
Using n-grams to rapidly characterise the evolution of software code

Austen Rainer, Peter C.R. Lane, James A. Malcolm, Sven-Bodo Scholz

School of Computer Science, University of Hertfordshire

College Lane Campus, Hertfordshire, AL10 9AB, U.K.

{a.w.rainer; p.c.lane; j.a.malcolm; s.scholz}@herts.ac.uk

Abstract

Text-based approaches to the analysis of software

evolution are attractive because of the fine-grained,

token-level comparisons they can generate. The use of

such approaches has, however, been constrained by

the lack of an efficient implementation. In this paper

we demonstrate the ability of Ferret, which uses n-

grams of 3 tokens, to characterise the evolution of

software code. Ferret’s implementation operates in

almost linear time and is at least an order of

magnitude faster than the diff tool. Ferret’s output can

be analysed to reveal several characteristics of

software evolution, such as: the lifecycle of a single

file, the degree of change between two files, and

possible regression. In addition, the similarity scores

produced by Ferret can be aggregated to measure

larger parts of the system being analysed.

1. Introduction

In simple terms, software evolution investigates the

changes that occur to a software system’s source code

over time. As software systems grow in size and as

versions accumulate, there is a growing body of data

(source code) that can be investigated. The growth in

this body of data also brings computational challenges

such as calculating complexity metrics for each source

file in each version of the system, and doing so in a

reasonable amount of time; or comparing the

similarities across files to identify duplicate software

code. As many software systems are developed using a

variety of programming languages, there are then issues

of aggregating and comparing measures across

programs written in different languages.

Software evolves for various reasons. One of the

most important is its evolution to accommodate

gradually more complex functions. The evolutionary

process is endorsed and supported by certain

development methodologies, especially agile

techniques [1], which rely on a continuous process of

rewriting or refactoring [2], but also more generally in

top-down development methodologies, e.g. [3]. We can

identify two distinct approaches to reconstructing this

evolutionary process: syntactic, where only the raw text

is considered, and semantic, where run-time behaviours

such as sequences of function calls are traced.

In this paper we investigate a syntactic approach,

with the application of n-grams to characterise

evolution in software source code. An n-gram is a sub-

sequence of n items from a given sequence, e.g. a sub-

sequence of characters in a word, or a sub-sequence of

words in a text. We use the Ferret copy detection

technology to measure the similarity between program

source files, using n-grams, and this measure gives us

an indicator of the changes that have occurred between,

for example, two consecutive versions of a file.

The n-gram approach is an attractive method for

analysing source code due to the fine-grained

comparisons it allows. Where tools like diff work at the

level of lines of code, n-gram approaches compare sub-

sequences of lexical tokens within a line. Previous

authors have commented that diff-like implementations,

when applied naïvely (e.g. to compare all pairs of files

in a system), are too computationally demanding for

large scale analysis. Ferret operates in near linear time

and our comparisons show Ferret to be between one

and two orders of magnitude faster than a naïve

application of the diff tool.

The remainder of this paper is organised as follows:

section 2 briefly explains n-grams and reviews their

previous application to software evolution; section 3

provides a more detailed description of the method we

have used to apply n-grams to characterising software

evolution; section 4 explains the analysis we have

conducted; sections 5 and 6 report on two software

systems we analysed, the source code for the SAC

compiler and the Ferret source code itself; section 7

compares Ferret’s speed of computation with diff and

wc, and provides further remarks on Ferret’s

performance; finally, section 8 discusses our results.

 43

2. N-grams and software evolution

N-grams have a wide range of applications. For

example, Tomović et al. [4] have used n-grams to

classify and cluster genome sequences. McNamee and

Mayfield [5] demonstrate that the retrieval accuracy of

an n-gram based method for information retrieval of

European languages rivals or exceeds methods that are

language specific. Rieck and Laskov [6] have

developed and evaluated an n-gram based method of

detecting network intrusions. Google are reported to

use n-gram models in a wide variety of research and

development activities, and in 2006 contributed a large

n-gram dataset to the Linguistic Data Consortium
1
.

Other applications of n-grams include data

compression, plagiarism detection, spelling correction,

and de-duplication of large datasets.

