
Controlling Chaos ∗

On Safe Side-Effects in Data-Parallel Operations

Stephan Herhut Sven-Bodo Scholz Clemens Grelck
University of Hertfordshire

School of Computer Science
Hatfield, United Kingdom

{s.a.herhut,s.scholz,c.grelck}@herts.ac.uk

Abstract
With the rising variety of hardware designs for multi-core systems,
the effectiveness in exploiting implicit concurrency of programs
plays a more vital role for programming such systems than ever
before. We believe that a combination of a data-parallel approach
with a declarative programming-style is up to that task: Data-
parallel approaches are known to enable compilers to make efficient
use of multi-processors without requiring low-level program anno-
tations. Combining the data-parallel approach with a declarative
programming-style guarantees semantic equivalence between se-
quential and concurrent executions of data parallel operations. Fur-
thermore, the side-effect free setting and explicit model of depen-
dencies enables compilers to maximise the size of the data-parallel
program sections.

However, the strength of the rigidity of the declarative approach
also constitutes its weakness: Being bound to observe all data de-
pendencies categorically rules out the use of side-effecting oper-
ations within data-parallel sections. Not only does this limit the
size of these regions in certain situations, but it may also hamper
an effective workload distribution. Considering side effects such
as plotting individual pixels of an image or output for debugging
purposes, there are situations where a non-deterministic order of
side-effects would not be considered harmful at all.

We propose a mechanism for enabling such non-determinism
on the execution of side-effecting operations within data-parallel
sections without sacrificing the side-effect free setting in general.
Outside of the data-parallel sections we ensure single-threading
of side-effecting operations using uniqueness typing. Within data-
parallel operations however we allow the side-effecting operations
of different threads to occur in any order, as long as effects of
different threads are not interleaved. Furthermore, we still model
the dependencies arising from the manipulated states within the
data parallel sections. This measure preserves the explicitness of all
data dependencies and therefore it preserves the transformational
potential of any restructuring compiler.

∗ This work was funded by the European Union Apple-CORE project grant
no. FP7 215216.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’09, January 20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-419-1/09/01. . . $5.00

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Language
Constructs and Features]: Concurrent programming structures

General Terms Design, Languages, Performance

1. Introduction
Looking at the recent architectures of the main processor manu-
facturers, there is no doubt that multi-core has made it to the main
stream. There has been a shift from ever increasing clock frequen-
cies to increasing numbers of computing cores per processor. Be
it homogeneous multi-core architectures with two, three, four and
soon eight cores like Intel’s Core range of CPUs (Gochman et al.
2006), AMD’s multi-core Opteron processors (Advanced Micro
Devices 2008) and Sun’s Niagara (Kongetira et al. 2005), or in-
homogeneous designs like the IBM Cell (Chen et al. 2007) and
Cyclops (Almási et al. 2003) processors. Even rather specialized
graphics processors are being used for numerical applications due
to their wide SIMD architecture (Garland et al. 2008). And the fu-
ture is promising even more potential for truly concurrent program
execution with many-core processors with up to 100 cores being
discussed (Held et al. 2006).

However, although theoretically program performance might
scale linearly with the number of cores, the reality is gloom. Tam-
ing concurrency and exploiting massively parallel architectures
for meaningful computation is a difficult and tedious task, so far
only pursued by specialized and highly skilled programmers. For
multi- and many-core systems to really arrive in the mainstream, a
new, less complex and thus less error-prone programming model is
needed.

A declarative programming style might be the way forward. Its
guaranteed side-effect free setting and explicit model of dependen-
cies eases the detection of independent parts of a program and their
parallel computation. However, even in this setting it remains the
responsibility of the programmer to write their programs in a way
that actually exhibits enough parallelism for it to scale to a large
number of processors.

We have performed extensive research in this area, leading to
the programming language Single Assignment C, or SAC for short.
Despite its syntactical proximity to the imperative language C, sev-
eral carefully chosen restrictions of the core of SAC inhibit any
form of side-effect and, thus, render it purely functional.1 Inher-
ently side-effecting operations such as I/O operations are safely

1 For a discussion of the fusion between imperative appearance and declar-
ative nature of SAC see (Grelck and Scholz 2006).

59

w
a

ll−
c
lo

c
k
 t

im
e

processor workloads

w
a

ll−
c
lo

c
k
 t

im
e

processor workloads

Figure 1. Utilisation of processing units for a map operation and
a consecutive I/O operation. The left diagram shows the classical,
fully deterministic sequential I/O operation whereas the right dia-
gram depicts the non-deterministic semi-concurrent version.

added by using uniqueness typing based on the ideas of (Achten
and Plasmeijer 1995).

The most prominent features of SAC are its support of state-
less n-dimensional arrays as well as its array-centric programming
model which is similar to that of APL (International Standards
Organization 1993) and J (Hui and Iverson 2004). Featuring ar-
rays and data-parallel operations thereon as the main means to ex-
press algorithms, SAC encourages the programmer to write pro-
grams in a naturally parallel fashion, without the need to explic-
itly build concurrency in. Careful design of the language and a
range of tailored optimisations (Scholz 1998; Grelck et al. 2004,
2006) enable us to compile these high-level program specification
into efficient code, en-par with industry-strength FORTRAN com-
pilers (Shafarenko et al. 2006).

By exploiting the afore mentioned properties of functional lan-
guages, we have devised a compilation scheme and runtime sys-
tem that furthermore allows us to automatically derive concurrent
code (Grelck 2005; Grelck and Scholz 2006) with runtimes of
some benchmarks scaling nearly linear with the number of proces-
sors (Grelck 2002).

