n.

Definitions must still be given for the cost combinators used above. The distributions
they combine can be correlated both programmatically and because of resource sharing
or contention. The latter are two typical examples of reasons why components may show
a correlated deviation from the cost predicted by the model. Such hidden correlations
need to be taken into account. A solution that has recently drawn considerable attention
is the use of copulas [16]. Copulas are functions that allow joint distributions and their
dependencies to be modelled based only on the marginal probability densities of the indi-
vidual components. Given known latencies for two components, we can use a previously-
determined copula to predict the overall latency for the combination of the components.
We can use a similar approach to deal with throughput. Since jitter is simply the variation
in latencies, we can determine this directly from the measurements. The idea of copulas
has previously been deployed for worst-case execution time analysis [2]. The novelty in
the ADVANCE project is deploying it for average-case time, and using it to predict such
costs by combining cost information obtained from the underlying components.

The & operator for any two variables is defined as a copula representing the combi-
nation of the corresponding property. For latency, the cost of two consecutive networks
are added, but for throughput, a meaningful composition of cost metrics is the minimum
throughput of the two networks. The copula used for the combination must incorporate
the correlations between the combined components. Since flatten is to combine proba-

bility distributions for independent paths through the network, it employs the indepen-
dence copula, or II-copula, viz. flatten(T") = {(¢,II (ran(T | {t}))) |t € dom(T)},

where [denotes domain restriction.

3. Industrial Applications and Experiments

ADVANCE uses four real-world industrial applications to evaluate and demonstrate the
proposed concurrent software engineering approach.

Biometric Optimization Framework (BiolD):
A set of tools and applications to optimize
recognition performance and to adapt normal-
ization parameters of a set of pattern recogni-
tion algorithms that constitute a multi-modal,
biometric authentication system. Large data
sets of voice recordings, face and iris images
required. ADVANCE allows for calling ex-
isting legacy classification modules thereby
avoiding time-consuming and costly porting
of existing code. Dynamic re-scheduling of
multiple concurrent recognition algorithms
yields optimal mapping at execution time, im-
proving overall throughput.

Interventional X-Ray Processing (Philips): X-
ray devices producing a constant stream of
images during surgeries. Strict requirements
towards accurate hand-eye-coordination, high
speed performance, reproducibility, and reli-
ability. Image processing pipelines of boxes
(algorithms) with stronlgy data-dependent la-
tency. "Predictor’ boxes process image arrays
to work out scalar metrics assessing the la-
tency of ’processing’ boxes. ADVANCE uses
the output of the predictors and statistical ex-
pectations to dynamically schedule low and
high-priority tasks to satisfy end-to-end con-
straints wrt. lateny, throughput and jitter.

Transportation Management (SAP): The NP-
hard Vehicle Routing Problem (VRP) seeks to
service a number of customers with a certain
amount of vehicles. To accelerate optimiza-
tion by parallel multicore implementation. To
use a high-speed version of Ant Colony Opti-
mization [5] following the stream-processing
paradigm of ADVANCE. Runtime reconfigu-
ration capabilities of ADVANCE support the
implementation of self-adaptive optimization
algorithms reacting to dynamic changes in the
environment. Concurrent Software Engineer-
ing approach is studied in the enterprise soft-
ware domain fostering industrial multi-core
adoption while maintaining developers’ pro-
ductivity.

Quality Inspection of Textured Surfaces
(SCCH): To identify defects in textures of
woven fabrics at scanning speeds up to
300m/min. ADVANCE may reduce the time
of developing the whole processing pipeline
while saving resources and increasing produc-
tivity. The ability to express statistical perfor-
mance expectations on the average leverages
the application where data acquisition and ma-
jor parts of preprocessing and feature extrac-
tion can be computed in a well-predictable
way due to the pre-fixed size of filter oper-
ations and amount of data transfer known in
advance. Additionally, consecutive images ob-
tained during inspection can be processed in
parallel, if there exists no dependency.

Next to the the domains mentioned before, ADVANCE leverages such applications
which are heterogeneous and complex in nature like e.g. decision supporting and situ-
ation aware systems which integrate, correlate, fuse and analysing masses of disparate
data resources and streams. Such applications may stem from various industries includ-
ing e.g. automative, finance, defence and telecommunications and retail. In the follow-
ing, initial experimental results are reported with the afore-mentioned applications Bio-
metric Optimization Framework and Quality Inspection of Textured Surfaces using the
current ADVANCE tool implementations that give a first impression of the scalability of
SAC.

