
Compiling the
Functional Data-Parallel Language SaC
for Microgrids of Self-Adaptive Virtual

Processors?

Clemens Grelck1,2, Stephan Herhut1, Chris Jesshope2, Carl Joslin1, Mike
Lankamp2, Sven-Bodo Scholz1, and Alex Shafarenko1

1 University of Hertfordshire, School of Computer Science, Hatfield, United Kingdom
{c.grelck,s.a.herhut,c.a.joslin,s.scholz,a.shafarenko}@herts.ac.uk

2 University of Amsterdam, Institute for Informatics, Amsterdam, The Netherlands
jesshope@science.uva.nl,{c.grelck,m.lankamp}@uva.nl

Abstract. We present preliminary results from compiling the high-
level, functional and data-parallel programming language SaC into a
novel multi-core design: Microgrids of Self-Adaptive Virtual Processors
(SVPs).
The side-effect free nature of SaC in conjunction with its data-parallel
foundation make it an ideal candidate for auto-parallelisation. Notwith-
standing these favourable pre-conditions, scheduling and data-placement
pose major challenges for effective parallelisation of irregular applications
because fine-grained dynamic approaches inflict large overheads on con-
ventional architectures. The Microgrid architecture promises a radical
shift: thread creation and context switches are implemented in hardware
and cause negligible overhead. Likewise, scheduling of tasks to computing
resources is catered for by hardware.
This paper investigates aspects of the Microgrid architecture which may
influence the overall performance of compiled data-parallel programs.
In particular, we look at alternative thread creation schemes for n-
dimensional, data-parallel operations and their effect on overall perfor-
mance. Furthermore, we investigate the architecture’s capability to cope
with workload imbalances within such operations.
The paper presents a sequence of experiments on a cycle-accurate emu-
lator of the Microgrid architecture from which we derive some guiding
principles for an effective compilation of data parallel operations. Based
on these principles, we present a compilation scheme for the data-parallel
core of SaC.

1 Introduction

Single Assignment C (SaC) is a data-parallel, purely functional array program-
ming language that aims at high-level, generic program specifications [?,?]. With
? This work was funded by the European Union Apple-CORE project grant no. FP7

215216.

SaC, programmers can express algorithms in a succinct way, close to abstract
mathematical notations. All forms of resource management in SaC, e.g., mem-
ory management for arrays or thread management for parallel execution, are
dealt with implicitly by compiler and runtime system. The design of SaC en-
courages an extensive use of data-parallel operations. They are defined by a
SaC-specific language construct called a with-loop. Several optimisations have
been developed that aim at combining several small-grain with-loops into fewer,
more complex ones [?]. The benefits of these optimisations are twofold: Some
redundant computations can be avoided and the need for temporary arrays is re-
duced. Both of these effeccts can iimprove vastly the overall memory bandwidth
requirements.

Such optimised with-loops are good candidates for compilation into concur-
rently executable code [?]. When targeting traditional architectures, however,
the high overhead inflicted by thread management and synchronisation forces us
to adapt the amount of concurrency in compiled code to the available resources
in a rather static manner. The Scheduling of computable tasks to executable
threads mostly happens statically to avoid excessive runtime overhead; dynamic
and adaptive scheduling schemes can only be applied carefully and conserva-
tively.

The novel Microgrid architecture [?] promises a radical departure from such
restrictions. It is based on a processor design that supports thread and resource
management very efficiently in hardware through dedicated extensions to a stan-
dard processor ISA. Its implementation adheres to the SVP model (Self-Adaptive
Virtual Processor) [?], a hardware abstraction for highly parallel, adaptive sys-
tems in general.

As a software abstraction layer for Microgrids, the language µTC [?] has been
developed. It augments standard C with a few additional language constructs
that directly map to the ISA extensions of the SVP. The most important such
extension is the create construct for creating a family of dynamically managed,
light-weight micro-threads. Immediate hardware support suggests almost neg-
ligible overhead for thread creation and synchronisation. This property makes
µTC an ideal compilation target for SaC: In contrast to traditional architectures,
we can exhibit the full amount of concurrency characteristic for with-loops to
the underlying execution machinery and have the hardware schedule execution
according to its own needs for the benefit of high overall performance.

