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Abstract. This paper briefly introduces SaC: a data-parallel language
with an imperative feel but side-effect free and declarative. The expe-
riences of porting a simulation of unsteady shock waves in the Euler
system from Fortran to SaC are reported. Both the SaC and Fortran
code was run on a 16-core AMD machine. We demonstrate scalability
and performance of our approach by comparison to Fortran.

1 Introduction

In the past when high performance was desired from code, high-levels of ab-
straction had to be comprimised. This paper will demonstrate our approach
which overcomes these shortcomings: we will present the data-parallel language
SaC [14] and exemplify its usage by implementing an unsteady shock wave sim-
ulator in the Euler system. SaC was developed by an international consortium
coordinated by one of the authors (Sven-Bodo Scholz). We will compare the
performance of our approach against Fortran by running this application on a
16-core computation server.

The language is close to C syntactically, which makes it more accessible to
computational scientists, while at the same time being a side-effect free, declar-
ative language. The latter enables a whole host of intricate optimisations in the
compiler and, perhaps more importantly, liberates the programmer from imple-
mentation concerns, such as the efficiency of memory access and space manage-
ment, exploitation of data-parallelism and optimisation of iteration spaces. In
addition, code that was written for a specific dimensionality of arrays can be
reused in higher dimensions thanks to an elaborate system of array subtyping
in SaC, as well as its facilities for function and operator overloading that far
exceed the capabilities of not only Fortran but the object-orientation languages
as well.

SaC has already been used for many kinds of application, ranging from image-
processing to cryptography to signal analysis. However, to our knowledge there
has been only one occasion of programming a Computational Fluid Dymamics
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application in SaC namely the Kademtsev-Petviashivili system [4]. Even that
example is too esoteric to support any conclusions about practical suitability of
Single-Assignment C. In this paper we present for the first time the results of
using SaC as a tool in solving a real, practical problem: simulation of unsteady
shock waves in the Euler system.

The equations of fluid mechanics can be solved analitically for only a limited
number of simple flows. As a consequence, numerical simulation of fluid flows
known as Computational Fluid Dynamics (CFD) is widely used in both scientific
research and countless engineering applications. Efficiency of computations and
ease of code development is of great importance in CFD which is one of the
most perspective fields for implementing new concepts and tools of computer
science.

In Section 2 we will briefly outline the features of SaC that we would ar-
gue make it uniquely suitable for the class of applications being discussed.
Section 3 delineates the numerical method being used and Section 4 discuses
implementation issues we came across when porting a Fortran TVD implemen-
tatin to SaC. Our results are then presented in Section 5 and related work is
discussed in Section 6 before finally Section 7 discusses the lessons learnt and
concludes.

2 SaC

SaC is an array processing language that first appears to be an imperitive pro-
gram like Fortran but actually has more in common with functional programming
languages. A SaC function consists of a sequence of statements that define and
re-define array objects. To a C programmer this looks very similar to assigning
the result of expressions to arrays, but there is an important difference: what
may appear to the programmer to be the “control flow” in SaC is in fact a chain
of definitions that link with one another via the use of common variables, this
emphasises data as opposed to control dependencies. Thus any iterative update
becomes essentially a recurrence relation between the snapshots of the arrays
being updated, and it is up to the compiler whether or not the arrays need to be
recreated as objects in memory or whether the underlying computation may be
taken in-flow. That not withstanding, analogues of control structures, such as
the IF statement, are provided, if only with a slightly different interpretation, so
the illusion of programming a control flow may be retained as far as possible. IF
statements are expressions: this can be seen by observing that with imperitive
code, control flow through conditionals can affect whether a variable is defined;
however this is not valid SaC code.

Two main constructs of SaC support the kind of computation that we are
concerned with in this paper:

Most of the high level constructions in this paper are compiled down to the
following to constructs.
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with-loop. Despite the name, which reflects some historic choices of terminol-
ogy in SaC, the essence of this construct is a data-parallel array definition.
The programmer supplies a specification of the index space (in an extended
enumeration form) and the definition of the array value for a given index in
terms of an expression with other values possibly indexed and produced by
external functions. Definitions for different array values are assumed to be
mutually independent, hence data-parallelism is presented to the compiler
explicitly.

for loop. This is used for programming recurrences. The recurrence index is
specified in the for loop together with its initial value and increment, the
compiler interprets the loop body as a definition of the arrays emerging at
the final step of the recurrence in terms of the arrays defined prior to the
first step.

