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Abstract
Mathematical models, derived for example from discreti-
sation of partial differential equations, often contain opera-
tions over large arrays. In this work we investigate the pos-
sibility of compiling array operations from models in the
equation-based language Modelica into Single Assignment
C (SAC). The SAC2C SAC compiler can generate highly
efficient code that, for instance, can be executed on CUDA-
enabled GPUs. We plan to enhance the open-source Mod-
elica compiler OpenModelica, with capabilities to detect
and compile data parallel Modelica for-equations/array-
equations into SAC WITH-loops. As a first step we demon-
strate the feasibility of this approach by manually inserting
calls to SAC array operations in the code generated from
OpenModelica and show how capabilities and runtimes can
be extended. As a second step we demostrate the feasibility
of rewriting parts of the OpenModelica simulation runtime
system in SAC. Finally, we discuss SAC2C’s switchable
target architectures and demonstrate one by harnessing a
CUDA-enabled GPU to improve runtimes. To the best of
our knowledge, compilation of Modelica array operations
for execution on CUDA-enabled GPUs is a new research
area.

Keywords Single Assignment C, Modelica, data parallel
programming, OpenModelica, CUDA, GPU, SAC

1. Introduction
Mathematical models, derived for example from discreti-
sation of partial differential equations, can contain compu-
tationally heavy operations over large arrays. When simu-
lating such models, using some simulation tool, it might be
beneficial to be able to compute data parallel array opera-
tions on SIMD-enabled multicore architectures.
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One opportunity for data parallel execution is making
use of graphics processing units (GPUs) which have in re-
cent years become increasingly programmable. The theo-
retical processing power of GPUs has far surpassed that of
CPUs due to the highly parallel structure of GPUs. GPUs
are, however, only good at solving certain problems of
data parallel nature. Compute Unified Device Architecture
(CUDA) [12] is a software platform for Nvidia GPUs that
simplifies the programming of their GPUs.

This paper is about unifying three technologies which
will be briefly introduced. These are OpenModelica, SAC2C
and CUDA. OpenModelica [14] is a compiler for the
object-oriented, equation-based mathematical modeling
language Modelica [11, 3]. SAC2C [20] is a compiler for
the Single Assignment C [19] functional array program-
ming language for efficient multi-threaded execution. We
are interested in using SAC2C’s CUDA backend [7] that
will enable Modelica models to benefit from NVidia graph-
ics cards for faster simulation. Even without this backend
SAC2C can generate highly efficient code for array com-
putations, see for instance [17]. We want to investigate
the potential of producing SAC code with OpenModelica
where opportunities for data parallelism exist.

Work has been planned to enhance the OpenModelica
compiler with capabilities to detect and compile arrays of
equations defined in Modelica using for-loops into SAC
code. From now on these for-loops will be referred to as
for-equations. The overall goal of this investigation is to
get a clear overview of the feasibility of this technique be-
fore any further work. In this paper we investigate how the
OpenModelica runtime system and generated code can be
amended to call SAC compiled libraries. This is achieved
by manually inserting calls to SAC in the code generated
from OpenModelica for array based operations. We also
examine the feasibility of rewriting parts of the OpenMod-
elica simulation runtime system in SAC. We perform mea-
surements of this new integrated runtime system with and
without CUDA and perform stand-alone measurements of
CUDA code generated with SAC2C.

Prior work exists on the generation of parallel exe-
cutable code from equation-based (Modelica) models [1,
10]. In these publications a task graph of the entire equation



system was first generated and then distributed and sched-
uled for execution. Ways to inline the solver and pipeline
computations were also investigated in [10]. However, no
handling of data parallel array operations for the purpose of
parallel execution in the context of Modelica was done in
any of these publications. For work on parallel differential
equation solver implementations in a broader context than
Modelica see [15, 9, 16].

The remaining sections of the paper are organized as
follows. Section 2 introduces the model we wish to simu-
late thus giving a clear overview of the case study we will
use throughout the rest of the paper. In Section 3 we dis-
cuss the OpenModelica compiler and the compilation and
simulation of Modelica code and also briefly discuss the
proposed changes of the OpenModelica compiler needed
for the Modelica to SAC compilation. Section 4 contains
a description of SAC, gives SAC code that OpenModel-
ica could eventually produce and gives results and anal-
ysis from the first experiments of integrating SAC code
with OpenModelica. In Section 5 we give an overview of
CUDA, how the SAC2C compiler generates CUDA code,
results from experiments and an analysis of how this fits in
to the overall goals of this paper. Finally, in Section 6, we
draw some conclusions and discuss future work.

2. Case Study
In this section we introduce the Modelica model we wish to
simulate. The model has a parameter that can be altered to
increase or decrease the default number of state variables.
The model introduced here is compiled by the OpenModel-
ica compiler into C++ code and linked with a runtime sys-
tem. The runtime system will simulate the model in several
time steps and each time step involves some heavy array
computations. Simulation involves, among other things,
computing the values of the time-dependent state variables
for each time step from a specified start to stop time. Time-
independent algorithm sections and functions are also al-
lowed in Modelica.

2.1 One-dimensional Wave Equation PDE Model
The wave equation is an important second-order linear par-
tial differential equation for waves, such as sound waves,
light waves and water waves. Here we study a model of a
duct whose pressure dynamics is given by the wave equa-
tion. This model is taken from [3] (page 584). The present
version of Modelica cannot handle partial differential equa-
tions directly since there is only the notion of differentia-
tion with respect to time built into the language. Here we
instead use a simple discretisation scheme represented us-
ing the array capabilities in Modelica. Research has been
carried out on introducing partial differential equations into
Modelica, see for instance [18].