In this paper we present our initial results from developing a first compilation
scheme for SaC targeting µTC. In particular, we present some experimental
results for alternative approaches to implementing n-dimensional data-parallel
operations in the SVP model in general, and a formal compilation scheme for
the core data-parallel language construct of SaC.

The paper is structured as follows: In Section 2 we give a brief overview on
SaC. The next section explains the key features of the SVP followed by a section
on its programming interface µTC. Section 5 investigates the runtime effects
of different code generation strategies for data-parallel algorithms on arrays in

general. Based on these findings, Section 6 provides a first compilation scheme
for with-loops in SaC. Conclusions are drawn in Section 7.

2 SaC — Single Assignment C

As the name suggests, SaC is a functional subset of C, extended by multi-di-
mensional arrays as first class citizens. We have adopted as much of the syntax of
C as possible to ease adaptation for programmers with a background in impera-
tive programming. Despite its C-like appearance, the semantics of SaC code is
defined by context-free substitution of expressions. “Imperative” language fea-
tures like assignment chains, branches, or loops are semantically explained and
internally represented as nested let-expressions, conditional expressions, and
tail-end recursive functions, respectively. Nevertheless, wherever SaC code syn-
tactically coincides with C code, the functional semantics of SaC also coincides
with the imperative semantics of C. As a consequence, programmers may keep
their preferred model of thinking while the SaC compiler may exploit the func-
tional semantics for advanced optimisation [?].

In contrast to other array languages, SaC provides only a very small set
of built-in operations on arrays: primitives to retrieve data pertaining to the
structure and contents of arrays, e.g., an array’s rank (dim(array)), its shape
(shape(array)), or individual elements (array[index-vector]). Aggregate array
operations are specified in SaC itself using powerful array comprehensions, called
with-loops. Their syntax is defined in Figure 1.

Expr ⇒ ...

| with { [Generator : Expr ;]+ } : Operation

Generator ⇒ (Expr <= Identifier < Expr[Filter])

Filter ⇒ step Expr [width Expr]
Operation ⇒ genarray (Expr [, Expr])

Fig. 1: Syntax of with-loop expressions

A with-loop is a complex expression: It starts with the keyword with fol-
lowed by a non-empty list of generator–expression pairs enclosed in curly brack-
ets. They define mappings from indices to values. Subsequently, an operation
determines what to do with these values, i.e., it defines the overall meaning of
the with-loop.

Due to space limitations, we restrict ourselves to one operation, the genarray
operation, which is prototypical for all major operations available in full SaC.3

Using genarray(shp, default) as operation, a with-loop creates a new array
of shape shp .

3 Compilation schemes for the other operations can be found via the web site of
the Apple-CORE project (www.apple-core.info) and via the home page of SaC
(www.sac-home.org).

Each generator defines a set of indices, more precisely index vectors, along
with an index variable representing elements of this set. Two expressions, which
must evaluate to integer vectors of equal length, define lower and upper bounds
of a rectangular index vector range. For each element of this set of index vectors
the associated expression is evaluated. It constitutes the corresponding element
value of the array to be created. In the case of a genarray-with-loop, elements
of the result array that are not covered by the generator are initialised by the
(optional) default expression in the operation part. For example, the with-loop
with {
([1,1] <= iv < [3,4]) : iv[0] + iv[1];

}: genarray([3,5], 0)

yields the matrix

(
0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

)
. The generator in this example with-loop defines

the set of 2-element vectors in the range between [1,1] and [3,4]. The index
variable iv represents elements from this set, i.e., 2-element vectors, in the as-
sociated expression iv[0] + iv[1]. Therefore, we compute each element of the
result array as the sum of the two components of the index vector, whereas the
remaining elements are initialised with the value of the default expression.