As with FORTRAN-90 small arithmetic expressions in SaC can operate on
whole arrays to conveniently express elementwise operations on those arrays.
E.g. a - b * c + c could be both an expression operating on scalars, arrays
or scalars and arrays where the scalar form of the expression is applied to cor-
responding indicies in the arrays a, b and c. For consise expressivness SaC
supports set notation which allows an expression to be defined for every el-
ement of a new array where each expression may depend on the index. E.g.
{ [i,j] -> matrix[j,i] } transposes a matrix by placing element (j, i) from
the original matrix into element (i, j) for all i and j.

Another feature of the language that finds its use in the application being
reported is its type system, which supports subtyping. To provide an overview
of this, we remark, by way of an example, that a vector can be interpreted
as a two dimensional array obtained by replicating the vector as a row in the
column dimension. This is a subtype of a general two dimensional array type. One
consequence of this is that a function that contains a tridiagonal solver for a one-
dimensional Poisson equation can be applied to a two dimensional array (acting
row-wise) and then applied again column-wise by using two transpositions, all
without changing a single line of code in the solver definition.

All these features make it possible to write function bodies that act on inputs
of any dimension which suffer no performance loss compared to more specialized
function bodies. Our code makes use of this fact to reuse function bodies for a
one dimensional and two dimensional shockwave simulation.

3 Application

SaC is used to develop an efficient solver for the compressible Euler equations,
which govern the flow of an inviscid perfect gas:

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

= 0, (1)
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Here t is time, x and y are spatial coordinates, u and v are components of the
flow velocity, ρ is density, p is the pressure related to the total energy E as

p = (γ − 1)
(

E − ρ
u2 + v2

2

)
, (3)

where γ is the ratio of specific heats (γ = 1.4 for air). The Euler equations
are the canonical example of a hyperbolic system of nonlinear conservation laws
that describes conservation of mass, momentum and energy. Numerical methods,
originally developed for the Euler equations, can be also used for a wide variety
of other hyperbolic systems of conservation laws, which arise in physical models
describing physical phenomena in fields as varied as acoustics and gas dynamics,
traffic flow, elasticity, astrophysics and cosmology. Thus, the Euler solver is a
very representative example of a broad class of computational physics programs.

A salient feature of nonlinear hyperbolic equations is the emergence of dis-
continuous solutions such as shock waves, fluid and material interfaces. It turns
their numerical solution into a non-trivial task. Modern numerical methods for
solving the hyperbolic equation [9] are based on high-resolution shock-capturing
schemes originated from the seminal Godunov’s paper [7]. In these methods, the
computational domain is divided into a number of grid cells and the conserva-
tion laws are written for each cell. The computational procedure includes three
stages: 1) reconstruction (in each cell) of the flow variables on the cell faces from
cell-averaged variables; 2) evaluation of the numerical fluxes through the cell
boundaries; and 3) advancement of the solution from the time tn to time tn+1

where tn+1 = tn + Δt. These stages are successively reiterated during the time
intergation of Eq (1).

The reconstruction during the first stage should avoid the interpolation across
the flow discontinuities. Otherwise, numerical simulations fail because of a loss
of monotonicity and numerical oscillations developing near the discontinuities.
The Fortran code developed includes several techniques of monotone reconstruc-
tion, in particular, the TVD (Total Variation Diminishing) reconstructions of
the 2nd and 3rd orders with various slope limiters and the 3rd order WENO
(Weighted Essentially Non-Oscillatory) reconstruction, which automatically as-
signs the zero weight to the stencils crossing a discontinuity. The latter technique
is used in the examples of flow computation below. The reconstruction is applied
to the so-called (local) characterisic variables rather than to the primitive vari-
ables ρ, u, v and p or the conservative variables Q.

The evaluation of numerical axes is performed by approximately solving the
Riemann problems between two states on the “left” and “right” sides of the cell
boundaries resulting from the reconstruction. The code includes a few options
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for the approximate Riemann solver, below the results obtained from the shock
wave simulation are presented. For time advancement (Stage 3) the 2nd or 3rd
order TVD Runge-Kutta schemes are used.