Even though an array-centric style naturally leads to more par-
allel code, still inherently sequential parts remain. Apart from al-
gorithmic reasons, one major source of dependencies that enforce a
sequential execution are stateful operations like I/O. As Amdahl’s
law states (Amdahl 1967), the overall speedup that can be achieved
is determined not by the parallel parts of a program but by its se-
quential segments. This becomes even more true with increasing
numbers of processing units. Therefore, we believe that even partly
lifting the requirement of strictly sequential I/O can be hugely ben-
eficial.

As an example consider a data-parallel map operation followed
by an output of its result. An abstract representation of a typical
processor utilisation for this scenario is given in Figure 1. Each
vertical line depicts the utilisation of a processing unit over time.
The small horizontal ticks denote the start and end of single work
units; a gap means that the processor is idling and thus not per-
forming any useful computation. We have used solid lines to depict
data-parallel operations whereas dotted lines represent stateful I/O
operations. The dotted horizontal lines represent the start and end
of the entire computation.

On the left-hand side, Figure 1 shows the processor utilisation
for the classical, fully-deterministic approach. In this setting, the

I/O operation is delayed until all processing units have finished the
data-parallel task. Then, using a deterministic order, e.g., from left
to right, each processing unit after another processes the sequential
I/O task. As can be seen, all but one processing unit idle during
this phase. Even worse, with increasing number of processing units,
the upper, data-parallel workload is likely to scale, as long as the
number of work units is large enough. However, the wall-clock time
needed to perform the I/O operation will remain the same, if not
increase due to the growing synchronization overhead.

Of course, stateful operations like I/O are inherently sequential
in that only one processing unit at a time may modify the state to
yield predictable results. However, for certain applications like up-
dating independent pixels of the framebuffer, printing indexed data
or generating debugging output, the order in which the different
tasks are performed is not of importance as long as the order of
each single task stays intact. Thus, introducing a certain amount of
non-determinism, i.e., allowing different I/O tasks to be performed
out of order, may not be harmful but considered beneficial.

The right-hand side of Figure 1 gives an example. Here, instead
of waiting for all processing units to finish, each processing unit
starts to perform its I/O task directly after finishing a work unit if
no other processor is performing an I/O operation at the same time.
Otherwise the processing unit idles until those I/O operations are
finished. However, due to the imbalance in execution time of the
different work units, it is likely that only one processing unit at a
time is involved in I/O. Using this out-of-order scheduling of I/O
operations thus creates an effective interleaving of I/O operations
that does not force all but one processor to idle.

As illustrated in the example this may reduce the overall runtime
quite significantly, even though the I/O workload per processing
unit may be relatively small in comparison to the data-parallel
workloads. Furthermore, using this approach the I/O operations
will scale to a certain degree with increasing number of processing
units, at least while some workload imbalance remains.

In short, the contributions of this paper are

• We present a novel semantics for combining data-parallel map
operations with side-effecting computations.

• We devise a corresponding language extension for the program-
ming language SAC.

• Using Mandelbrot fractals as an example, we demonstrate the
applicability of our approach and give some runtime results.

The remainder of this paper is organized as follows. Section 2
gives a brief survey of SAC, focussing on its data-parallel map
operation and the used explicit model for state. To motivate our
extension to SAC, we give an example in Section 3. Section 4
introduces our approach and applies it to our example. A discussion
of the impact of our extension on functional properties of SAC is
given in Section 5. Finally, we give some first runtime results in
Section 6 and related work in Section 7 before we conclude with
Section 8.

2. Single Assignment C
Single Assignment C, or SAC for short, is a strict, first-order func-
tional language geared at high-performance numerical computa-
tion. It combines the array-centric programming style of languages
like APL and J with a syntax similar to C. In the context of this pa-
per, we will concentrate our presentation on the data-parallel map
construct of sac, the genarray withloop, and the handling of state
through uniqueness typing. A more thorough discussion of SAC is
given by (Scholz 2003).

60

2.1 Data-Parallel Map in SAC
For the purpose of this paper we consider program expressions that
take the general form

with {
(lower <= idx_vec < upper) : expr ;

} : genarray(shape, default)

where idx_vec is an identifier, lower, upper, and shape denote ex-
pressions that should evaluate to vectors of identical length, and
expr and default denote arbitrary expressions. Such a WITH-loop
defines an array of shape shape, whose elements are either com-
puted by the expression expr or by the default expression default.
Which of these two values is chosen for an individual element de-
pends on its location, i.e., it depends on its index position. If the
index is within the range specified by the lower bound lower and
the upper bound upper, expr is chosen, otherwise default is taken.
As a simple example, consider the WITH-loop

with {
([1] <= iv < [4]) : 2;

} : genarray([5], 0)

It computes the vector [0, 2, 2, 2, 0]. Note here, that the use
of vectors for the shape of the result and the bounds of the index
space (also referred to as the generator) allows WITH-loops to de-
note arrays of arbitrary rank. Furthermore, the generator expres-
sion expr may refer to the index position through the generator
variable idx_vec. For example, the WITH-loop

with {
([1,1] <= iv < [3,4]) : iv[0] + iv[1];

} : genarray([3,5], 0)

yields the matrix

0@ 0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

1A .

Figure 2 shows those parts of a big step operational semantics for
SAC that are relevant for the context of this paper. As can be seen
in rules CONST and VECT, every expression in SAC evaluates to
an array. We represent these as a pair of vectors < ~s, ~d > where
~s denotes the shape-vector of the array; it encodes the length of
each axis of the array. The vector ~d represents the data-vector of
the array, which contains the array’s elements in row-major order.

The rule WITH formalises the semantics of the genarray WITH-
loop. The first three premises ensure that the expressions for lower
and upper bound, as well as for the shape, evaluate to vectors
of equal length. Furthermore, we require the default expression
to evaluate to a scalar value. Finally, we have to describe the
evaluation of the body expression of the WITH-loop. We have
adopted a λ-calculus style here, using the common semantics of
abstraction (λ) and application (()). For each index within the index
range defined by the upper and lower bound, we require that the
function λ Id . eb applied to the index evaluates to a scalar value.