Multiple generator–expression pairs allow us to map different index sets to
entirely different expressions. As a simple example, the with-loop
with {
([0,0] <= iv < [1,4]) : 0;
([0,0] <= iv < [3,1]) : 1;
([1,1] <= iv < [3,4]) : iv[0] + iv[1];

}: genarray([3,5], 0)

yields the matrix

(
1 0 0 0 0
1 2 3 4 0
1 3 4 5 0

)
. In case the generators define index sets that are

not pairwise disjoint, their (textual) sequence matters: the last mapping from
the list is taken.

An optional filter may be used to further restrict generators to periodic grid-
like patterns, e.g.,
with {
([1,1] <= iv < [3,8] step [1,3] width [1,2]) : 1;

}: genarray([3,10], 0)

yields the matrix

(
0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 0 0
0 1 1 0 1 1 0 1 0 0

)
. A missing width specification defaults

to 1 in each dimension; a missing step specification likewise defaults to 1, i.e.,
no stepping whatsoever. A width specification that equals or exceeds the step in
some dimension is equivalent to a dense generator. It is noteworthy that lower
and upper bounds, as well as step and width specifications are fully-fledged
expressions and not restricted to constants as in our illustrative examples.

More formal descriptions of with-loops along with detailed introductions to
SaC and its programming methodology can be found in [?,?,?].

3 Microgrids of Self-Adaptive Virtual Processors

The key idea of the Microgrid architecture is to create a common framework
for standard processing cores which have been extended in their ISAs so that
they can be used concurrently in a cooperative fashion. As a unifying concept,
all such cores need to adhere to the model of a Self-Adaptive Virtual Processor
(SVP).

In a Microgrid, the unit of work is a family of homogeneous and indexed
threads, called microthreads. Families of microthreads are created at places. A
place is an abstraction of a set of processing resources configured into a ring
network somewhere on chip. A place accepts a remote SVP action to create a
family of threads from another processor in a different place. This is called a
delegation. Delegation is a mechanism for coarse-grain distribution of work in a
Microgrid. The place accepts the create parameters, distributes and executes the
threads that make up the family and responds to any SVP control actions for
that family. In the conventional setting, this is equivalent to the remote execution
of a unit of work (a job) on a set of processors. For more information about the
SVP model see [?] and for more information about Microgrids see [?].

The threads in a family are automatically distributed to the cluster of pro-
cessors but not necessarily all at the same time. If the number of threads exceeds
the resources available there, thread creation may be delayed on those resources.
The distribution is, however, completely deterministic and built into the im-
plementation of the create instruction in the DRISC processors comprising the
cluster. The distribution is primarily parameterised by

1. the number of threads in a family (N),
2. the number of processors in the place (P) and
3. the distribution strategy which is either local or global.

A local distribution creates all threads in one processor whereas a global distri-
bution tries to involve all processors of a place evenly. However, this rule may
be overriden whenever a paucity of resources occurs on a processor.

As the programming model for Microgrids is recursive, threads that have
been distributed can themselves create subordinate families. For example, a 2-
dimensional data-parallel operation could be implemented as a family of threads,
each of which creates a subordinate family. Alternatively, we could create a single
flat family of threads, one per element. With the former choice a pair of indices
is generated automatically, whereas in the latter case we have a single index.
For a nested create, each such subordinate family is distributed relative to its
own parent’s location in the ring. Note that there is no theoretical limit to the
depth of recursion. However, a practical limit exists based on the resources used
by existing threads on a processor.

It should also be noted that in order to make global identification of a dis-
tributed family feasible, we have implemented a sequentialisation of creates over
the cluster’s ring network. Only one thread at a time may acquire a token in the
ring allowing it to create a family at a central registration place referred to as
default place. Local creates can be executed concurrently across processors.

4 Programming Microgrids through µTC

The programming language µTC is an extension of standard C. In essence, it
adds language support for thread creation and thread management. For the
context of this paper, it suffices to introduce the two most important language
constructs of µTC: create and sync. Their syntax is summarised in Figure 2.