The one-dimensional wave equation is given by a partial
differential equation of the following form:

∂2p

∂t2
= c2 ∂2p

∂x2
. (1)

where p = p(x, t) is a function of both space and time
and c is a velocity constant. We consider a duct of length

10 and let −5 ≤ x ≤ 5 describe its spatial dimension.
We discretize the problem in the spatial dimension and ap-
proximate the spatial derivatives using difference approxi-
mations with the approximation:

∂2p

∂t2
= c2 pi−1 + pi+1 − 2pi

∆x2
(2)

where pi = p(xi + (i − 1) · ∆x, t) on an equidistant
grid and ∆x is a small change in distance. We assume
an initial pressure of 1. We get the following Modelica
model where the pressure to be computed is represented as
a one-dimensional array p of size n, where the array index
is the discretized space coordinate along the x-coordinate,
and the time dependence is implicit as is common for a
continuous-time Modelica variable.

1 model WaveEquationSample
2 import Modelica.SIunits;
3 parameter SIunits.Length L = 10 "Length of duct";
4 parameter Integer n = 30 "Number of sections";
5 parameter SIunits.Length dl = L/n "Section length";
6 parameter SIunits.Velocity c = 1;
7 SIunits.Pressure[n] p(each start = 1.0);
8 Real[n] dp(start = fill(0,n));
9 equation

10 p[1] = exp(-(-L/2)^2);
11 p[n] = exp(-(L/2)^2);
12 dp = der(p);
13 for i in 2:n-1 loop
14 der(dp[i]) = ĉ 2 * (p[i+1] - 2 * p[i] + p[i-1]) / dL̂ 2;
15 end for;
16 end WaveEquationSample;

On line 1 we declare that our entity should be a model
named ‘WaveEquationSample’. This model basically con-
sists of two sections: a section containing declarations of
parameters and variables (lines 3 to 8) followed by an equa-
tion section (lines 9 to 15). A parameter is constant for each
simulation run but can be changed between different simu-
lation runs. On line 2 we import the package SIunits from
the Modelica standard library.

The two arrays p and dp declared on lines 7 and 8 are
arrays of state variables. We can tell that they are arrays of
state variables since they occur in derivative expressions in
the equation section, thus their values will evolve over time
during the simulation run.

The first two equations on lines 10 and 11 state that the
first and last pressure value should have a constant value,
given by exponent expressions. The third equation on line
12 states that an element in the dp array is equal to the
derivative of the corresponding element in the p array. With
the present OpenModelica version this equation will result
in n scalar equations; we view this kind of equation as an
implicit for-equation. The fourth equation on lines 13 to 15
is a for-equation that will result in n− 2 scalar equations.

3. OpenModelica
OpenModelica is an open source implementation of a Mod-
elica compiler, simulator and development environment
for research as well as for educational and industrial pur-
poses. OpenModelica is developed and supported by an in-
ternational effort, the Open Source Modelica Consortium
(OSMC) [14]. OpenModelica consists of a Modelica com-
piler, OMC, as well as other tools that form an environment
for creating and simulating Modelica models.



3.1 The OpenModelca Compilation Process
Due to the special nature of Modelica, the compilation pro-
cess of Modelica code differs quite a bit from program-
ming languages such as C, C++ and Java. Here we give
a brief overview of the compilation and simulation process
for generating sequential code. For a more detailed descrip-
tion the interested reader is referred to [2] or [3].

The OpenModelica front-end will first instantiate the
model, which includes among other things the removal
of all object-oriented structure, and type checking of all
equations, statements, and expressions. The output from
the OpenModelica front-end is an internal data structure
with separate lists for variables, equations, functions and
algorithm sections.

For-equations are currently expanded into separate equa-
tions. This means that currently each is analysed indepen-
dently. This is inefficient for large arrays. Thus, for our
purpose it would be better if the structure of for-equations
is kept throughout the compilation process instead of being
expanded into scalar equations.

From the internal data structure executable simulation
code is generated. The mapping of time-invariant parts
(algorithms and functions) into executable code is per-
formed in a relatively straightforward manner: Modelica
assignments and functions are mapped into assignments
and functions respectively in the target language of C++.
The WaveEquationSample model does not contain any al-
gorithm sections or functions and hence the result of in-
stantiating the WaveEquationSample model in section 2 is
one list of parameters, one list of state variables and one list
of equations.

The handling of equations is more complex and in-
volves, among other things, symbolic index reduction,
topological sorting according to the causal dependencies
between the equations and conversion into assignment
form. In many cases, including ours, the result of the equa-
tion processing is an explicit ordinary differential equation
(ODE) system in assignment form. Such a system can be
described mathematically as follows.

ẋ = f(x(t), y(t), p, t) x(t = t0) = x0 . (3)

Here x(t) is a vector of state variables, ẋ is a vector of
the derivatives of the state variables, y(t) is a vector of in-
put variables, p is a vector of time-invariant parameters and
constants, x0 is a vector of initial values, f denotes a sys-
tem of statements, and t is the time variable. Simulation
corresponds to solving this system with respect to time us-
ing a numerical integration method, such as Euler, DASSL
or Runge-Kutta.

The output from the OpenModelica back-end consists of
a source file containing the bulk of the model-specific code,
for instance a function for calculating the right-hand side f
in the equation system 3; a source file that contains code
for compiled Modelica functions; and a file with initial
values of the state variables and of constants/parameters
along with other settings that can be changed at runtime.

The ODE equation system in sorted assignment form
ends up in a C++ function named functionODE. This

function will be called by the solver one or more times in
each time step (depending on the solver). With the current
OpenModelica version, functionODE will simply con-
tain a long list of statements originating from the expanded
for-equations but work is in progress to be able to keep for-
equations throughout the compilation process.