3.1. Initial Experiments with the Biometric Optimization Framework

A SAC application to execute an identification test protocol and determine the accuracy
of text dependent speaker recognition has been implemented. Mel frequency cepstral co-
efficients (MFCCs) are used as feature extraction technique, and dynamic time warping
(DTW) as the classification method [13]. The calls for computing the classification deci-
sion are placed inside a SAC-"with"-loop, rather than a loop with one or more explicitly
counting variables. This kind of algorithmic specification enables the SAC compiler to
execute the loop by doing concurrent calls on the DTW classifier, which is possible be-
cause the relevant identification function is implemented in a thread-safe way. The result-
ing parallelization is completely automatic and transparent for the programmer, as tasks
such as synchronization of spawned threads and dealing with thread pool functionality
to control the number of active threads are performed by the SAC-compiler and corre-
sponding libraries. Figure 5 shows the relationship between run times of a single iden-
tification rate computation and number of concurrent threads. In the Intel measurement,
a minimum of the run time is observed when the thread count is equal to the number of
physical cores, 6. With 12 threads, only a small additional improvement can be achieved.

N Intel system [Numberofthreads [3 | 6 | 12 | 48 |
§ 30 Intel system 291 | 5.66 | 597 -

§ 20 AMD system 291 | 5.55 | 10.20 | 25.24
n

210 The table shows the speed-up when increasing the
‘g’ number of threads. The Intel system contains an i1980x
& 0 1 3 6 9 12 CPU with 6 cores, each supporting "hyper-threading”,

Thread count the AMD system has a total of 48 cores.

Figure 5 Runtimes (left) and speed-up values (right) for identification protocol computation with two multi
core systems

As next step for extending the biometric optimization framework, it is straightfor-
ward to adapt the classification module itself, such that it makes use of SaC’s automatic
parallelization as well. Then, it might get impossible to statically make the decisions
where to generate concurrency, and what amount of concurrency to generate on different
levels, in order to achieve most efficient execution. Instead, the hardware virtualization
layer SVP, as described in section 2.3, needs to make these decisions, and it is expected
that a feedback route of run time measurements will increase run time efficiency as this
makes dynamic adaptations possible (Figure 2). Furthermore, it is desirable to inform
the ADVANCE system that the optimization criterion for the biometric application is
throughput, which can be achieved through statistical performance annotations as ex-
plained in section 2.4. Both run time measurements of the SVP layer and annotations are
the input for the statistical analysis, as outlined in section 2.5. By combining these tech-
niques, additional, significant performance improvements of the biometric optimization
framework are expected.

3.2. Initial Experiments with Quality Inspection of Textured Surfaces
To demonstrate the auto-parallelization potential of SAC the Perona-Malik anisotropic

diffusion filter [19] was benchmarked. The execution time of the filter only depends on
the dimension of the input image and not on the content. For our test scenario, we use a

SONY VAIO™PCG-81112M with Intel ® Core™i7-740QM, 8GB RAM and a NVIDIA
GeForce GT 425M graphic card for benchmarking on GPU. In Table 2, we present the
result of applying the anisotropic filter ten times to two images with different input sizes,
where we implemented the filter with OpenCV2.2, CUDA and SAC. Implementing an
application in SAC allows for executing the application on various hardware environ-
ments like FPGA, GPU or CPU. With a similar effort of development, e.g., using C++
and the multithreaded SAC-MT compilation mechanism, currently we are as fast as the
OpenCV implementation.

Table 2 Left: Comparison of OpenCV2.2 and SAC implementation of anisotropic filter using SONY
VAIO™PCG-81112M. Right: Comparison of manually coded CUDA code and automatic generated
SAC-CUDA code using NVIDIA GeForce GT 425M

px256 X 256 | prd096 x 4096 px256 X 256 | pxd096 x 4096
OpenCV 0.03 sec 10.8 sec SAC-CUDA 0.01 sec 1.8 sec
SAC-SEQ 0.15 sec 39.3 sec CUDA- 0.04 sec 0.6 sec
SAC-MT 0.03 sec 9.7 sec manually
OpenCV vs. SAC-MT 1x 1.1x Speedup 0.25x 0.33x

The monitoring of the CPU load shows, that the SAC-MT compilation has an op-
timal processor load on all cores with less memory usage of about 480 MB, where the
OpenCV equivalent uses only a single core with a much larger memory usage of about
2.2 GB. In addition, we restricted the execution of the SAC implementation to a single
core, with the conclusion that the performance of the SAC-SEQ compilation has poor
performance compared to the OpenCV equivalent. Generally, the compiler optimization
strategies are designed for multi/many-core systems. Hence, the single core compilation
has a overhead, which can be ignored in most cases because a basic requirement for
high-performance applications is a multi/many-core environment.

As mentioned in Section 2.1, SAC also provides support for NVidia graphics ac-
celerators, hence we manually implemented and optimized the anisotropic diffusion
with CUDA to compare the performance on a graphical processor unit (GPU) with
SAC-CUDA automatic generated code. For the moment being, it is not possible to out-
perform a manual coded implementation by means of SAC-CUDA as we can see in Ta-
ble 2. The manually coded CUDA application is for the input size of, e.g., 4096 x 4096
pixels three times faster than the automatic generated GPU compliant SAC-CUDA appli-
cation. Nevertheless, a re-implementation of the anisotropic filter with high-performance
requirements needs definitely higher development costs and programming know-how
from experts, where SAC-CUDA allows a flexible time and cost efficient development.
However, note that SAC-CUDA is still under development, where we expect further im-
provements and speedups by means of SAC-CUDA in near future.