Statememt ⇒ ...

| create (Id ; Expr ; Expr ; Expr ; Expr ; Location ; Expr) Block

| sync (Id)

Location ⇒ (local | global)

Fig. 2: Syntax of µTC extensions

A create-statement of the form

create(fid ; start ; limit ; step ; block ; location ; timer)
statement-block

creates a new family of threads, where each thread executes the statement block
statement-block. The various parameters of the create-statement have the fol-
lowing meaning:

fid is an integer variable provided by the creating context; it receives the unique
family identifier, which is needed for subsequent synchronisation or termi-
nation of the family.

start is an integer expression that defines the start of the index sequence for
the family of threads (default value: 0).

limit is an integer expression that defines the limit of the index sequence for
the family of threads (default value: unlimited).

step is an integer expression that defines the increment between index values
(default value: 1).

block is an integer expression that defines the maximum number of threads
allocated per processor in a single allocation round (default value: system
defined).

location defines the resource on which the family will execute. A special re-
source called local forces execution of this family on the same processor as
the creating environment while the global resource delegates the scheduling
of work onto resources to the system (default value: system defined).

timer is an integer expression that restricts the number of allocation rounds to
at most one per tick of a clock (default value: threads created as resources
become available, subject to the constraints imposed by block).

All parameter expressions are evaluated exactly once upon execution of the
create-statement. Any parameter except for the family identifier may be left
out in favour of the default value as defined above.

Complementary to the create-statement, a sync-statement of the form

sync(fid)

synchronises the family of threads identified by the variable fid . Execution of
the thread that issues the sync-statement is delayed until all members of the
given family of threads have completed.

In addition to the create and sync statements, µTC features type qualifiers
that can be used within the statement block of a thread. Of these, only the
qualifier index is relevant in the context of this paper. A variable attributed as
index must be of type int; it provides access to the thread’s index within a
family. A full definition of µTC including further statements and qualifiers can
be found in [?].

5 Towards Compiling SaC to µTC

At first glance, µTC seems to be an ideal target language for a data-parallel
language like SaC: Its built-in create instruction provides the required parallel
map-instruction and the shared variables allow for linear dependencies where
needed. However, there is still a large gap between the levels of abstraction of
the two languages that needs to be bridged. In particular, compiling the truly
n-dimensional data-parallel map of SaC, i.e., the with-loop, to the strictly one-
dimensional map instruction of µTC, i.e., the create instruction, opens up an
interesting design space.

On the one hand, we could compile the with-loop into a single, flat create
instruction. Yet, this comes at a high price. In general, the body of a with-loop
may reference the current index position, an n-element vector. Thus, when using
a one-dimensional create instruction, we would need to recompute this vector
from the current index of the create instruction for each iteration. Furthermore,
for multi-generator with-loops, we would have to dynamically choose the ap-
propriate generator depending on the create index, leading to the introduction
of a sequence of conditionals into the body of the create instruction. Again,
these conditionals would be evaluated for each iteration.

Using nested creates on the other hand would resolve all these issues. In the
nested setting, we could directly derive the index vector of the with-loop from
the indices of the create instructions corresponding to each dimension. More-
over, we would be able to model multi-generator with-loops by issuing multiple
create instructions per dimension, thereby saving the conditionals in the body
of the create instructions. However, the excessive use of create instructions
for thread creation might have an adverse effect on the runtime behaviour, even
though a single create instruction has only a negligible impact. Also, intro-
ducing nesting gives rise to the question of how the created threads should be
mapped to the place. We could either use a global mapping on all levels and thus
achieve a very fine grained workload distribution. Or we could only use global dis-
tribution on the outer levels and distribute all inner create instructions locally.
This would reduce the communication cost incurred by global thread creation
but would yield a more coarse grained work distribution, which might be more
susceptible for workload imbalances.