3.1.1 Compilation of WaveEquationSample Model
In this section we illustrate the present OpenModelica com-
pilation process, with the help of the WaveEquationSample
model from section 2. In the next section we will discuss
how OpenModelica has to be altered if we wish to compile
Modelica for-equations into SAC WITH-loops. By instan-
tiating WaveEquationSample we get the following system
of equations. All high-order constructs have been expanded
into scalar equations and array indices start at 0.

p[0] = exp(-(-L / 2.0) ^ 2.0);
p[n-1] = exp(-(L / 2.0) ^ 2.0);
der(p[0]) = p[0];
.
.
.

der(p[n-1]) = p[n-1];
der(dp[0]) = 0;
der(dp[1]) = ĉ 2.0 * ((p[2]+(-2.0*p[1]+p[0])) * dL̂ -2.0);
.
.
.

der(dp[n-2]) = ĉ 2.0 * ((p[n-1]+(-2.0*p[n-2]+p[n-3])) * dL̂ -2.0);
der(dp[n-1]) = 0;

The above equations corresponds to line 10 to 15 in the
original WaveEquationSample model. The rotated ellipsis
denotes lines of code that are not shown. The assignments
to zero are later removed from the system since they are
constant (time independent). From the instantiated code
above we can define the following four expressions (where
0 ≤ Y ≤ n− 1 and 2 ≤ X ≤ n− 3):

EXPRESSION 3.1.
p[Y]

EXPRESSION 3.2.
c^2.0*((p[2] + (-2.0*p[1] + p[0]))*dL^-2.0)

EXPRESSION 3.3.
c^2.0*((p[X+1] + (-2.0*p[X] + p[X-1]))*dL^-2.0)

EXPRESSION 3.4.
c^2.0*((p[n-1]+ (-2.0*p[n-2] + p[n-3]))*dL^-2.0)

These expressions correspond roughly to the different types
of expressions that occur in the right-hand side of the equa-
tion system. The generated code will have the following
structure in pseudo code where . . . denotes ranges.

void functionODE(...) {
// Initial code
tmp0 = exp((-pow((L / 2.0), 2.0)));
tmp1 = exp((-pow(((-L) / 2.0), 2.0)));

stateDers[0 ... (NX/2)-1] = Expression 3.1;

stateDers[NX/2] = Expression 3.2;

stateDers[(NX/2 + 1) ... (NX - 2)] = Expression 3.3;

stateDers[NX-1] = Expression 3.4;
}



The state variable arrays p and dp in the original model
have been merged into one array named stateV ars. There
is also a corresponding stateDers array for the derivatives
of the state variable arrays. The constant NX defines the
total number of state variables. The actual generated code
(in simplified form) for functionODE will look like this:
void functionODE(...) {
//--- Initial code ---//
//---
tmp0 = exp((-pow((L / 2.0), 2.0)));
tmp1 = exp((-pow(((-L) / 2.0), 2.0)));

stateDers[0]=stateVars[0 + (NX/2)];
.
.
.

stateDers[(NX/2)-1]=stateVars[((NX/2)-1) + (NX/2)];

stateDers[NX/2] = (c*c) * (stateVars[((NX/2)+1)-(NX/2)]+
((-2.0 * stateVars[(NX/2)-(NX/2)])+

tmp1))/(dL*dL);

stateDers[NX/2 + 1]=(c*c)*(stateVars[((NX/2)+2)-(NX/2)]+
((-2.0 * stateVars[((NX/2)+1)-(NX/2)])+

stateVars[(NX/2)-(NX/2)]))/(dL*dL);
.
.
.

stateDers[NX - 2]= (c*c)*(stateVars[(NX - 1)-(NX/2)]+
((-2.0 * stateVars[(NX - 2)-(NX/2)])+

stateVars[(NX - 3)-(NX/2)]))/(dL*dL);

stateDers[NX-1] = (c*c)*(tmp0 + ((-2.0 *
stateVars[(NX-1)-(NX/2)])+

stateVars[(NX-2)-(NX/2)]))/(dL*dL);
//---
//--- Exit code ---//

}

This function obviously grows large as the number of state
variables increases. Our intention is to rewrite this code and
since it is potentially data-parallel we can use the language
SAC for this.

3.1.2 Proposed Compilation Process
Several changes to the compilation process have to be per-
formed in order to compile for-equations into SAC WITH-
loops. A Modelica for-equation should have the same se-
mantic meaning as before. Right now a for-equation is first
expanded into scalar equations. These scalar equations are
merged with all other equations in the model and the to-
tal set of equations are sorted together. So equations inside
the original loop body might end up in different places in
the resulting code. This leads to restrictions on what kind
of for-equations should be possible to compile into WITH-
loops, at least for-equations containing only one equation
inside the body should be safe.

In the front-end of the compiler expansion of for-
equations into scalar equations should be disabled. We
would then get the following code with the WaveEqua-
tionSample model.