To assemble the result in the conclusion, we construct a data-
vector by picking either the result of evaluating the body expres-
sion of the WITH-loop if the index is within the index range, or
the value of the default expression otherwise. This is achieved by
superscripting each value of the resulting data vector with its corre-
sponding index within the n-dimensional shape of the result. Those
indices that are within the generator set are determined by the final
premise, all others equate to d as stated in the where clause. The
shape-vector of the result is directly taken from the evaluated shape
expression.

It should be mentioned here that this WITH-loop constitutes a re-
stricted form of the WITH-loops in SAC. Exact definitions of fully-
fledged WITH-loops and the formal definitions of transformations

external
World, Display initDisplay(World world, int[2] shape);

external
World destroyDisplay(World world, Display disp);

external
Display drawPixel(Display disp, int x, int y, int val);

Figure 3. Excerpt from the SAC binding for the SDL library.

on them can be found elsewhere (Scholz 2003, 1998; Grelck et al.
2004).

2.2 Stateful Operations in SAC
We use a form of uniqueness typing as first developed in the context
of the functional language CLEAN (Achten and Plasmeijer 1995) to
model state in SAC. Each program is parametrized over a global en-
vironment, called TheWorld. This environment needs to be explic-
itly passed to every function that requires updating the global state
of the program. To model this destructive update in a side-effect
free setting, a function, at least conceptually, computes a new en-
vironment from the old one. Uniqueness typing ensures that each
copy of the environment is read at most once, thereby effectively se-
quentializing stateful computations. To be able to interchange the
order of operations affecting unrelated parts of the environment,
e.g., writing to different files, we allow the programmer to split off
sub-environments from the global environment.

As an example, consider the SAC binding for the SDL li-
brary (Pazera 2002) given in Figure 32. The function initDisplay
splits off a sub-environment, in this case a graphical display, from
the global environment of type World. The second argument gives
the size of the screen to be created. As its result, the function
initDisplay returns a modified global environment and a new
sub-environment of type Display.

The function destroyDisplay implements the dual operation.
Given the global environment of type World and a sub-environment
of type Display, it consumes the sub-environment and returns an
updated global environment, thereby conceputally merging the sub-
environment back into the global environment.

Finally, as an example for a stateful operation, the function
drawPixel outputs a pixel to a given display and returns the
updated display. Apart from the display to output to, the function
drawPixel expects the x- and y-cooridinate of the pixel to update,
as well as the new colour.

Passing the environment explicitly can be cumbersome, in par-
ticular as it may require refactoring many function signatures when
adding state manipulations deep down the call graph. To alleviate
this, we have developed means to implicitly pass environments and
automatically adapt function signatures. The interested reader is re-
ferred to (Grelck and Scholz 1995) for further details.

3. Mandelbrot, an Example
In the following we discuss a data-parallel implementation of the
escape-time approximation algorithm for the Mandelbrot set com-
bined with a visualisation of its results to further motivate the need
of side-effecting operations within data-parallel operations. The
Mandelbrot set consists of all elements z of the complex plane for
which the complex polynomial Pi = P 2

i−1 + z under iteration
starting with P0 = z does not escape to infinity. The sequence of
polynomials (P)i is known to escape, if for any i the absolute value
|Pi| is greater than 2.

2 We have simplified the source code for presentation in this paper. The full
version is available as part of the SAC standard library.

61

CONST :
n→ < [], [n] >

VECT :
∀i ∈ {1, . . . , n} : ei→ < [s1, . . . , sm], [di1, . . . , dip] >

[e1, . . . , en]→ < [n, s1, . . . , sm], [d1
1, . . . , d1

p, . . . , dn1 , . . . , dnp] >

WITH :

el→ < [n], [l1, . . . , ln] > eu→ < [n], [u1, . . . , un] > eshp→ < [n], [shp1, . . . , shpn] > edef → < [], [d] >
∀i1 ∈ {l1, ..., u1 − 1} ... ∀in ∈ {ln, ..., un − 1} : (λ Id . eb [i1, ..., in])→ < [], d[i1,...,in] >

with { (el <= Id < eu) : eb; } : genarray(eshp, edef)
→ < [shp1, . . . , shpn], [d[0,...,0] , . . . , d[shp1−1,...,shpn−1]] >

where d[x1,...,xn] = d iff ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj , ..., shpj − 1}

Figure 2. An operational semantics for the WITH-loop in SAC.

The escape-time approximation of the Mandelbrot set approx-
imates set membership by computing a predetermined number of
iterations. If for any iteration the absolute value is greater than 2,
the corresponding complex number is not member of the set. All
other complex numbers are assumed to be in the set.

Using this approach, set membership can be decided indepen-
dently for each element of the complex plane, making computing
the Mandelbrot set an ideal example of a data-parallel algorithm.
Furthermore, the number of iterations needed to decide set mem-
bership greatly varies in between different elements of the complex
plane, yielding a workload imbalance between independent com-
putations, similar to the scenario shown in Figure 1

An implementation of the escape-time algorithm in SAC is
given in Figure 4. The function calcmandel computes for a com-
plex number z the number of iterations needed to decide whether
z lies outside of the Mandelbrot set. The maximum number of it-
erations performed is given by the second argument depth. We
have used a while loop to express the iterative evaluation of the
complex polynomial. Despite their rather imperative appearance,
while-loops in SAC are merely syntactic sugar for tail-end recur-
sive functions.