Despite the wide applicability of n-grams, we have

been unable to identify (i.e., through bibliographic

searches) any previous work in software evolution that

has taken the approach described here. In previous

research, the closest application of n-grams to

characterising software evolution appears to have been

the use of n-grams in pre-processing source code prior

to subsequent analysis for software evolution (e.g. [7]).

There are, however, a number of related avenues of

research. For example:

Code clones and duplicated code. Code clones –

fragments of code that are syntactically or semantically

similar – are often considered to be indicators of poor

software quality. N-grams can be very effective at

identifying duplicated code, and code clones that are

syntactically similar [8]. We are applying n-grams not

to identify clones as such, but to measure the degree of

similarity or difference between source files as an

indicator of change. Phrased another way, code cloning

tends to look at copies of code within a version of the

system. By contrast, we are looking at changes between

versions of a system.

Similarity metrics. Similarity metrics provide,

ideally, quantifiable and objective measures of the

degree of similarity of the source code of two (or more)

software systems, versions of software systems, or sub-

parts of software systems. Yamamato et al. [7], for

example, have sought to quantitatively measure the

similarity of the many versions of the BSD Unix

operating system to reveal evolutionary characteristics

of that system. For their investigation, they developed a

metric, Sline, defined as the ratio of shared source code

lines to the total source code lines of the software

1
 http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-

belong-to-you.html

system(s) being evaluated. In some respects, this is

similar to our approach in that we use a ratio of shared

tokens to total number of tokens. By analysing at the

level of lines of code, Yamamoto et al.’s approach is

coarser than ours in the kinds of similarity it will

identify.

Yamamato et al. recognised the impractical

demands that would be placed on computing resources

by using a naïve application of diff to compare all pairs

of files in the large system they analysed.

Consequently, they first applied a fast code clone

detection algorithm, CCFinder, and then applied diff to

the resulting file pairs where code clones were found.

They estimated the worst-case time complexity of their

tool to be O(m
2
n

2
 log n) for m files of n lines.

Of particular relevance to our research is their

discussion of Broder’s work [9], which uses the exact

similarity metric we apply in the current analysis.

Broder concentrated on detecting similar documents

whereas we seek to characterise evolution using a

measure of similarity. Yamamoto et al. made the

following conclusions about the approach taken by

Broder:

“... choosing token sequences greatly affects the

resulting values. Tokens with minor modification

would not be detected. Therefore, this is probably

an inappropriate approach for computing subjective

similarity metric for source code files.” ([7], p. 541)

Based on our previous research, we have concluded

that a three-token sequence is robust against many

minor modifications of sequences of tokens. In

addition, the nature of programming languages means

that many of the possible minor modifications are

illegal as far as the compiler is concerned. Also, as we

discuss in the next section and demonstrate later in the

paper, our implementation of n-gram analysis is very

efficient in terms of demands on computing resources.

3. Characterising software evolution using

n-grams

We have previously used n-grams for two

applications [10, 11]: to identify copying between

students’ written essays, and to identify copying

between students’ program source code. There are two

common properties across these applications. First, the

documents being compared are sequences of characters

that can be aggregated into words or, more generally,

into tokens. Second, it was important to know whether

a given document has any or all of its content in

common with another document.

 44

When applying n-gram analysis to identify software

evolution, the tokens used for source code are the

lexical tokens defined by the programming language.

For example, the following piece of C++ code:

for (int i=0, n=MAX; i<=n; ++i)

obj->Incr();

would be divided into the following list of tokens,

where each token is separated by a space:

for (int i = 0 , n = MAX ; i <= n

; ++ i) obj -> Incr () ;

Notice how symbols and case are preserved, and

that special tokens such as ‘->’ are identified. From

this list of tokens we would then extract trigrams

(trigrams are n-grams of size 3), the first four trigrams

from the above example being:

for (int int i =

(int i i = 0

Having extracted a list of trigrams, we then compute

the similarity between each pair of documents.