1 p[0] = exp(-(-L / 2.0) ^ 2.0);
2 p[n-1] = exp(-(L / 2.0) ^ 2.0);
3 for i in 0:n-1 loop
4 der(p[i]) = dp[i];
5 end for;
6 der(dp[0]) = 0;
7 for i in 1:n-2 loop
8 der(dp[i]) = ĉ 2.0 * ((p[i+1]+(-2.0*p[i]+p[i-1])) * dL̂ -2.0);
9 end for;

10 der(dp[n-1]) = 0;

New internal data structures that represents a for-equation
should be added; one for each internal intermediate form.
In the equation sorting phase it might be possible to han-
dle a for-equation as one equation. The equations inside
the loop body have to be studied for possible dependencies
with other equations outside the loop. The main rule im-
posed on Modelica models is that there are as many equa-
tions as there are unknown variables; a model should be
balanced. Checking whether a model is balanced or not can
be done by counting the number of equations and unknown
variables inside the loop body and adding these numbers
with the count from the rest of the model. In the final code
generation phase of the compilation process a Modelica
for-equation should be mapped into a SAC WITH-loop.
This mapping, as long as all checks have proved success-
ful, is relatively straightforward.

4. Single Assignment C
SAC combines a C-like syntax with Matlab-style program-
ming on n-dimensional arrays. The functional underpin-
nings of SAC enable a highly optimising compiler such
as SAC2C to generate high performance code from such
generic specifications. Over the last few years several auto-
parallelising backends have been researched demonstrating
the strengths of the overall approach. These backends in-
clude POSIX-thread based code for shared memory mul-
ticores [6], CUDA based code for GPGPUs [7] as well as
backends for novel many core architectures such as the Mi-
crogrid architecture from the University of Amsterdam [8].
All these backends demonstrate the strength of the SAC ap-
proach when it comes to auto-parallelisation (see [5, 4, 17]
for performance studies).

4.1 Data Parallelism and SAC

Almost all syntactical constructs from SAC are inherited
from C. The overall policy in the design of SAC is to
enforce that whatever construct looks like C should behave
in the same way as it does in C [6].

The only major difference between SAC and C is the
support of non-scalar data structures: In C all data struc-
tures are explicitly managed by the programmer. It is
the programmers responsibility to allocate and deallocate
memory as needed. Sharing of data structures is explicit
through the existence of pointers which are typically passed
around as arguments or results of functions.

In contrast, SAC provides n-dimensional arrays as state-
less data structures: there is no notion of pointers whatso-
ever. Arrays can be passed to and returned from functions
in the same way as scalar values can. All memory related
issues such as allocations, reuse and deallocations are han-
dled by the compiler and the runtime system. Jointly the
compiler and the runtime system ensure that memory is be-
ing reused as soon as possible and that array updates are
performed in place whenever possible.

The interesting aspect here is that the notion of arrays in
SAC actually matches that of Modelica perfectly. Both lan-
guages are based on the idea of homogeneously nested ar-
rays, i.e., the shape of any n-dimensional array can always



be described in terms of an n-element shape vector which
denotes the extents of the array with respect to the individ-
ual axes. All array elements are expected to be of the same
element type. Both languages do consider 0-dimensional
arrays scalars. The idea of expressing array operations in a
combinator style is promoted by both languages.

To support such a combinator style, SAC comes with
a very versatile data-parallel programming construct, the
WITH-loop. In the context of this paper, we will concen-
trate our presentation on one variant of the WITH-loop,
the modarray WITH-loop. A more thorough discussion
of SAC is given in [19]. A modarray WITH-looptake the
general form

with {
( lower1 <= idx_vec < upper1) : expr1 ;
...
( lowern <= idx_vec < uppern) : exprn ;

} : modarray( array)

where idx_vec is an identifier and loweri and upperi, de-
note expressions for which for any i loweri and upperi

should evaluate to vectors of identical length. expri denote
arbitrary expressions that should evaluate to arrays of the
same shape and the same element type. Such a WITH-loop
defines an array of the same shape as array is, whose ele-
ments are either computed by one of the expressions expri

or copied from the corresponding position of the array ar-
ray. Which of these values is chosen for an individual el-
ement depends on its location, i.e., it depends on its index
position. If the index is within at least one of the ranges
specified by the lower and upper bounds loweri and upperi,
the expression expri for the highest such i is chosen, other-
wise the corresponding value from array is taken.

As a simple example, consider the WITH-loop

1 with {
2 ([1] <= iv < [4]) : a[iv] + 10;
3 ([2] <= iv < [3]) : 0 * a[iv];
4 } : modarray( a)

It increments all elements from index [1] to [3] by
10. The only exception is the element at index position
[2]. As the index [2] lies in both ranges the expression
associated with the second range is being taken, i.e., it is
replaced by 0. Assuming that a has been defined as [
0, 1, 2, 3, 4], we obtain [0, 11, 0, 13, 4]
as a result.

Note here, that selections into arrays as well as the
WITH-loops themselves are shape-generic, i.e., they can be
applied to arrays of arbitrary rank. Assuming that the same
WITH-loop is computed with a being defined as

1 a = [ [ 0, 1, 2, 3, 4],
2 [ 5, 6, 7, 8, 9],
3 [ 10, 11, 12, 13, 14],
4 [ 15, 16, 17, 18, 19],
5 [ 20, 21, 22, 23, 24]];

this would result in an array of the form

1 [ [ 0, 1, 2, 3, 4],
2 [ 15, 16, 17, 18, 19],

3 [ 0, 0, 0, 0, 0],
4 [ 25, 26, 27, 28, 29],
5 [ 20, 21, 22, 23, 24]]

Note also, that it was crucial to use 0 * a[iv] in the
second range to make a shape-generic application possi-
ble. If we had used 0 instead, the shapes of the expressions
would have been detected as incompatible and the appli-
cation to the array a of rank 2 would have been rendered
impossible.