The Mandelbrot set is commonly visualized as a 2D image, as-
sociating an interval of complex numbers with a matrix of pixels.
The color values are picked depending on the number of iterations
needed to decide on set membership. In the SAC implementation
given in Figure 4 this is achieved by function mandelbrot. Its re-
sult is an array whose outer and inner axes denote the y- and x-axis
of an image, respectively. An array element A[[y,x]] gives the
number of iterations computed for the complex number x+ yi. To
be able to select different cuts of the complex plane, the function
mandelbrot is parametrized by an offset on the x and y axis. The
parameters xres and yres can be used to compute the Mandelbrot
set in different resolutions. Finally, to prevent distortion of the final
image, we compute the upper bound of the area to compute depend-
ing on a maximum value for the x axis and the given resolution.

Our implementation of the algorithm uses a genarray WITH-
loop to map the escape check to an interval of complex numbers. As
described in Section 2, the semantics of the WITH-loop, especially
its guaranteed side-effect free setting, allow for all elements of
the array to be computed independently. However, although very
desirable in this case, when it comes to visualising the computed
Mandelbrot set, the lack of side-effects proves to be harmful.

Consider displaying the computed color values on a screen. By
nature, the screen is a mutable object, and, thus, its manipulation
must be considered a side-effect. Using the drawing primitive in-
troduced in Section 2, we can visualize the array as a 2D image by
iterating over all its elements. However, as this operation is state-
ful, we cannot use SAC’s data-parallel map construct, but must re-

int calcmandel(complex z, int depth)
{

i=0; c=z;
ic=imag(c);
rc=real(c);

while(((ic*ic + rc*rc) <= 4.0d) && (i <= depth)) {
c=c*c+z; i++;
ic=imag(c); rc=real(c);

}

return(i);
}

int[.,.] mandelbrot(double xmin, double xmax,
double ymin, int depth,
int xres, int yres)

{
step_size = (xmax - xmin) / tod(xres);
ymax = step_size * tod(yres) + ymin;

res = with {
([0,0] <= [y,x] < [yres, xres]) {

z = toc(tod(x) * step_size + xmin,
ymax - tod(y) * step_size);

val = calcmandel(z, depth);
} : val;

} : genarray([yres,xres], 0)

return(res);
}

Display drawArray(Display disp, int[.,.] array)
{

for (y = 0; y < shape(array)[[0]]; y++) {
for (x = 0; x < shape(array)[[1]]; x++) {

disp = drawPixel(disp, x, y, array[[y,x]]);
}

}

return(disp);
}

Figure 4. Implementation of the escape-time algorithm to approxi-
mate the Mandelbrot set in SAC. To output the results, an inherently
sequential nesting of for-loops is used.

62

sort to a nesting of inherently sequential for-loops. The function
drawArray in Figure 4 shows a possible implementation in SAC.

Using the function drawArray to visualize the results of a
concurrent execution of the data-parallel computation in function
mandelbrot effectively results in a processor utilisation as shown
on the left-hand side of Figure 1. The data-parallel computation
of the array of colour values leads to a processor utilisation as
sketched out in the upper half of the figure. In particular, we expect
the Mandelbrot set computation to show strongly varying compu-
tation times for the different work units, i.e., the time required to
compute the depth for different array elements. The lower half of
the picture depicts an abstract view on the workload distribution
generated by the for loops. As they iterate over the entire array,
a synchronisation barrier is required to ensure the array has been
fully computed before it is printed to the screen. Therefore, al-
though processing units might end up idle, interleaving the data-
parallel with the sequential part is not possible.

4. Modelling Side-Effects in With-Loops
To achieve a workload distribution as shown in the right-hand side
of Figure 1, we need to be able to perform stateful operations as
part of a otherwise data-parallel loop.

As discussed in Section 2, we model side-effects in SAC by
explicitly passing an environment and thereby introducing depen-
dencies that enforce a certain order of evaluation. The compelling
feature of WITH-loops on the other hand, especially when it comes
to concurrent program execution, is the guaranteed independence
between loop iterations. In particular, this requires WITH-loop bod-
ies to be side-effect free. Thus, to combine the two, we inevitably
have to give up concurrency or sequential order, or a bit of both.

Our key idea is to introduce a limited form of dependencies
between loop iterations that sequentializes the evaluation of WITH-
loops sufficiently enough to allow meaningful state manipulation
but at the same time retains as much concurrency as possible. As
our example shows, requiring a strict ordering of side-effecting
operations can be unnecessary: For drawing the Mandelbrot fractal
to the screen, it is not important in what order the pixels are
drawn, as long as each is output exactly once in the end. Instead,
it often suffices to perform side-effecting operations in any order,
as long as each of them is performed in isolation. Again, looking
at our example, the underlying SDL binding does not support
concurrent drawing to the screen. Thus single updates still need
to be sequentialized.

Summing up, we propose to allow side-effecting operations
within WITH-loop bodies. However, instead of performing these
in sequential order, we introduce a non-deterministic evaluation
order: The side-effects of WITH-loop iterations can happen in any
order, but the sequence within each individual iteration remains
guaranteed. Conceptually, such a side-effecting WITH-loop, like
regular side-effecting functions, needs to be parameterized over an
explicit environment. We do so by adding an additional operator,
propagate, and a further result to the WITH-loop. A WITH-loop in
this extended syntax looks as follows:

with {
(lower <= idx_vec < upper) : expr ;

} : (genarray(shape, default), propagate(obj))

The argument obj to the propagate operator gives the initial envi-
ronment to evaluate the WITH-loop in. Intuitively, this environment
is then passed to a single iteration of the loop, resulting in a modi-
fied environment, which can then be propagated to some other iter-
ation. Finally, after all iterations have been computed, the resulting
environment is returned by the WITH-loop. However, note that the
propagate operator is non-deterministic in that it does not guar-
antee the order in which different loop iterations are performed.