So, to choose an appropriate translation of with-loops in SaC to create
instructions in µTC, we need to answer the following questions:

1. What impact does the use of nested creates versus the use of one flat create
have on the overall runtime?

2. How does using local distribution on inner dimensions versus using global
distribution on all dimensions affect workload distribution and overall run-
time?

To gain an insight, we have measured the runtimes of a data-parallel opera-
tion over 100x100-element arrays, either expressed by a one-dimensional create
instruction or by a two-level nesting of create instructions. In both cases we
thereby use an overall number of 10,000 threads to compute the result. However,
in the nested case we need a further 100 threads to model the nesting. We have
then distributed these threads over a place of P cores with P varying from 1 to
128. This, even with 128 cores, leaves at least 78 threads per core.

For the flat create, we have always used a global distribution. In the nested
case, we have measured the runtime for two scenarios: First, we have measured
a fully global distribution where all threads are created globally. We will refer to
this version as global/global in the remainder of this section. In a second run, we
have distributed the inner threads locally and have used the global distribution
only for the outer ones. We have named this version global/local.

To investigate the impact of different distribution schemes not only on the
overall runtime but on the workload balancing, as well, we have performed all
experiments with two sets of workloads. The first, in the sequel referred to as
flat, applies a fixed workload Wi,j = D for some constant D to all threads.
Thus, the work is perfectly balanced between threads. To measure the impact
of unbalanced workloads, we have used a second set of workloads where the
workload per thread increases with the indices on both axes, i.e., for the thread
with indices i and j, we use a workload of Wi,j = i+j

2∗100D. We will refer to this
workload as diagonal.

All tests were executed on a Microgrid emulator[?]. For each test case, we
have measured the number of cycles required by each core. The overall runtime
of each test case is then given by the number of cycles that have elapsed from
the start of the computation until the last core has finished. To compare these
runtimes, we have computed speedups by relating the runtime of each test case
on a certain number of cores to the best runtime over all test cases on a single
core.

5.1 Flat workload with D = 12

In our first experiment, we have used the flat workload distribution with a rel-
atively small constant workload of D = 12. The results are shown in Figure 3.
In all runtime graphs, e.g., Figures 3a, 3b, and 3c, the y-axis gives the num-
ber of cycles that each core along the x-axis required to complete its workload.
Moreover, we have plotted the results for decreasing number of maximum cores
available along the z-axis.

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 5000

 10000

 15000

 20000

load

Workload Distribution

Max Processors

load

(a) Outer global, inner global

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 5000

 10000

 15000

 20000

load

Workload Distribution

Max Processors

load

(b) Outer global, inner local

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 5000

 10000

 15000

 20000

load

Workload Distribution

Max Processors

load

(c) Non-nested global

 0

 16

 32

 48

 64

 80

 96

 112

 128

 16 32 48 64 80 96 112 128

Sp
ee

d
up

Processors

Global, Local
Global, Global

Global

(d) Speed up

Fig. 3: Microgrid emulator - Flat distribution (Wi,j = D) with a workload of D = 12
on a 100x100 matrix.

Of all three setups, the one-dimensional create instruction shown in Fig-
ure 3c has the best balanced workload distribution. It uses all cores available
and evenly distributes the work amongst them. For the nested create instruc-
tion using the global/local distribution (cf. Figure 3b), the workload distribution
is equally balanced. However, not all available cores are used. Instead, only fac-
tors of 100 are utilised. We ascribe this to the scheduling algorithm used by the
Microgrid emulator. Given P cores and T threads, it allocates dT/P e threads
to each core until it runs out of threads. The same effect is observable for the
global/global version as shown in Figure 3a. However, the workload distribution
is heavily skewed towards higher-numbered cores.