4.2 SAC2C, a highly optimising compiler for SAC

SAC2C (see [20] for details) is a compiler for SAC which
compiles SAC programs into concurrently executable code
for a wide range of platforms. It radically transforms high
level programs into efficiently executable C code. The
transformations applied do not only frequently eliminate
the need to materialise arrays in memory that hold inter-
mediate values but they also attempt to get rid of redundant
computations and small memory allocated values as well.
Its primary source of concurrency for auto-parallelisation
are the WITH-loops. They are inherently data-parallel and,
thus, constitute a formidable basis for utilising multi- and
many-core architectures. Details of the compilation process
can be found in various papers [19, 6].

In order to hook up compiled SAC code into an existing
C or C++ application, the SAC2C toolkit also supplies an
interface generator named SAC4C. It enables the creation
of a dynamically linked library which contains C functions
that can be called from C directly.

4.3 Writing OpenModelica Generated Code in SAC

Section 3.1 defined four index expressions for defining the
state derivatives array. Their placement into the generated
array, stateDers, can be represented in SAC as WITH-
loop partitions in the following way

1 with {
2 ([0] <= iv < [NX/2]) : Expression 3.1;
3

4 ([NX/2] <= iv <= [NX/2]) : Expression 3.2;
5

6 ([NX/2] < iv < [NX-1]) : Expression 3.3;
7

8 ([NX-1] <= iv <= [NX-1]) : Expression 3.4;
9 } : modarray(stateVars)

In legal SAC syntax this can be written as the following.

1 with {
2 ([0] <= iv < [NX/2]) :
3 stateVars[iv + (NX/2)];
4

5 ([NX/2] <= iv <= [NX/2]) :
6 (c * c) * (stateVars[(iv+1) - (NX/2)] +
7 ((-2d * stateVars[iv - (NX/2)]) + tmp1))
8 / (dL * dL);
9

10 ([NX/2] < iv < [NX-1]) :
11 (c * c) * (stateVars[(iv+1) - (NX/2)] +
12 ((-2d * stateVars[iv - (NX/2)]) +
13 stateVars[iv-1 - (NX/2)]))
14 / (dL * dL);
15

16 ([NX-1] <= iv <= [NX-1]) :
17 (c * c) *
18 (tmp0 + ((-2d * stateVars[iv - (NX/2)]) +
19 stateVars[iv-1 - (NX/2)])) / (dL * dL);
20 } : modarray(stateVars)



The above code defines two single elements within the
result array and two large sub-arrays. The equivalent code
in OpenModelica-generated C++ and the array the code
populates grows linearly with number of state variables.

We modified the OpenModelica-generated C++ code so
that instead of computing the ODE system in OpenModel-
ica generated C++, a function call is made in functionODE
to a SAC function containing the above WITH-loop. Both
pieces of code are semantically equivalent. The code was
patched so that using a pre-processor macro either the orig-
inal OpenModelica produced code is invoked or a call is
made to a dynamically linked library implemented in SAC
that produces the same result.

In the above strategy we make at least one call to SAC
in each time step. One alternative to the above strategy of
writing this piece of code in SAC is to write the whole
solver, or at least the main solver loop, in SAC. We did this
for the Euler solver where the main loop looks as follows.

1 while (time < stop)
2 {
3 states = states + timestep * derivatives;
4 derivatives = functionODE(states, c, l, dL);
5 time = time + timestep;
6 }

This simple SAC codeblock moves the Euler solver for-
ward in time in steps of timestep. Note here that
states and derivatives are arrays and not scalars.
The arithmetic operations applied to these arrays are ap-
plied to each element with each array. In each time step
state variables and state derivatives are calculated. Within
each step the SAC version of functionODE is invoked.

In the following section we outline experiments where
firstly the WITH-loop and secondly the complete SAC Euler
solver including the WITH-loop are integrated with Open-
Modelica.

4.4 Experiments Using SAC with OpenModelica
Generated Code

All experiments in this paper were run on CentOS Linux
with Intel Xeon 2.27GHz processors and 24Gb of RAM,
32kb of L1 cache, 256Kb of L2 cache per core and 8Mb
of processor level 3 cache. SAC2C measurements were run
with version 16874 and svn revision number 5625 of Open-
Modelica was used. C and C++ compilations were per-
formed with Gcc 4.5. The model we used was the WaveE-
quationSample model introduced in Section 2. The experi-
ments in this section all run sequential code.

Since OpenModelica does not yet have awareness of
data parallel constructs inherent in for-equations in the
equation section of models it was only feasible to run the
compiler for relatively small problem sizes. As mentioned
earlier, equations over arrays are expanded into one equa-
tion for each element. Even when making some modifica-
tions to the OpenModelica code base for the sake of the ex-
periment we were only able to increase the n defined in the
original Modelica model to numbers in the low thousands.
Anything above this size becomes increasingly infeasible
in compile time and resource limits are met at runtime.
These problem sizes are big enough still to demonstrate the
feasibility of linking SAC modules with C++ code. Com-
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Figure 1. The WaveEquationSample run for different
number of sections (n) with functionODE implemented
as pure OpenModelica-generated C++ code and as
OpenModelica-generated C++ code with functionODE im-
plemented in SAC. Start time 0.0, stop time 1.0, step size
0.002 and without CUDA.

putational Fluid Dynamics simulations for instance may
however operate on very large arrays.

4.4.1 Invoking a SAC WITH-loop from OpenModelica
For our first experiment we altered functionODE from
the code produced by the OpenModelica compiler so that
instead of computing the state derivatives in normal se-
quential C++ code, a call to SAC code is made. Our SAC
code consists primarily of the WITH-loop from Section 4.3.
Since in this first experiment only functionODE is modi-
fied the loop from Section 4.3 is inside the OpenModelica-
generated C++ code in this example. The new C++ code
that calls the SAC code includes copying of the states ar-
ray before it is passed to SAC and copying of the array
returned by SAC to the state derivatives array in the C++
code. Some copying is required currently because SAC al-
locates an array with the result. This creates a penalty for
the SAC implementation. In a future OpenModelica com-
piler it is hoped this allocation can be delegated to SAC so
that the copying can be removed.