Display, int[.,.] mandelbrot(double xmin, double xmax,
double ymin, int depth,
int xres, int yres)

{
step_size = (xmax - xmin) / tod(xres);
ymax = step_size * tod(yres) + ymin;

res, disp = with {
([0,0] <= [y,x] < [yres, xres]) {

z = toc(tod(x) * step_size + xmin,
ymax - tod(y) * step_size);

val = calcmandel(z, depth);
disp = drawPixel(disp, x, y, val);

} : (val, disp);
} : (genarray([yres,xres], 0),

propagate(disp));

return(disp, res);
}

Figure 6. Implementation of the escape-time algorithm for com-
puting the Mandelbrot set in SAC using propagate for I/O opera-
tions.

This, at first glance, looks like a rather huge addition to the
existing WITH-loop in SAC. In particular, extending the WITH-
loop from a single genarray operator to multiple operators, i.e.,
one genarray operator and an additional propagate operator,
involves a major change to the semantics of SAC as presented in
this paper so far. However, multiple operators have already been
introduced to SAC in the context of WITH-loop-fusion (Grelck et al.
2006). What is indeed new is propagate as an operator.

A formal description of the extended semantics is given in Fig-
ure 5. In comparison to the original semantics presented in Figure 2,
rule WITH contains an additional premise for the argument of the
propagate operator Idobj . We require that the identifier can be
evaluated to an initial environment. To model the non-deterministic
evaluation order, we introduce a bijective function ρ that maps el-
ements of the iteration space I to indices into the sequence of in-
termediate environments o1, . . . , oτ where τ denotes the overall
number of iterations. To tie it all up, we then require that the func-
tion λ Idiv .λ Idobj . eb applied to an index vector and the previous
intermediate state can be evaluated to a scalar value and the inter-
mediate state corresponding to that index vector. Finally, the entire
WITH-loop can then be evaluated as before but with the last inter-
mediate environment as an additional result.

Using this new operator, we can now express the I/O part of
our example as part of the data-parallel computation in the WITH-
loop. Figure 6 shows the modified mandelbrot function. All that
is needed to achieve this is to move the call to drawPixel from the
for-loop nesting within function drawArray as shown in Figure 4
directly into the body of the WITH-loop that computes the array
of colour values. This allows us to reuse the iteration space of
the WITH-loop which renders the for-loop nesting redundant. As
a consequence of moving the call to drawPixel, each pixel is now
printed to the screen as soon as its value becomes available.

It should be noted here that in case the computed array is not
referenced anywhere else in the program we could actually decide
not to return the computed array which would enable the compiler
to avoid its allocation entirely.

5. Non-Determinism and Referential
Transparency

Introducing non-determinism in the order of side-effects as pro-
posed in the previous section allows us to express the desired ad-
ditional concurrency. However, the question remains what impact
this has on functional properties of our language. In particular, one
might wonder whether referential transparency still holds. For our

63

WITH :

el→ < [n], [l1, . . . , ln] > eu→ < [n], [u1, . . . , un] > eshp→ < [n], [shp1, . . . , shpn] >
edef → < [], [d] > Idobj → < [], [o0] >

∃ρ : I ↔ Nτ ∃o1, . . . , oτ ∀(i0, . . . , in) ∈ I : ((λ Idiv .λ Idobj . eb [i1, ..., in]) oρ((i1,...,in))−1)
→ (< [], d[i1,...,in] >, < [], oρ((i1,...,in)) >)

with { (el <= Idiv < eu) : eb; } : (genarray(eshp, edef), propagate(Idobj))
→ (< [shp1, . . . , shpn], [d[0,...,0] , . . . , d[shp1−1,...,shpn−1]] >, < [], [oτ] >)

where I = {l1, . . . , u1} × . . .× {ln, . . . , un}, τ =
Qn
i=1(ui − li), and

d[x1,...,xn] = d iff ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj , ..., shpj − 1}

Figure 5. Extended operational semantics for WITH-loop with propagate.

external
RandomGen initRandomGen(int seed);

external
int, RandomGen nextNumber(RandomGen generator);

Figure 7. Signatures for a pseudo-random number generator in
SAC.

int[10] trouble()
{

gen = initRandomGen(42);
val, gen = with {

([0] <= iv < [10]) {
rand, gen2 = nextNumber(gen);

} : (rand, gen2);
} : (genarray([10], 0),

propagate(gen));

return(val);
}

Figure 8. Value non-determinism using propagate.

example, in which the order that side-effects are performed in has
no impact on the overall result, this clearly is the case. However, in
general we can no longer assume referential transparency.

As an example, consider the implementation of a pseudo-
random number generator as indicated by the signatures shown
in Figure 7.3 The function initRandomGen, given an initial seed
for the generation, creates a new pseudo-random number generator
and returns the corresponding stateful object of type RandomGen.
Note here, that in SAC the unique types are strictly separated from
the non-unique ones. This implies that the type RandomGen can
exclusively be used in single threaded fashion. For creating the
actual random numbers from such an object, there is the function
nextNumber. Similar to the drawPixel function presented in Fig-
ure 3, nextNumber consumes the old state of the generator and
returns a new state as second result besides the next random num-
ber itself. Note here, that these two functions on their own are fully
deterministic: Given two generators created with a common seed,
performing the same sequence of applications of nextNumber on
each generator will result in two identical sequences of numbers.
Thus, for the functions given in Figure 7, referential transparency
holds.

If we, however, add non-determinism by means of a WITH-loop
with propagate operator, referential transparency is no longer
given. Figure 8 presents an example. The function trouble com-
putes a vector of 10 pseudo-random numbers by first creating a
pseudo-random number generator gen, which is consecutively used
in a data-parallel WITH-loop to generate the vector. As we use a
static seed to initialise the generator, the set of generated numbers

3 The full implementation of a similar random-number generator can be
found in the SAC standard library.

is the same for each application of the function trouble. How-
ever, the generated numbers are written into the vector in a non-
deterministic order due to the use of the propagate operator. The
actual value of different applications of the function trouble thus
may differ, which invalidates referential transperancy.