A look at the speedup graph in Figure 3d reveals the impact of the differ-
ent workload distributions on the overall runtime. The one-dimensional create
statement achieves the best runtime and scales nearly linearly with increasing
number of cores. We attribute the slight decline in scaling to the increased com-
munication cost with growing number of cores. Both nested versions show a
pronounced stepping in speedups due to the imbalanced scheduling described
above. However, for factors of 100 they scale nearly as nicely as the non-nested
version. The remaining difference can be explained by the increased setup cost
of a nesting of create instructions compared to the single create instruction in
the one-dimensional case. One interesting artefact is the decline in performance
of the global/global version above about 75 cores. We suspect this to be a con-

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 5000

 10000

 15000

 20000

load

Workload Distribution

Max Processors

load

(a) Outer global, inner global

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 5000

 10000

 15000

 20000

load

Workload Distribution

Max Processors

load

(b) Outer global, inner local

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 5000

 10000

 15000

 20000

load

Workload Distribution

Max Processors

load

(c) Non-nested global

 0

 16

 32

 48

 64

 80

 96

 112

 128

 16 32 48 64 80 96 112 128

Sp
ee

d
up

Processors

Global, Local
Global, Global

Global

(d) Speed up

Fig. 4: Microgrid emulator - Diagonal distribution (Wi,j = i+j
2.0∗100 ∗D) with a workload

of D = 12 on a 100x100 matrix.

sequence of the saturation of the ring network needed to communicate global
thread creations across cores.

5.2 Diagonal workload with D = 12

To investigate how imbalanced workloads among different threads impact the
three different scenarios, we have repeated our measurements with the diagonal
workload distribution and a base workload of D = 12. As Figure 4c unveils,
the workload when using a single one-dimensional create statement is still very
well balanced. However, a slight skewing towards higher numbered processors
can be seen. For the global/local version shown in Figure 4b, the workload
distribution is still reasonably balanced, as well, exhibiting only the same slight
skew towards higher numbered processors. Overall, the hardware scheduling of
the Microgrid architecture is, for these two examples, able to tolerate workload
imbalance between threads. In case of the global/global version, the existing
imbalance of workloads (cf. Figure 3a) is further worsened by the imbalance
between single threads, as shown in Figure 4a.

The speedup graph presented in Figure 4d draws a picture similar to the flat
workload distribution (cf. Figure 3d). However, the overall speedup is smaller.
Whereas for the flat workload distribution a speedup of nearly a factor of 90
was achieved for 128 cores, the diagonal distribution limits the speedup to a

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 200

 400

 600

 800

 1000

 1200

 1400

load

Workload Distribution

Max Processors

load

(a) Outer global, inner global

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 200

 400

 600

 800

 1000

 1200

 1400

load

Workload Distribution

Max Processors

load

(b) Outer global, inner local

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 200

 400

 600

 800

 1000

 1200

 1400

load

Workload Distribution

Max Processors

load

(c) Non-nested global

 0

 16

 32

 48

 64

 80

 96

 112

 128

 16 32 48 64 80 96 112 128

Sp
ee

d
up

Processors

Global, Local
Global, Global

Global

(d) Speed up

Fig. 5: SaC simulator - Diagonal distribution (Wi,j = i+j
2.0∗100 ∗D) with a workload of

D = 12 on a 100x100 matrix.

factor of about 70 on the same number of cores. We assume this to be a direct
consequence of the less even workload distribution.

In both speedup graphs (cf. Figures 3d and 4d), the nested versions perform
slightly worse than the version using only a single create instruction. To probe
whether this is due to the different workload distributions or due to the overhead
of thread creation, we have implemented a workload distribution simulator for
this particular setting in SaC. It computes only the workload distribution for all
three scenarios without taking any overheads into account. The resulting data for
a diagonal workload distribution with a base workload of D = 12 is presented
in Figure 5. Figures (b) and (c) are nearly identical to their counterparts in
Figure 4. However, for the global/global case as plotted in Figure 5a, the picture
is rather different. Foremost, the anomaly for more than about 75 cores is gone.
As the SaC simulator does not take overheads into account, this supports our
theory that the anomaly is created by a saturation of the ring network.