Similarity is computed using a resemblance metric [9]

known as the Jaccard coefficient ([12], p. 299): the

ratio of common trigrams between the two documents

to the total number of trigrams across those two

documents. If A is the set of trigrams from document 1,

and B is the set of trigrams from document 2, then:

BA

BA
S

∪

∩

=)2,1(Eq.1

The equation produces similarity scores in the range

0 to 1, where 0 indicates that there are no trigrams

common to the two documents, and 1 indicates that all

and only the trigrams in each document are present in

the other document. The measure is of course

symmetric, i.e. S(1,2) = S(2,1).

The similarity score should not be interpreted as a

percentage score, e.g. S(1,2) = 0.3 does not mean that

document 1 contains 30% of the content of document

2. This is because the trigram analysis does not

consider the frequency of occurrence of a trigram, only

whether a trigram occurs at least once. Where two

documents have a similarity score of 1, they may have

a different frequency of occurrence of the trigrams. In

practice, however, two documents with similarity

scores of 1 are very likely to be identical copies.

Figure 1 Trigram frequency for the first 10,000

trigrams of the SAC dataset

The importance of trigrams as an indicator of

similarity is illustrated by the graph shown in Figure 1.

The graph plots the number of times each trigram

appears, sorted in order of the most frequent trigram,

for the first 10,000 trigrams of the 722,425 trigrams

present in the SAC dataset (see section 5 for further

details). As is readily apparent, a few trigrams are

present in nearly all the files (7819 files make up the

dataset), but the number of files in which any trigram

occurs rapidly decreases. This exponentially decaying

distribution is similar, but not identical, to the Zipfian

distribution identified for English words [13] and used

in our previous research. The fact that most trigrams

occur rarely means that two files with a significant

number of trigrams in common are likely to be similar

in their syntactic structure, a fact we take advantage of

in our analysis of the evolution of source code.

Similarity scores based on n-grams in general, and

specifically trigrams in this analysis, can be used to

indicate various characteristics of software evolution.

For example, at a file level the distribution of similarity

scores for a series of versions of a given file can

indicate types of change for that file. At a system level,

the distribution of similarity scores could indicate the

‘growth’ occurring over time. Similarity scores directly

apply at the file level which is typically the class or

module level. In principle, similarity scores can be

aggregated for all classes in a package, or for all

modules in a sub-folder to provide a higher level of

abstraction of software evolution.

Our implementation, Ferret
2
, makes it easy to

compare large collections of documents for signs of

copying. It is also very fast: the algorithm it uses is

almost linear in performance, both in memory space

required and in time taken, as the total number of

words in the input documents grow. Comparisons of

the Ferret algorithm with other approaches [14, 15]

2
 Available at: http://homepages.feis.herts.ac.uk/~pdgroup/

 45

show that Ferret’s performance is excellent. The reason

that Ferret is so fast is that we build an index of

trigrams as the documents are read, and then only

process the index, so if there are n input files, checking

all (n.n-1)/2 pairs of documents is done in almost linear

time.

4. Analysis of software evolution

The basis of our analysis is the comparison of files

in different versions of an evolving software system.

The comparison is performed using Ferret, as described

above, and the similarity scores are obtained using

Eq. 1. We consider three types of analysis: changes in

an individual file over time, patterns of change in each

release, and splitting and merging files. The first two

types of analysis are to examine the overall history of a

software project or individual files; these analyses help

to identify trends and typical behaviour, as well as

characterise kinds of evolutionary sequences for files

or projects. The third type of analysis is a way of

examining a particular kind of discontinuity in a file's

lifetime, which may arise from a refactoring such as

splitting a class into smaller subclasses ([2], p.149).

These analyses were performed by processing the

output table of similarities from Ferret with Ruby

scripts.

4.1. Changes in file over time

We look at each file, and how it changed over time.

Where the same named file exists in consecutive

versions, we compute the similarity score between

these two versions. We look for two effects: the

characteristics of the file’s lifetime, and whether the

file has undergone significant regression, returning to a

previous form.

For the analysis of the characteristics of a file’s

lifetime, we investigate whether the file is stable,

revised, or continuously changing. We deduce these

states by looking at how the similarity score for that file

varies across the versions of that file. For example, a

file which remains unchanged will maintain a high

average similarity score across its lifetime. Conversely,

a file which changes a lot will have a low average

similarity score.