As an example of flow computations both a one dimensional and two dimen-
sional problem is described below.

3.1 One Dimensional Simulation

The Euler code was used to solve the Sod shock tube problem [16], a common
test for the accuracy of computational gasdynamics code. The test consists of
a one dimensional Riemann problem. At the initial moment, the diaphragm
separates two resting gases with different pressures and densities. The top state
is (ρ, u, p) = (1, 0, 1) while the bottom state is (ρ, u, p) = (0.125, 0, 0.1). Here ρ
is the density, u is the flow velocity and p is the pressure. After the diaphragm
rapture, a shock wave and a contact discontinuity propagates to the bottom and
a rarefaction wave moves to the top. This is illustrated in Fig. 1.

Fig. 1. The expansion of a shockwave from the center in the one-dimensional simulation
where two gasses of different densities meet. The three diagrams move forward in time
from left to right and show the shockwave expanding.

3.2 Two-Dimensional Simulation

Here a numerical simulation of an unsteady shock wave interaction is conducted.
A schematic of flow configuration is shown in Fig. 2. The computational domain
is a square divided into rectangular grid of Nx × Ny cells. A part of its left
boundary is the exit section of a channel while the remaining portion of this
boundary is a solid wall. The exit section of another channel comprises part of
the computational domain’s bottom boundary. A shock waves propagates within
each of the channels and comes to the channels exits at the same moment (t = 0)
when the computation starta. Thus, at the initial moment, the domain is filled
by a quiescent gas. The boundary conditions in the exit sections of two channels
are imposed in such a way that the flow variables are equal to the values behind
the shock waves calculated from the Rankine-Hugoniot relations.

The computations have been conducted at the shock wave Mach numbers of
Ms = 2.2. At this value of Ms the flow behind the shock waves is supersonic so
that the flow variables in the exit sections are not changed during the compu-
tation. The size of the computational domain is Lx = Ly = 2h, where h is the
channel width and h = 200 in our benchmarks.
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Fig. 2. A schematic of flow configuration and computational domain for the two-
dimensional simulation

Fig. 3. A snapshot of the shockwave in the two-dimensional simulation

The results of computations are shown in Fig. 3. The interaction between the
shock waves exhausting from the channels and their diffraction over solid walls
generate a complex flow structure. In addition to the primary shock waves, which
rapidly become approximately circular in shape, the irregular interaction of the
shock waves leads to formation of a Mach stem between them and emergence of
two reflected shock waves. The primary wave, the relected shock wave and the
Mach stem meet in the three points, from which slipstream surfaces emanate.
Behind each of the primary shock waves, there is a contact surface separating
the gas exhausted out of the channel from the gas which initially filled the
computatational domain. Secondary shock waves are formed closer to the exit
section starting from a point on the last characteristics of the channel lips. On
the later stages of evolution, the Mach stem itself becomes circular in shape and
occupies a large proportion of the leading shock front while the contact surface
behind it curls up into a mushroom-like structure.
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4 Implementation

To illustrate the arguments from Section 2 we have selected two example func-
tions from our TVD implementation in SaC.

4.1 dfDxNoBoundary

The function dfDxNoBoundary produces an array of the difference between each
neighbouring pair in a vector. It takes the difference of every element in a vector
but its first element with its left-neighbouring element and divides each element
by a constant. The resulting vector has a length of one element less than the
input vector.

As with the Fortran, in SaC the original vector is extended on both ends.
The function defines two new vectors, one with the first element removed and
one with the last element removed. An element-wise subtraction is applied to
these new vectors (with matching indexes) and the resulting array is divided
elementwise by a scalar (delta).

1 inline
2 fluid_cv[.] dfDxNoBoundary( fluid_cv[.] dqc, double delta)
3 {
4 return( ( drop([1], dqc) - drop( [-1], dqc) ) / delta);
5 }

To materialise each array in memory would be expensive; this style of program-
ming would not be feasible for computational science if every array was copied.
SaC’s functional underpinnings allow it to, among other things, avoid some un-
necessary calculations, memory allocation and memory copies. The style of code
above often performs extremely well contrary to initial expectations.