Whilst OpenModelica does an efficient job of taking
models and writing code that can make use of different run-
time solvers to solve these models, no provisions exist yet
for creating highly data parallel code from obviously data
parallel models. Our first result shows that if the compiler
were to produce SAC code it would be possible to produce
code that can feasibly operate on the large arrays that are
inevitably required. This in itself can broaden the range of
models that OpenModelica could be used to handle.

Figure 1 shows the time taken to simulate the mod-
els by running the OpenModelica programs with the two
above-described setups for increasing values of n. The ex-
periments were run with the default OpenModelica solver
which is the DASSL solver. The simulation was run with
timestep 0.002, start time 0 and stop time 1. The results
show significant improvements in speed of execution of the
SAC implementation already as n raises to values above
1000. For many desired simulations these are relatively
small numbers.
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Figure 2. The WaveEquationSample run for different
number of sections (n) with functionODE and Euler loop
implemented as pure OpenModelica-generated C++ code
and as OpenModelica-generated C++ code with function-
ODE and Euler loop implemented in SAC. Start time 0.0,
stop time 100.0, step size 0.002 and without CUDA.

4.4.2 Linking Euler SAC2C Generated Libraries with
OpenModelica Generated Code

For a second experiment we used the SAC-implemented
Euler solver code consisting primarily of the for-loop in
Section 4.3. This code makes calls to the WITH-loop from
our previous experiment. For this experiment the Open-
Modelica Euler solver was used instead of DASSL since
the code is simpler but the algorithm is well known and
performs a (simple) time step integration, and is hence ap-
propriate for a feasibility study.

This time it was the OpenModelica solver that was
patched rather than OpenModelica-generated code. The
simulation was run from 0 to 100 seconds with steps of
0.002 seconds. We patched the OpenModelica-solver code
so as not to allocate large blocks of memory for the request.
This allowed us to run for larger values of n and more time
steps. In addition the OpenModelica compiler was patched
to not output intermediate time-steps and the SAC code
behaves in the same way. As before the SAC version of the
code includes additional memory allocation and copying of
the data structures passed to and received from the module
that will be removed in the future.

Figure 2 shows the time taken to calculate derivatives by
running two patched versions of the WaveEquationSample
model generated with OpenModelica for increasing values
of n.

When using the SAC libraries the performance benefits
are significant. We attribute this to OpenModelica’s current
implementation. Currently globally defined pointers into
globally defined arrays are referred to in the code. An array
is calculated that is dependent on values in another array
and each element of each array is referenced using the
globally defined pointers. We believe that the C compiler
was unable to efficiently optimise this code where array
sizes were large. Improving this will require some changes
to the OpenModelica compiler and runtime system which
will in themselves certainly have performance benefits.

The model for this experiment operates on a vector of
state values. Some computational fluid dynamics applica-
tions operate on three-dimensional state spaces. In terms of

Figure 3. CUDA-enabled GPU hardware architecture.

OpenModelica models these may manifest as three-level
nested for-equations. These could map perfectly into SAC
where a lot of work [19] has already gone into optimi-
sation for the efficient execution of multi-dimensional ar-
rays taking into account memory access patterns and po-
tential vectorisations. Any future integration of SAC2C into
OpenModelica would inevitably make use of these optimi-
sations.

The patches and command line calls used in the experi-
ments in this section can be found in [20].

5. Compute Unified Device Architecture
In recent years, the processing capability of graphics pro-
cessing units (GPUs) has improved significantly so that
they are used to accelerate both scientific kernels and real-
world computational problems. Two main features of these
architectures render them attractive: large numbers of cores
available and their low cost per MFLOP compared to large-
scale super-computing systems. Their peak performance
figures have already exceeded that of multi core CPUs
while being available at a fraction of the cost. The appear-
ance of programming frameworks such as CUDA (Com-
pute Unified Device Architecture) from Nvidia minimises
the programming effort required to develop high perfor-
mance applications on these platforms. To harness the pro-
cessing power of modern GPUs, the SAC compiler has a
CUDA backend which can automatically parallelise WITH-
loops and generate CUDA executables. We will briefly in-
troduce the CUDA architecture and programming model
before demonstrating the process of compiling the compu-
tational kernel of the case study example into a CUDA pro-
gram.

5.1 Hardware Architecture
Figure 3 shows a high-level block diagram of the architec-
ture of a typical CUDA-enabled GPU. The card consists of
an array of Streaming Multiprocessors (SM). Each of these
SMs typically contains 8 Streaming Processors (SP).



The organisation of the memory system within CUDA
is hierarchical. Each card has a device memory which
is common to all streaming multiprocessors, connected
through a shared bus, as well as externally. To minimise
the contention at that bus, each streaming multiprocessor
has a relatively small local memory referred to as Shared
Memory shared across all streaming processors. In addition
to this, each streaming processor has a set of registers.

5.2 The CUDA Programming Model
The CUDA programming model assumes that the system
consists of a host, which is a traditional CPU, and one or
more CUDA-enabled GPUs. Programs start running se-
quentially at the host and call CUDA thread functions to
execute parallelisable workloads. The host needs to transfer
all the data that is required for computation by the CUDA
hardware to the device memory via the system bus. The
code that is to be executed by the cores is specified in a
function-like unit referred-to as a kernel. A large number
of threads can be launched to perform the same kernel op-
eration on all available cores at the same time, each operat-
ing on different data. Threads in CUDA are conceptually
organised as a 1D or 2D grid of blocks. Each block within
a grid can itself be arranged as a 1D, 2D or 3D array of
cells with each cell representing a thread. Each thread is
given a unique ID at runtime which can be used to locate
the data upon which they should perform the computation.
After each kernel invocation, blocks are dynamically cre-
ated and scheduled onto multiprocessors efficiently by the
hardware.