Scripts were written to analyse how the similarity

scores varied over time. We computed the overall mean

and standard deviation of the complete set of similarity

scores. We then used these figures to define ‘high’ and

‘low’ values for individual files. A ‘low’ standard

deviation is one which is less than the average, and a

‘high’ standard deviation is more than the average. Our

basic categorisation was between those files that are

relatively stable over time and those that change

frequently. The first group is further separated into

those that change very little (i.e. are stable) and those

that occasionally change significantly.

Together, Ferret and the scripts highlight three types

of file:

1. Stable files, defined by a high mean similarity score

and a low standard deviation in that score. and all

changes remain within one standard deviation of the

mean.

2. Revised files, defined by a high mean similarity

score and a low standard deviation and one or more

changes are more than one standard deviation

below the mean.

3. Changeable files: If there is a low mean similarity

or a high standard deviation less than the average

mean, then the file has experienced a large amount

of change over its lifetime.

We can also explore the rate at which files change

from their original state, by considering the similarity

of each version of a file with its original form. This

gives us a picture of how much files change over time,

or their average rate of evolution.

Finally, we check for regression of a file, by which

we mean whether a file has returned to its previous

form, by looking for a high similarity of a file with a

later version where it is dissimilar to previous versions.

4.2. Patterns of change in each release

By plotting the mean similarity measure between

versions we can characterise the nature and scope of

the changes in each new version e.g., releases where

very few changes have occurred compared to releases

where almost every file has changed extensively. This

can be related to other information collected on the

system, such as changes in the number of files for the

overall system.

4.3. Splitting/merging of files

For this analysis, we attempt to automatically

identify where files have been split into smaller blocks

(the treatment of merged files is similar, with a time

reversal on the versions). The idea is to set a threshold

of similarity based on the overall average similarity,

and locate those files which have a higher than average

similarity to a potential source document; those

identified files are then potentially the results of a split

in the file. This technique enables us to automatically

 46

identify a popular form of refactoring, where a complex

class or file is subdivided into a set of simpler classes

or files. Counting the number of such changes may

enable us to quantify the way in which complexity is

managed by the development team.

4.4. A summary of the systems analysed

We test the Ferret tool on two sets of source code,

SAC
3
 (Single Assignment C) compiler, and Ferret

itself. Table 1 provides simple characteristics of the

two sets of source code. We briefly describe the source

code and the related executable systems here, and then

report our analysis in the next two sections.

Table 1 Systems analysed in this study

System Versions Files LOC Avg. LOC/file

Ferret 20 190 76K 400

SAC 39 7819 6.7M 860

SAC is a strict purely functional programming

language whose design is focused on the needs of

numerical applications. It is under development at the

University of Hertfordshire, in collaboration with

several other Universities world-wide. The C

programming language is used as an intermediate

language for SAC, in order to achieve portability

among different target architectures and to reuse

existing compiler technology for the generation of

machine specific code. A large compiler project for the

compilation of SAC programs into C programs

constitutes part of the research being undertaken in the

context of SAC. The SAC compiler has been under

development since 1995 and has grown from

approximately 15 files to approximately 320 files of C

code. It is the compiler that is the target of our analysis

here. Version control for the compiler is managed

using the Subversion (SVN) revision control system.

For the current analyses we ‘cut’ 39 versions of the

compiler, from the approximately 15,000 revisions in

Subversion, between the 1
st
 January 1995 and 1

st

January 2007. Due to the relatively small size of the

compiler in the earlier years, we ‘cut’ only two versions

per year from the years 1995 through 1999, and then

for the years 2000 through 2007 we cut four versions

per year.

Ferret has grown from an initial set of 6 files to 26

files. The initial version of Ferret analysed here was

already release 2.0, the earlier history is no longer

available. Due to space restrictions for this paper, we

only summarise our results for Ferret in section 6.

3
 For more information visit: http://www.sac-home.org/

5. Analysis of the SAC source files

5.1. Changes in file over time

There were 435 different files which appeared in

subsequent releases of the SAC system. The average

similarity across all the version changes for the

complete system was 0.93 with a standard deviation of

0.098. This suggests that most of the source code

remains constant between releases, at least at the

granularity at which the SAC versions were cut.