4. Conclusion

This paper has introduced the ADVANCE approach to concurrency engineering which
uses statistical performance annotations and cost-based information to drive the con-
struction of high-performance heterogeneous multicore software through coordination
and hardware virtualisation layers. The core technologies include the CAL aggregation
framework, the coordination language S-NET, the box language SAC and the hardware
virtualisation layer, SVP. A range of industrial applications are used to evaluate this
technology, and we outlined how different application domains may profit from the AD-

VANCE tools and its engineering concept. Our initial scalability results with SAC are
promising and give directions for further improvements to reduce compuation and com-
munication overhead. Forthcoming releases and research efforts shall demonstrate that
ADVANCE is capable of dealing with near- and future-term complexities of program-
ming heterogeneous multi-core systems and will help reduce development costs to foster
multicore adoption in industry while maintaining developer productivity.

References

(1]
[2]

(3]

[4]

[3]

(6]
(7]
(8]
(91
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

T. Bernard, C. Grelck, and C. R. Jesshope. On the compilation of a language for general concurrent
target architectures. Parallel Processing Letters, 20(1):51-69, 2010.

G. Bernat, A. Burns, and M. Newby. Probabilistic timing analysis: An approach using copulas. J.
Embedded Computing, 1(2):179-194, 2005.

B. Chamberlain, S.-E. Choi, E. Lewis, C. Lin, L. Snyder, and W. Weathersby. ZPL: A Machine Inde-
pendent Programming Language for Parallel Computers. /EEE Transactions on Software Engineering,
26(3):197-211, 2000.

B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the chapel language.
International Journal of High Performance Computing Applications, 21(3):291-312, 2007.

W. Cheng, B. Scheuermann, and M. Middendorf. Quick-aco: Accelerating ant decisions and pheromone
updates in aco. In Proc. of the 11th European Conference on Evolutionary Computation in Combinato-
rial Optimisation (EvoCOP), pages 238-249, 2011.

C. Grelck. Shared memory multiprocessor support for functional array processing in SAC. Journal of
Functional Programming, 15(3):353-401, 2005.

C. Grelck, J. Julku, and F. Penczek. Distributed S-Net: High-Level Message Passing without the Hassle.
In ACM SIGPLAN Workshop on Advances in Message Passing (AMP’10). ACM, 2010.

C. Grelck and F. Penczek. Implementation Architecture and Multithreaded Runtime System of S-Net.
In Implementation and Application of Functional Languages, volume 5836 of LNCS. Springer, 2011.
C. Grelck, S. Scholz, and A. Shafarenko. Asynchronous Stream Processing with S-Net. International
Journal of Parallel Programming, 38(1):38-67, 2010.

C. Grelck and S.-B. Scholz. SAC: A functional array language for efficient multithreaded execution.
International Journal of Parallel Programming, 34(4):383—427, 2006.

C. Grelck, S.-B. Scholz, and A. Shafarenko. Coordinating Data Parallel SAC Programs with S-Net. In
21st IEEE International Parallel and Distributed Processing Symposium (IPDPS’07). IEEE, 2007.

J. Guo, J. Thiyagalingam, and S.-B. Scholz. Towards Compiling SaC to CUDA. In 10th Symposium on
Trends in Functional Programming (TFP’09), pages 33-49. Intellect, 2009.

H. Hertlein, R. Frischholz, and E. Noth. Pass Phrase Based Speaker Recognition for Authentication. In
Biometrics and Electronic Signatures, volume 31 of LNI, pages 71-80, Darmstadt, Germany, 2003.

C. Jesshope, M. Hicks, M. Lankamp, R. Poss, and L. Zhang. Making multi-cores mainstream - from
security to scalability. In Parallel computing: From multicores and GPU'’s to petascale, pages 16-31.
10S Press, 2010.

R. Kirner, J. Knoop, A. Prantl, M. Schordan, and A. Kadlec. Beyond loop bounds: Comparing annotation
languages for worst-case execution time analysis. Software and Systems Modeling, 2010.

R. B. Nelsen. An Introduction to Copulas, 2nd Edition. Springer Series in Statistics. Springer, 2006.
ISBN: 978-0-387-28659-4.

R. Numrich and J. Reid. Co-arrays in the next fortran standard. ACM SIGPLAN Fortran Forum, 24(2):4—
17, 2005.

F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz, A. Shafarenko, R. Barriére, and E. Lenormand. Parallel
signal processing with S-Net. Procedia Computer Science, 1(1):2079-2088, 2010. ICCS 2010.

P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. /EEE Transactions
on Pattern Analysis and Machine Intelligence, 12:629-639, 1990.

A. Shafarenko and R. Kirner. CAL: A Language for Aggregating Functional and Extrafunctional Con-
straints in Streaming Networks. ArXiv e-prints, Jan. 2011.

UPC Consortium. UPC language specifications, v1.2. Technical Report LBNL-59208, Lawrence Berke-
ley National Lab, 2005.