This also manifests itself in the speedup graphs. As can be seen in Figure 5d,
the global/global version outperforms the non-nested version for number of cores
close to factors of 100. More strikingly, we can see that the global/global ver-
sion should outperform the global/local version due to its much more favorable
workload distribution. Comparing this to the measurements of the cycle-accurate
simulator reveals that indeed a considerable overhead for global creates has to
be paid.

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 100000

 200000

 300000

 400000

 500000

 600000

load

Workload Distribution

Max Processors

load

(a) Outer global, inner global

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 100000

 200000

 300000

 400000

 500000

 600000

load

Workload Distribution

Max Processors

load

(b) Outer global, inner local

 0 16 32 48 64 80 96 112 128

 0
 16

 32
 48

 64
 80

 96
 112

 128

 0

 100000

 200000

 300000

 400000

 500000

 600000

load

Workload Distribution

Max Processors

load

(c) Non-nested global

 0

 16

 32

 48

 64

 80

 96

 112

 128

 16 32 48 64 80 96 112 128

Sp
ee

d
up

Processors

Global, Local
Global, Global

Global

(d) Speed up

Fig. 6: Microgrid emulator - Diagonal distribution (Wi,j = i+j
2.0∗100 ∗D) with a workload

of D = 1024 on a 100x100 matrix.

5.3 Diagonal workload with D = 1024

Finally, to further investigate whether the anomaly for the global/global version
is due to communication overheads, we have increased the base workload to
D = 1024. This reduces the thread creation frequency, as the cores need longer
to compute each workload. The results in Figure 6 show that the anomaly indeed
disappears. However, the global/global version is still outperformed by the other
versions. We attribute this to a general overhead for global creates, as well as
the slightly more imbalanced workload distribution in the global/global case.

5.4 Lessons Learnt

Looking at the above experiments, there are two clear lessons to be learnt:

Flat is better than nested. Our experiments clearly show an advantage of
the flat, non-nested version over the nested versions. Apart from overhead
due to the higher number of create instructions and threads created, this
is mainly due to the better work balancing of non-nested creates.

Only distribute globally on the outer level. If a nested use of create in-
structions is unavoidable, e.g., due to the inherently n-dimensional nature of
computations like in the case of some with-loops, only distribute the outer-
most create globally and perform the remaining creates on the local core. As

our experiments show, a nesting of global create instructions might other-
wise saturate the ring network of the Microgrid. Furthermore, such a nesting
led, for our examples, to less balanced workload distributions.

Using these two design principles as guideline, we will in the next section develop
a compilation scheme for SaC with-loops to µTC.

6 Exposing the Data-Parallelism of SaC in µTC

All data-parallelism in SaC is expressed in terms of the multi-generator with-
loops as introduced in Section 2. During the compilation process of SaC pro-
grams, these are transformed by means of several optimisations (see [?] for de-
tails). These transformations try to avoid the creation of arrays that hold in-
termediate results and, more importantly, they ensure that the resulting multi-
generator with-loops have non-overlapping generators. This property together
with the side-effect free nature of SaC guarantees that all index-vector sets in
any given multi-generator with-loop can be traversed in arbitrary order with-
out affecting the overal result, i.e., they can be translated directly into create
instructions of µTC.

Putting the lessons learnt in the last section into action, we should try to
generate create instructions with large numbers of threads rather than a nesting
of smaller ones. Furthermore, we have learnt that if nested create instructions
cannot be avoided, we should only distribute the outermost dimension globally
and use the local distribution for the remaining dimensions.

Although it would be possible to use one create instruction for an entire
multi-generator with-loop, such an approach, in general, would introduce too
much overhead, as discussed in the previous section. Consequently, we compile
each generator into a nesting of create instructions, where each dimension of
the generator leads to one create instruction. Only if the width option is being
used, we may actually create two nested create instructions per dimension.
However, to minimise the penalty for using nested create instructions, we only
distribute the first create on the outermost dimension globally.

Figure 7 shows a formalisation of the basic compilation scheme for multi-
generator genarray-with-loops. It consists of rules of the form C[[D, expr]] =
expr′, which denote context-free substitutions of SaC program fragments expr
by µTC program fragments expr′. We use the argument D to distinguish between
the two distribution modes global and local. D can initially be set to any value.