5.3 Compiling SAC into CUDA

Most of the high level array operations in SAC are a com-
position of the fundamental language construct - the data
parallel WITH-loop. The CUDA backend of the SAC com-
piler identifies and transforms parallelizable WITH-loops
into code that can be executed on CUDA-enabled graphic
GPUs. Here we demonstrate the process of compiling the
computational kernel of the wave equation PDE model, ex-
pressed as a WITH-loop, into equivalent CUDA program
(See Figure 4). The compilation is a two-staged process:

• Phase I: This phase introduces host-to-device and
device-to-host transfers for data arrays referenced in
and produced from the WITH-loop. In the example
shown, array stateVars introduces host-to-device
transfers. The final result computed within the GPU, the
array stateDersD, introduces a device-to-host transfer.

• Phase II: This phase lifts computations performed in-
side each generator as a separate CUDA kernel. In this
example, four kernels (i.e. k1, k2, k3 and k4) are cre-
ated, each corresponds to one WITH-loop generator.

CUDA kernels are invoked with a special syntax speci-
fying the CUDA grid/block configuration. In the example,
each kernel invocation creates a thread hierarchy composed
of a one-dimensional grid with one-dimensional blocks in
it. Device array variables stateDersD and stateVarsD,
along with scalars(c, dL, tmp0, tmp1), are passed as pa-

stateDers = with {
( [0] <= iv < [256]) :

stateVars[iv+256];
( [256] <= iv < [257]) :

(c*c)*(stateVars[(iv+1)-256]+
((-2f*stateVars[iv-256])+tmp1))/(dL*dL);

( [257] <= iv < [511]) :
(c*c)*(stateVars[(iv+1)-256]+
((-2f*stateVars[iv-256])+
stateVars[(iv-1)-256]))/(dL*dL);

( [511] <= iv <= [512]) :
(c*c)*
(tmp0*((-2f*stateVars[iv-256])+
stateVars[(iv-1)-256]))/(dL*dL);

} : modarray(stateVars);

⇓ ⇓ ⇓

stateVarsD = host2device( stateVars);
stateDersD = with {

( [0] <= iv < [256]) :
stateVarsD[iv+256];

( [256] <= iv < [257]) :
(c*c)*(stateVars

D[(iv+1)-256]+
((-2f*stateVars

D[iv-256])+tmp1))/(dL*dL);
( [257] <= iv < [511]) :

(c*c)*(stateVars
D[(iv+1)-256]+

((-2f*stateVars
D[iv-256])+

stateVarsD[(iv-1)-256]))/(dL*dL);
( [511] <= iv < [512]) :

(c*c)*
(tmp0*((-2f*stateVars

D[iv-256])+
stateVarsD[(iv-1)-256]))/(dL*dL);

} : modarray(stateVarsD);
stateDers = device2host( stateDersD);

⇓ ⇓ ⇓

stateVarsD = host2device( stateVars);
dim3 grid1(16), block1(16);
k1<<<grid1, block1>>>

( stateDersD, stateVarsD);
dim3 grid2(1), block2(16);
k2<<<grid2, block2>>>

( stateDersD, stateVarsD, c, dL, tmp1);
dim3 grid3(16), block3(16);
k3<<<grid3, block3>>>

( stateDersD, stateVarsD, c, dL);
dim3 grid4(1), block4(16);
k4<<<grid4, block4>>>

( stateDersD, stateVarsD, c, dL, tmp0);
stateDers = device2host( stateDersD);

__global__ void k1( float *stateDers
D,

float *stateVars
D) {

int ivs = blockIdx.x*blockDim.x+threadIdx.x;
stateDersD[ivs] = stateVarsD[ivs+256];

}

__global__ void k2( float *stateDers
D,

float *stateVars
D) {

float c, float dL, float tmp1) {
int ivs = blockIdx.x*blockDim.x+threadIdx.x+256;
stateDersD[ivs] = (c*c)*(stateVars

D[(ivs+1)-256]+
((-2f*stateVars

D[ivs-256])+tmp1))
/(dL*dL);

}

__global__ void k3( float *stateDers
D,

float *stateVars
D) {

float c, float dL) {
int ivs = blockIdx.x*blockDim.x+threadIdx.x+257;
stateDersD[ivs] = (c*c)*(stateVars

D[(ivs+1)-256]+
((-2f*stateVars

D[ivs-256])+
stateVarsD[(ivs-1)-256]))/(dL*dL);

}

__global__ void k4( float *stateDers
D,

float *stateVars
D) {

float c, float dL, float tmp0) {
int ivs = blockIdx.x*blockDim.x+threadIdx.x+511;
stateDersD[ivs] = (c*c)*

(tmp0*((-2f*stateVars
D[ivs-256])+

stateVarsD[(ivs-1)-256]))/(dL*dL);
}

Figure 4. Compiling an example WITH-loop to CUDA.



rameters to the kernels. Each thread running the kernel cal-
culates the linear memory offset of the data being accessed
using a set of built-in variables blockIdx, blockDim
and threadIdx. This offset is then used to access array
stateVarsD. The final result is written into stateDersD.