Loosing referential transparency would be too high a price to
pay. Yet, not everything is lost. Burton in (Burton 1988) demon-
strates how to safely combine non-determinism with referential
transparency in a functional language. His solution is to transform
non-deterministic programs into deterministic ones by modelling
non-determinism as data. He parametrizes all occurrences of non-
deterministic operators by an explicit oracle, referred to as decision
in his paper. These oracles are then passed to the program as addi-
tional arguments. To minimize the number of additional arguments
that need to be passed along the call graph without unnecessarily
sequentializing evaluation, Burton proposes to use an infinite lazy
tree of oracles, as such an infinite tree can be split whenever a pro-
gram spawns multiple threads of computation without limiting the
number of oracles available to each thread. To preserve referential
transparency, it then suffices to ensure that two applications of a
non-deterministic operator to the same arguments, in particular to
the same oracle, yield the same result.

We can apply this technique to our setting by parametrizing
each propagate operation by an explicit oracle. Furthermore, we
need to pass these oracles as arguments to the program and to dis-
tribute them along the call graph to the corresponding propagate
operations. This could be done by a straight-forward rewriting of
the source code. The only difficulty that remains is to ensure that
each evaluation of an expression containing a propagate WITH-
loop using the same oracle yields the same result. As the non-
determinism in evaluation order is outside of our control, we can-
not guarantee this for multiple evaluations of the same expression.
However, we can ensure that each oracle is only used once using the
existing uniqueness typing infrastructure. Instead of parametrizing
a program by only the global state TheWorld, we could addition-
ally add a second global state TheOracles. We could then allow,
following Burton’s proposal of an infinite lazy tree of oracles, to
split TheOracles into sub-states representing parts of the tree. Fi-
nally, we would need to modify the propagate operator to ad-
ditionally expect a tree of oracles which can be safely split and
passed on into each iteration and where the remaining oracle sub-
trees would be recombined into a new tree. The only drawback of
this solution is the increased amount of parameters that needs to be
distributed.

Fortunately, this double parametrization is not necessary in
many cases. The key insight here is that for sub-states of TheWorld,
the splitting of the global state TheWorld always coincides with
the splitting of the corresponding part of TheOracles. Thus, we
can simply piggy-back the tree of oracles onto the global state
TheWorld. Whenever we split a sub-state off TheWorld, we im-
plicitly split off a sub-tree of the corresponding tree of oracles, as
well. In the same way, the propagate operator can implicitly ex-

64

external
World, RandomGen initRandomGen(World world, int seed);

World, int[10] trouble(World world)
{

world, gen = initRandomGen(world, 42);
val, gen = with {

([0] <= iv < [10]) {
rand, gen2 = nextNumber(gen);

} : (rand, gen2);
} : (genarray([10], 0),

propagate(gen));

return(world, val);
}

Figure 9. Referentially transparent version of trouble.

tract a tree of oracles from the state it propagates. This implies that
only sub-states of TheWorld can be legally used as argument to a
propagate operator. However, as every state can be defined such
that it is a sub-state of TheWorld, this imposes no major limita-
tions. Furthermore, this restriction can easily be checked statically.
Checking this restriction for our two examples immediately reveals
that our Mandelbrot example from Figure 6 is fine whereas the
example in Figure 8 is illegal.

Finally, as each oracle is only used once (due to the uniqueness
property), we do not need to memorize its decision. In fact, apart
from the conceptual idea, we do not need to materialize oracles or
trees thereof in any way.

Using this approach, we can now define the function trouble
without loosing referential transparency. We only need to rede-
fine RandomGen as a sub-state of TheWorld. This is done in Fig-
ure 9 by adding an argument and result of type World to the func-
tion initRandomGen. This in turn forces the function trouble
to be parametrized by TheWorld, as well. Now, two applications
of trouble to the same arguments is a violation of the unique-
ness property of TheWorld and thus illegal. Therefore, all legal
programs are referentially transparent.

Summing up, to preserve referential transparency in the pres-
ence of propagate operations, it suffices to require that the
propagate operator may only be used on objects that, at least ulti-
mately, are sub-environments of the global environment TheWorld.

6. Concurrent Evaluation
To gain a first empirical insight into the effectiveness of our ap-
proach, we have added prototypical support for the propagate
operator to our research compiler sac2c.4 All executables for
our measurements were compiled using revision 15805 of sac2c
1.0-beta with compiler flags -O3 -noPHM -mt -minmtsize
16. The flag -O3 enables all default optimisations. However, due
to a problem with the current implementation we were not able to
use SAC’s own heap manager, which therefore was disabled us-
ing -noPHM. Although this degrades runtime performance overall,
it should not have an impact on the relative differences in run-
time we are interested in. Finally, -mt -minmtsize 16 enables
the multi-threaded back-end and instructs the compiler to compute
only arrays with more than 16 elements per axis concurrently.

We have conducted our experiments on a SunFire x4200 with
two AMD Opteron 275 Series dual-core processors running at
2.2GHz, equipped with a total of 8GB memory. As operating sys-
tem, we have employed the 32 bit version of Ubuntu Linux 7.04.

4 The compiler including the SDL binding and the source code of
our example can be downloaded from the project’s homepage at
http://www.sac-home.org

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4

w
al

l-c
lo

ck
 ti

m
e

in
 s

ec
on

ds

number of threads

for
propagate

Figure 10. Wall-clock runtime of the Mandelbrot set example for
different number of threads.