Of the 435 files, 84 were considered stable, 155

revised, and 196 changeable. Figure 2 shows a sample

of change history over time for each of the three types

of change defined in section 4.1. The file

LoopInvariantRemoval.c shows the effects of

revisions in initial versions, interspersed by a few

versions of constancy. This observation is supported by

a developer’s comment that the compiler optimization

implemented in this file has undergone some redesigns

in order to improve its applicability. The file

Modulemanager.c has been rewritten several times

as its functionality needed to be extended substantially

whenever language extensions were made. This file is a

good example of the changeable type of file. The

Boundcheck.c file is found to be a stable file. In

fact, it served the code generation for out-of-bound

checks which constitute a rather straight-forward piece

of code.

We also analysed the degree of evolution of a file by

comparing the similarity of the same named files across

larger numbers of versions. For instance, a file which

went through five versions would have its similarity

compared between versions 1 and 2, versions 1 and 3,

versions 2 and 4, etc.

Figure 3 shows the average similarity, and error bars

to one standard deviation, of the initial 13 files across

the entire lifetime of SAC (1 file was removed after 4

versions, but 8 files were retained throughout the

complete lifecycle). The figure clearly shows how files

rapidly evolve, retaining few, if any, features in

common with their initial release.

 47

Figure 2 Examples of the three types of change, for the SAC dataset

1018 out of the total set of 7819 files showed signs

of ‘regression’, by which we mean that a later file is

more similar to an earlier file than an intermediate

version. However, although easy to check, the kind of

changes in these files was rather small. We did not

detect any major reversions of a file back to an earlier

version.

5.2. Patterns of change in each release

Figure 4 presents the average similarity between

releases of the same file for all files across all versions.

The clear drop in average similarity at versions 7, 30

and 34 suggests that substantial changes occurred in

these releases. Notice the larger standard deviations

also for releases 7, 30 and 34. There was an almost

constant period between releases 22 and 28 as

indicated by the constant average and the low standard

deviations. Notice also the sharp climb in average

similarity for versions 1 through 4 as the system was

being initially developed.

Figure 4 can be compared with the accumulated

number of .c files for the SAC compiler, presented in

Figure 5. In Figure 5, the ‘bump’ from versions 29 to

34 occurs at the same time as the increased deviations

in Figure 4 for that period. Figure 5 provides a measure

of external change to the number of files in the system,

and Figure 4 provides a measure of internal changes to

a file. Therefore these are quite different measures that

complement each other, and are consistent in that both

metrics suggest increased code change activity. The

dates associated with the ‘bump’ correlate precisely

with the major refactorings that have been executed

during the lifetime of the project so far. The relative

plateau in the accumulated number of files for versions

22 through 29 in Figure 5 are, again, consistent with

the stable mean and low deviations in Figure 4.

5.3 Splitting files

The splitting and merging of files has already

received considerable attention. For example, Godfrey

et al. (e.g. [16]; [17]) have reported a number of

investigations based on their concept of origin analysis,

and Antoniol et al. [18] have investigated class

evolution discontinuities using an approach inspired by

vector space information retrieval. We acknowledge
4

that our investigation of file splitting and merging

reported here is therefore immature. The purpose of

investigating the merging and splitting of files is to

explore the limits of Ferret’s usefulness to investigating

software evolution.

A script was developed to locate candidate files

which had been split. The motivation here was to look

for files which had grown in complexity and then had

been subdivided into smaller blocks.

4
 We also thank the reviewers for their comments here.

 48

Figure 3 Similarity of subsequent versions of a file to its initial release

We first extracted all comparisons between files of

different names, but consecutive versions, to produce a

set of 177850 comparisons. The mean similarity

between these files was 0.035, with a standard

deviation of 0.031. We then extracted all comparisons

between files of different names in consecutive

versions with a similarity greater than 0.066 (the mean

+ one standard deviation) yielding 411 candidate split

files from the 7819.

Figure 6 shows a sample of the code reused in a

different file. The underlined code is the duplicate in

the reused file. Notice that the n-gram comparison has

been sensitive to small changes in the code (e.g. the

names of functions), but identified a sizable block

which has been reproduced in the candidate child file.