4.2 getDT

The GetDT function calculates the time step to take in each iteration of the
algorithm. It acts upon every element in a large array which represents the
computational domain. For the two dimensional case Fortran has a nested loop
structure with one loop for each dimension. The value EV is calculated each time
and the largest EV value is saved. Finally this value is divided by a constant.

1 SUBROUTINE GetDT
2 USE Cons
3 USE Vars
4 IMPLICIT REAL*8 (A-H,O-Z)
5

6 EVmax = 0.d0
7 DO iy=IYmin,IYmax
8 DO ix=IXmin,IXmax
9 Ux = QP(1,ix,iy)

10 Uy = QP(2,ix,iy)
11 Pc = QP(3,ix,iy)
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12 Rc = QP(4,ix,iy)
13 C = SQRT(Gam*Pc/Rc)
14 EV = (ABS(Ux)+C)/Dx+(ABS(Uy)+C)/Dy
15 EVmax = MAX(EV,EVmax)
16 END DO
17 END DO
18

19 DT = CFL/EVmax
20

21 END

The SaC version of the function is shown below. In the following code GAM,
DELTA and CFL are constants.

1 inline
2 double getDt(fluid_pv[+] qp)
3 {
4 c = sqrt(GAM * p(qp) / rho(qp));
5 d = MathArray::fabs( u(qp));
6 ev = { iv -> (sum( ( d[iv] + c[iv]) / DELTA))};
7 return( CFL / maxval( ev));
8 }

The type of the function parameter is fluid_pv[+] which means an array of
unknown dimensionality of fluid_pv values where fluid_pv is a user defined
datatype. The syntax for an array type (t) can be syntactically represented as
t[x,y,z] for an array of size x by y by z, t[.,.] for a array of two dimensions
of unknown size and also t[+] for an array of unknown dimensionality.

The functions p and ρ extract the pressure and density from fluid_pv re-
spectively. The SaC function calculates the variable C above using elementwise
operations and then in line 6 EV is calculated which depends on the entire input
array. With little experience with SaC this function quickly becomes easier to
understand than the Fortran code. It is a functional definition (i.e. an expres-
sion) but the programmer is not obliged to use recursion on the array like a
functional programmer would do with lists.

This clearer imperative-like but functional style makes data dependencies
more obvious both to the programmer and to the compiler. In our simulation
the SaC compiler always calculates the dimensionality needed for this function
from its calls and therefore no penalty is paid for the generic type of qp.

5 Results

To evaluate the performance of SaC compared with Fortran we ran the 2D
simulation with a 400x400 grid as described in Section 3.2. The simulation was
run for 1000 time steps to ensure that the run time was sufficient to negate
the start-up time of the program. We made use of a 400x400 grid as this
was the size used in the original Fortran implementation. In the experiment
we used the third order Runge-Kutta TVD method and first order piecewise
constant reconstruction.
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Compiler Version Arguments

Sac2C
Sac2C 16094 -L fluid -maxoptcyc 100 -O3 -mt

-DDIM=2 -nofoldparallel -maxwlur 20stdlib 1120
Sun Studio
Compiler-f90

8.3 Linux i386
Patch 127145-01

-autopar -parallel -loopinfo -reduction
-O3 -fast

The computer used to perform these benchmarks is a 4xQuad-Core (16 core)
AMD OpteronTM 8356 with 16GB of RAM. The source code is available at
http://sac-home.org.

As the Fortran compiler uses OpenMP for parallelization, environment vari-
ables where set to control the runtime behaver of the Fortran code. Several
different combinations where tried however these made a negligible difference to
the runtime of the program. The options that produced the fastest runtimes, and
therefore where used for the main benchmarking, were: OMP_SCHEDULE=STATIC,
OMP_NESTED=TRUE and OMP_DYNAMIC=FALSE.

Fig. 4. Wall clock time of a 1000 time step simulation on a 400x400 grid

It can be seen in Figure 4 that SaC was much slower than the Fortran when
run on just one core. However the Fortran code did not scale well with the
number of cores, and as the number of cores increased performance degraded.
We therefore suspect that there is added overhead of communication between
the threads.