For our comparison, we have used two implementations of the
escape-time algorithm similar to those presented in Figures 4 and 6,
using for-loops and the propagate operator, respectively.5 Each
version computes the Mandelbrot fractal for 2 highly imbalanced
sections of the complex plane with a resolution of 640×480 pixels.
We have measured the wall-clock time of three iterations each for
1, 2, 3 and 4 concurrent threads, using the \usr\bin\time util-
ity. The number of threads to employ was passed to the executables
at runtime using the -mt argument. The results are shown in Fig-
ure 10.

As can be seen, the runtime of both versions does not signif-
icantly differ for the sequential case using only one thread. This
suggests that the reduced loop overhead due to the fusion of the for
loop that performs the I/O operation and the data-parallel WITH-
loop does not significantly affect the overall runtime. However, the
runtime measurements for more than one thread show that the ad-
ditional concurrency introduced by the propagate operator indeed
has a positive effect. The version using propagate completes sig-
nificantly faster than the version using for-loops once two threads
are used. For three threads, this advantage increases further. Using
four processors, we do not observe a similar decrease in runtime.
We attribute this to the fact that we did not have exclusive access
to the server and thus other processes were running in the back-
ground. Furthermore, the X server and helper threads of the SDL
runtime system required to perform the I/O operations might have
impacted the runtime using more than three threads, as well.

To better visualize the different scaling behaviour of the two
implementations, we have computed the speedup of the multi-
threaded versions in comparison to the single-threaded for-loop
version. As Figure 11 shows, the for-loop version does not scale
well with increasing number of processors. For two threads, it is
only 1.29 times faster than the sequential version. When using three
threads this increases to a speedup of factor 1.55. The relatively
low speedup can be explained by the for-loops that perform the I/O
operations as these are inherently sequential and thus cannot make
use of multiple threads.

For the version using propagate the speedups are significantly
better (1.54 for two threads and 2.11 for three threads). We attribute
this advantage to the ability to effectively interleave data-parallel
computations with I/O operations, thereby hiding their sequential
nature.

5 The full source code is available as part of the sac2c compiler distribu-
tion.

65

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4

sp
ee

du
p

number of threads

for
propagate

Figure 11. Speedup of the two implementations of the Mandel-
brot fractal example in comparison to the single-threaded for-loop
version for different number of threads.

7. Related Work
The basic idea behind our approach is by no means new. Hu-
dak in (Hudak 1986) already proposed the introduction of non-
determinism to cater for side-effecting operations within concur-
rently executed parts of functional programs. However, in that pa-
per, the focus was not on I/O or other inherently sequential oper-
ations, but it was an approach to implement incremental in-place
array updates concurrently. Nevertheless, the formalisation intro-
duced there bears some similarity with the approach presented in
this paper: the in-place array updates constitute our side-effecting
operations. They can be used within a special mapping construct
where they are considered functions that take an array and produce
an updated one. The semantics definition of that construct chooses
a non-deterministic order for the execution of these functions which
enables concurrent executions. To our knowledge, these ideas have
neither been implemented nor have they been generalised in the
way proposed in this paper.

The need for concurrent I/O operations has also been identified
in the distributed computing community. Gava describes in (Gava
2004) how concurrent I/O can be integrated into BSML an ML vari-
ant for bulk synchronous parallel (BSP) algorithms. The approach
taken there does not attempt to model the underlying side-effect
at all. Instead, special mechanisms are proposed that ensure some
form of well-behaved functionality.

More recently, Terauchi and Aiken in (Terauchi and Aiken
2008) proposed a new approach for integrating side-effects into
functional languages. They motivate their design by the aim ”to add
side effects without imposing parallelism-destroying sequential-
ity“. By introducing so-called witnesses, they enable the program-
mer to specify explicitly how much synchronisation with respect to
side-effects is desired. The main achievement is the identification
of statically inferable criteria which suffice to prove confluence
for their language. Although this approach can be used to reduce
the sequential sections of a program, the observable result remains
fully deterministic. This contrasts our approach, where the free-
dom to have non-deterministically chosen execution orders enables
further concurrency.

An alternative semantics for the propagate operator would be
to split the propagated state into one sub-state per iteration of the
corresponding WITH-loop and to combine these sub-states again
after all iterations have been computed. For our first example, this
would require means to split the state representing the display into
sub-states representing individual pixels and to afterwards glue
these back together. In particular, such a decomposition would need
non-unique arrays of unique objects. In principle, this should be

possible using an extended version of uniqueness typing (Achten
and Plasmeijer 1995). However, this technique is not as expres-
sive as the approach we have chosen here. For instance, using a
sequential pseudo-random number generator within a data-parallel
operation as shown in Figure 8 cannot be expressed as no meaning-
ful decomposition of the state into independent sub-states exists.
Furthermore, as the execution order in this case affects the overall
result, the inherently deterministic semantics of uniqueness typing
would not allow for a concurrent execution. In terms of permitted
concurrency, this alternative semantics thus resides in the same cat-
egory as the approach by Terauchi and Aiken.

8. Conclusions
Amdahl’s law states that the overall performance of a program is
determined by its sequential components. In this paper, we have
presented an approach to reduce this effect by combining a data-
parallel map construct with side-effecting operations. Nevertheless,
we preserve data dependencies between side-effecting operations
within and across the data-parallel map construct. This property
ensures the validity of all existing compiler optimisations as well as
our mechanisms for exploiting concurrency on concurrent systems.

We have made some initial runtime experiments that demon-
strate the effectiveness of our approach even on small commodity-
market multi-processor systems. While runtime speedups degrade
rapidly if side-effecting output is performed sequentially, our new
scheme delivers clearly identifiable improvements. The remarkable
observation here is that we see these improvements although the
side-effecting operation under investigation needs to be executed
exclusively by at most one thread at any given time. Key for this to
be possible is the non-deterministic semantics of our extension. It
enables the runtime system to effectively interleave computations
with side-effects in such a way that the entire program is executed
in a concurrent fashion.