Rule (1) allocates the memory for the result using a = MALLOC(shp); and it
triggers the successive compilation of the individual generators. An explicit ini-
tialization of the result array is not required as the generator sets are guaranteed
to be a partition of all legal index vectors. In the applications of the compila-
tion scheme to the individual generators, the expressions to be evaluated are
transformed into assignments of the form a[iv] = Op(iv), which ensures cor-
rect insertion of the computed values into the result array. Furthermore, as we
transform the outermost dimension next, we set the distribution to global.

C

D,

a = with {
(l1 <= iv <= u1 step s1 width w1) : Op1(iv);

.

.

.
.
.
.

(lm <= iv <= um step sm width wm) : Opm(iv);
} : genarray(shp);

 (1)

=

a = MALLOC(shp);
C[[global, (l1 <= iv <= u1 step s1 width w1) : a[iv] = Op1(iv)]]

.

.

.
C[[global, (lm <= iv <= um step sm width wm) : a[iv] = Opm(iv)]]

C
[[
D,

([li...ln−1] <= [ivi...ivn−1] <= [ui...un−1]
step [si...sn−1] width [wi...wn−1]) : Ass

]]
(2)

=

{
int fid;
create(fid, li; ui; si;;D;) {

index int ivi;
int stop = MIN(ivi+wi-1, ui);
int fid;
create(fid; ivi, stop; 1;;local;) {

index int ivi;

C
[[
local,

([li+1...ln−1] <= [ivi+1...ivn−1] <= [ui+1...un−1]
step [si+1...sn−1] width [wi+1...wn−1]) : Ass

]]
}
sync(fid);
}
sync(fid);
}

C[[D, ([] <= iv <= [] step [] width []) : Ass]] = Ass; (3)

Fig. 7: Compilation of multi generator genarray-with-loops.

The last two rules concern the compilation of generator expressions into a
nesting of create-instructions. As shown in rule (2), for each component of the
indexing vector iv, two nested create-instructions are created: An outer create
which creates threads using the lower bound li, upper bound ui and the step si

as thread indices. Hence, the index of that create can directly be utilised as index
component ivi. The inner create is used for treating width components larger
than 1. Note here that the inner create, as well as the subsequent sync can safely
be omitted whenever the width component under consideration is 1. The body
of the inner create derives from recursively applying the compilation scheme
to the generator with its leading index vector components being eliminated. We
use the local distribution scheme during the recursive descend and for inner
create operations. This ensures that only the outermost create instruction of
a with-loop is globally distributed.

Rule (3) covers the creation of the innermost body. It simply replaces the
empty generator by the assignment associated to it.

Since we use nested create operations to spawn the threads for the data-
parallel computation, we have to synchronize on the results on each level. How-
ever, as all threads of a with-loop are independent, it suffices to synchronize on

whole families of threads. We implement this barrier synchronisation by inserting
appropriate sync statements after each create operation in rule (2).

7 Conclusions

This paper presents our first results from investigating the suitability of the
SVP architecture as a compilation target for high-level data-parallel languages
in general and SaC in particular.

Although the architecture at first glance seems to be a perfect match for the
needs of the data-parallel paradigm, our initial experiments reveal that there is
still a considerable design space when it comes to actually creating code for data-
parallel operations. Choices in concurrency granularity and placement policies
can have significant impact on the overall runtime behaviour. When chosen ap-
propriately, the architecture can exhibit excellent dynamic scheduling behaviour
even in the presence of stark workload imbalances. However, when chosen poorly,
runtime speedups can be rather limited.

The compilation scheme proposed in this paper seems to constitute a reason-
able compromise between general applicability and runtime performance. Fur-
ther experiments indicate that some optimisations such as “unrolling” of small
create operations or code reorganisation to increase data locality can yield fur-
ther improvements. Quantitative results to this effect, however, remain future
work.