SaC does not use system calls for its inter thread communication but rather
uses the programs shared memory and spin locks to allow inter thread commu-
nication with very little overhead. This low overhead allows SaC to scale well
even when its problem size is to small for Fortran’s auto parallelize feature to

http://sac-home.org
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work efficiently. There are optimizations which the SaC compiler can perform
which are only possible because SaC is a functional, single assignment language.
These optimizations help to allow the program to scale as SaC collates the many
small operations on the arrays into fewer larger operations. This is not possible
in procedural programing languages like Fortran as the compiler can not always
work out the data dependences in complete detail. With a functional programing
language like SaC it is possible to identify every dependency.

When the same benchmark was run with a larger 2000x2000 grid we discovered
that Fortran was able to scale slightly with small numbers of cores but after just
five cores it started to suffer from the overheads of inter-thread communication
again.

6 Related Work

Broadly three techniques exist for producing highly parallelizable code for scien-
tific simulations. The first technique is to carefully determine how a run should
be parallelised and to explicitly write the code to do this. The message pass-
ing interface API[6] is commonly used for this. Also a threading library like
Pthreads [11] could be used. Secondly, source-code annotations or directives can
be used to provide information to a compiler to show it how an execution can
be parallelised. Lastly compilers can try to autoparallelize code by analysing
dependencies between variables. This section gives a brief overview of the three
methods mentioned above and then discusses performance.

High-Performance Fortran [5] is an extension to FORTRAN-90 that allows the
addition of directives to the source code to annotate distribution and locality.
The Fortran code itself is written in a sequential style and already describes some
operations in a data-parallel way. High-Performance Fortran compilers can then
use these directives to compile to pipelined, vectorized, SIMD or message passing
parallel code.

For explicitly annotating parts of a program that can be parallelized on shared
memory systems the OpenMP [3] API is supported for C, C++ and Fortran.
Many autoparallelizing compilers produce programs that call upon this API
including the Intel and Sun Microsystems Fortran and C compilers.

ZPL [12] is a high level array processing language designed to be concise and
platform independent. It allows programmers to easily describe subarrays within
an array using a concept called regions. ZPL was designed with parallelism in
mind and has had its performance compared with other languages for applica-
tions inclusive of computational fluid dynamics applications [13].

Parallel performance results tend to vary depending on the application, archi-
tecture and type of parallelism. For example an application that performs well on
shared memory systems may not necessarily perform well when compiled to run
on a distributed memory system. In addition and rather surprisingly, carefully
crafted MPI applications might not necessarily have better speedups per core
than implicit parallelism in high level languages. One surprising example of this
is ZPL which has been shown to scale well in parallel runs with the Multigrid [1]
NAS benchmark [2] and even shown prospects with CFD [13].
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7 Conclusion

The results have shown that execution of high-performance applications written
in SaC can achieve speedups on parallel architectures. This shows that using
high-level abstractions in code operating on arrays is easier to understand. How-
ever, SaC’s real strength comes into play when auto-parallelizing code.

SaC provides a powerful expressiveness where the greater learning curve is
not grasping the paradigm but in resisting the temptation to try to optimize the
code, and thus making use of SaC’s ability to allow programs to be written with
a high level of abstraction.

Programmers need a good way to express their programs so that they are quick
to write, easy to understand and efficient to maintain. Up until now expressing
programs in a readable form, with high levels of abstraction has come at a
considerable performance penalty. However as can be seen in this paper it is
possible to write programs in a clear style with high levels of abstraction while
obtaining reasonable speedups that can be greater than those produced from the
compilers of languages that where originally designed as sequential languages.

The results of this paper used SaC’s Pthread back-end; future SaC back-
ends promise even more parallelism. CUDA [10], whilst challenging to harness,
has tremendous processing capabilities that will enable programs to make use of
high performance, low cost processing resources found on GPUs as a potentially
faster way of performing complicated simulations [15]. As part of an EU FP-
7 project a back-end is being developed for SaC which produces code for an
language which will compile to a many-core architecture called Microgrid [8].
This architecture will deliver considerable parallelism without the complexity
that is involved with CUDA.

For future architectures parallelism will be increasingly vital. The work in this
paper has shown that now that parallelism is important, it is possible to write ab-
stract code in a high-level language and still be able to compete with traditional
low-level, high performance languages like Fortran on parallel architectures.

Acknowledgments. This work was partly supported by the European FP-7
Integrated Project Apple-core (FP7-215216 — Architecture Paradigms and Pro-
gramming Languages for Efficient programming of multiple COREs).
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