Besides further runtime studies it remains to be observed what
impact the availability of such a non-deterministic language con-
struct has. On the one hand, its behaviour might be unexpected for
the average programmer when being used extensively. On the other
hand however, we may see other applications of it that enable novel
ways of expressing non-deterministic problems.

References
P. Achten and R. Plasmeijer. The ins and outs of Clean I/O. Journal of

Functional Programming, 5(1):81–110, 1995.
Advanced Micro Devices. AMD Opteron. http://www.amd.com/us-

en/Processors/ProductInformation/, November 2008.
George Almási, Cǎlin Caşcaval, nos José G. Casta Monty Denneau, Derek

Lieber, José E. Moreira, and Jr. Henry S. Warren. Dissecting cyclops:
a detailed analysis of a multithreaded architecture. SIGARCH Comput.
Archit. News, 31(1):26–38, 2003. ISSN 0163-5964.

G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of AFIPS, volume 30, page
483, Washington, DC, USA, 1967.

F. W. Burton. Nondeterminism with referential transparency in functional
programming languages. Comput. J., 31(3):243–247, 1988. ISSN 0010-
4620. doi: http://dx.doi.org/10.1093/comjnl/31.3.243.

T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine
architecture and its first implementation: a performance view. IBM J.
Res. Dev., 51(5):559–572, 2007. ISSN 0018-8646.

Michael Garland, Scott Le Grand, John Nickolls, Joshua Ander-
son, Jim Hardwick, Scott Morton, Everett Phillips, Yao Zhang,
and Vasily Volkov. Parallel Computing Experiences with CUDA.
IEEE Micro, 28(4):13–27, 2008. ISSN 0272-1732. doi:
http://doi.ieeecomputersociety.org/10.1109/MM.2008.57.

Frédéric Gava. Parallel I/O in bulk-synchronous parallel ML. In Interna-
tional Conference on Computational Science, pages 331–338, 2004.

66

S. Gochman, A. Mendelson, A. Naveh, and E. Rotem. Introduction to Intel
Core Duo processor architecture. Intel Technology Journal, 10(2), 2006.

C. Grelck. Implementing the NAS Benchmark MG in SAC. In Proceedings
of the 16th International Parallel and Distributed Processing Symposium
(IPDPS’02), Fort Lauderdale, Florida, USA. IEEE Computer Society
Press, 2002.

C. Grelck and S.-B. Scholz. A Functional Array Language for Efficient
Multithreaded Execution. International Journal of Parallel Program-
ming, 34(4):383–427, 2006.

C. Grelck and S.B. Scholz. Classes and Objects as Basis for I/O in SAC. In
T. Johnsson, editor, Proceedings of the Workshop on the Implementation
of Functional Languages’95, pages 30–44. Chalmers University, 1995.

C. Grelck, S.-B. Scholz, and K. Trojahner. WITH-Loop Scalarization –
Merging Nested Array Operations. In G. Michaelson and P. Trinder,
editors, Proc. of the 15th International Workshop on Implementation
of Functional Languages (IFL’03), Edinburgh, UK, Selected Papers,
volume 3145 of LNCS, pages 118–134. Springer, 2004.

C. Grelck, K. Hinkfuß, and S.-B. Scholz. With-Loop Fusion for Data Local-
ity and Parallelism. In Frank Huch A. Butterfield, Clemens Grelck, edi-
tor, Implementation and Application of Functional Languages, 17th IN-
ternational Workshop, IFL’05, Selected Papers, volume 4015 of LNCS,
pages 178–195. Springer, 2006.

Clemens Grelck. Shared Memory Multiprocessor Support for Functional
Array Processing in SAC. J. Funct. Program., 15(3):353–401, 2005.
ISSN 0956-7968. doi: http://dx.doi.org/10.1017/S0956796805005538.

Jim Held, Jerry Bautista, and Sean Koehl. From a few cores to many: A
tera-scale computing research overview. White Paper, Intel Corporation,
2006.

Paul Hudak. Arrays, non-determinism, side-effects, and parallelism: A
functional perspective. In Graph Reduction, pages 312–327, 1986.

R.K.W. Hui and K.E. Iverson. J Introduction and Dictionary. Jsoftware
Inc., 2004.

International Standards Organization. Programming Language APL, Ex-
tended. ISO N93.03, ISO, 1993.

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara:
A 32-way multithreaded sparc processor. IEEE Micro, 25(2):21–29,
2005. ISSN 0272-1732. doi: http://dx.doi.org/10.1109/MM.2005.35.

Ernest Pazera. Focus On SDL. Course Technology PTR, 1st edition, 2002.
S.-B. Scholz. With-loop-folding in SAC – Condensing Consecutive Array

Operations. In C. Clack, K.Hammond, and T. Davie, editors, Implemen-
tation of Functional Languages, 9th International Workshop, IFL’97, St.
Andrews, Scotland, UK, September 1997, Selected Papers, volume 1467
of LNCS, pages 72–92. Springer, 1998.

Sven-Bodo Scholz. Single Assignment C — efficient support for high-
level array operations in a functional setting. Journal of Functional
Programming, 13(6):1005–1059, 2003.

A. Shafarenko, S.-B. Scholz, S. Herhut, C. Grelck, and K. Trojahner. Imple-
menting a numerical solution for the KPI equation using Single Assign-
ment C: lessons and experience. In A. Butterfield, editor, Implementation
and Application of Functional Languages, 17th INternational Workshop,
IFL’05, volume 4015 of LNCS, pages 160–177. Springer, 2006.

Tachio Terauchi and Alex Aiken. Witnessing side effects. ACM Trans.
Program. Lang. Syst., 30(3), 2008.

67