5.4 Running SAC modules with CUDA

For experiments with CUDA we used CUDA 3.0 and a
Tesla C1060. C and C++ compilations were performed
with GCC 4.5 except for those invoked by CUDA which
used GCC 4.3 since CUDA currently does not support the
latest GCC compilers.

In the following experiment more SAC code was written
to call the SAC code from Section 4.4.2. When doing this
we were able to increase n to much higher numbers to sim-
ulate future potential of models with very large numbers
of states. Our SAC program simply calls the SAC Euler
code from Section 4.4.2 in the same way that OpenMod-
elica called it in our previous experiment. The values used
to call the function are explicitly hidden from the compiler
so that SAC2C cannot make use of this knowledge when
optimising the function. Due to current limitations in older
Nvidia cards like the Tesla in our experiment we have used
floats not doubles for this experiment. When running on
newer cards this modification is not necessary. All param-
eters used for this experiment match the previous exper-
iment except that we were able to raise n by a factor of
one-thousand. It is currently not feasible to raise n this high
with code generated with the current OpenModelica com-
piler since it tries to generate instructions for each extra
computation required rather than using a loop and because
it allocates large blocks of memory that depend on the size
of n. With the exception of these two changes the SAC code
matches that of the previous experiment.

Two versions of SAC programs were compared. In one
SAC2C was invoked with an option specifying that the
code should be highly optimised by the C compiler. In the
other an option was added to invoke the SAC2C CUDA
backend. The code was linked against both the CUDA li-
braries and libraries for our SAC module. The SAC code
used for the CUDA and non-cuda library versions is iden-
tical. As before the patches and command line calls used in
the experiment can be found at [20].

The results from the experiment are shown in Figure 5.
In both cases time increases linearly as n increases. SAC
with CUDA performs significantly better than SAC with-
out CUDA. This is because in each iteration of derivative
calculation the input array, i.e. the state variables, is a func-
tion of only the timestep and the derivative array com-
puted in the previous iterations. This means both arrays can
be retained on the GPU main memory without the need of
transferring back to the host. The CUDA backend is capa-
ble of recognising this pattern and lifting both transfers be-
fore and after the WITH-loop (see Figure 4) out of the main
stepping loop. With application of this optimisation, each
iteration contains pure computation without the overhead
of host-device data transfers. Moreover, the large problem
sizes provide the CUDA architecture with abundance of
data parallelism to exploit to fully utilise the available re-
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Figure 5. WaveEquationSample state derivative calcula-
tions embedded with an Euler loop, both written entirely
in SAC, run sequentially and with CUDA for varying num-
ber of sections (n). Start time 0.0, stop time 100.0 and step
size 0.002.

sources. Given the stencil-like access pattern in the com-
putational kernel, potential data reuse can be exploited by
utilizing CUDA’s on-chip shared memory. This continued
work will further improve the performance.

All experiments with SAC in this paper produced code
to either run sequentially or with the CUDA target. For
future work we’d like to try the experiments with SAC’s al-
ready mature pthread target which has already shown pos-
itive results [17]. Work is underway to produce a target of
C code with OpenMP directives to make use of paralleli-
sation work in C compilers. All these projects and future
projects provide interesting potential for future work.

Note that the experiments have demonstrated a benefit
when using SAC that materialises for each group of time
steps for which intermediate steps are stored. The storing
of both states and state derivatives between intermediate
time-steps can be a requirement for users of these mod-
els and the effect on performance as the number of save
points is increased is the next obvious study. When inter-
facing with SAC there are two ways of doing this. One is
to call a SAC function for every group of steps for which
a save point is desired. If OpenModelica were to no longer
allocate memory for the entire result and instead write the
result to file periodically then this method would be the
most scalable but it would give SAC2C little opportunity
for optimisation. Alternatively one call to the SAC mod-
ule could be made and SAC could return all desired save
points. This would give SAC2C the best chance for opti-
misation but would have the constraint that the result from
the function call would need to be small enough to fit into
memory. Ideally a hybrid approach might be desired.

6. Conclusions
Modelica code often contains large arrays of variables and
operations on these arrays. In particular it is common to
have large arrays of state variables. As of today the Open-
Modelica compiler has limited support for executing ar-
ray operations efficiently or for exploiting parallel archi-
tectures by, for instance using CUDA-enabled GPU-cards.
This is something we hope will be improved in future ver-
sions of the compiler and runtime system.



In this work we have investigated ways to make use of
the efficient execution of array computations that SAC and
SAC2C offer, in the context of Modelica and OpenModel-
ica. We have shown the potential of generating C++ code
from OpenModelica that can call compiled SAC binaries
for execution of heavy array computations. We have also
shown that it is possible to rewrite the main simulation loop
of the runtime solver in SAC, thus avoiding expensive calls
to compiled SAC binaries in each iteration.

In doing this we have shown the potential for the use
of SAC as a backend language to manage the efficient ex-
ecution of code fragments that the OpenModelica com-
piler can identify as potentially data parallel. To the best
of our knowledge this has not been done with a Modelica
compiler before. The integration with SAC allowed exper-
iments to be run with a larger number of state variables
than was previously feasible. Moreover, we have shown
that the SAC2C compiler can both produce efficient se-
quential code and produce code targeted for an underlying
architecture supporting parallel execution. In this case we
exploited the potential of a GPGPU. SAC2C can do this
without any changes to the SAC code itself.

Nvidia has recently released the new Fermi architec-
ture [13] which has several improvements which are im-
portant in the area of mathematical simulation, a cache hi-
erarchy, more shared memory on the multiprocessors and
support for running several kernels at a time.

The next planned stage in this on-going project is to
enhance the OpenModelica compiler to pass for-equations
through the compiler and to generate SAC source code and
compile it automatically.
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