6. Analysis of the Ferret source files

There were 42 different files which appeared in

subsequent releases. The average similarity across all

the version changes for the complete system was 0.91

with a standard deviation of 0.16. Of the 42 files, 22

were considered stable, 5 revised, and 15 changeable.

There were 22 files identified as candidate split

files. Some of these were clearly caused by renaming of

files, which occurred at version 4.0 of Ferret, and are

identified by high levels of similarity, around 0.8/0.9.

At version 4.4, several files had become large,

triggering Fowler's code smell of a 'large class'.

Conscious use of the 'Extract class' refactoring practice

resulted in several smaller files, present in version 4.5.

What is interesting here is that our n-gram approach

identifies these files as they have a similarity around

0.2 – 0.4, much higher than the average similarity of

0.034, but clearly not representing exact copies of the

files.

7. Evaluation of Ferret performance

Table 2 provides simple metrics on the performance

of the Ferret copy detection technology. The duration

includes reading in all of the source code, similarity

calculations, and writing out the results to file (e.g. for

SAC, the output file is 2.7GB). For both systems, the

Ferret analysis was performed using a 2.8GHz PC with

1.25GB RAM running Linux. The data structure for the

analysis is entirely held in RAM.

Table 2 Performance of Ferret

System Duration

(seconds)

Files Document

pairs

Pairs

per

second

Ferret 10 190 17955 1795

SAC 2160 7819 30564471 14150

We used diff to compare all pairs of files for all

versions of Ferret and, separately, of SAC. The diff

analysis of the Ferret source code files takes 7 min. 18

sec. so Ferret is approximately 43 times faster than diff.

We also ran the wc (word count) program against the

same set of files. wc is slower than diff and this

corroborates our conjecture that the major cost in

performing the comparisons is simply the time that it

takes to process all the files. Because Ferret only

processes each file once, it is much faster. We

estimated that the diff analysis of SAC source code

takes approximately 50 times longer than the diff

analysis of the Ferret source code. In terms of lines of

 49

code processed per second, the estimated performance

of the Ferret, diff and wc analysis of the Ferret source

code is, respectively: 7600 LOC/sec., 16397 LOC/sec.

and 15025/sec. Based on these estimates, Ferret takes

twice as long as diff and wc to initially process each

line of code.

Formally, the diff tool requires O(n
2
 log n) time to

process one pair of files ([19] cited in [7]) where n is

the length of the input. By contrast, Ferret requires an

estimated O(n) time.

As a further contrast, Neamtiu et al. ([20])

developed a tool to quickly compare the source code of

different versions of a C program. Their tool analyses

the Abstract Syntax Trees (ASTs) of the source code,

these ASTs being generated by the use of CIL [21].

Running on a PC approximately twice as fast as ours,

their tool processed 400K LOC in about 70 seconds.

Figure 4 Average similarity between consecutive versions of the same file

Figure 5 Accumulated number of files per version

 50

node *BlocksCons(node *arg_node, node *arg_info)

{

 statustype old_attrib;

 funtab *old_tab;

 DBUG_ENTER("BlocksCons");

 DBUG_PRINT("BLKCO", ("begin"));

 DBUG_ASSERT((NODE_TYPE(arg_node) == N_fundef),

 ("wrong type of arg_node"));

 if ((FUNDEF_BODY(arg_node) != NULL) &&

 (FUNDEF_STATUS(arg_node) != ST_foldfun) &&

 (FUNDEF_ATTRIB(arg_node) != ST_call_rep)) {

 old_tab = act_tab;

 act_tab = blkco_tab;

 old_attrib = INFO_BLKCO_CURRENTATTRIB(arg_info);

}

Figure 6 Fragment of reused C code (the underlined code has not been reused)

For both Ferret and Neamtiu et al.’s tool, and in

contrast to diff and wc, the high level of performance is

due to the fact that representations of the source code

are analysed and not the source code itself; and that the

input source files are not needed once the

representations have been generated.

8. Discussion

Our main findings are to demonstrate that the n-

gram approach is fast and produces meaningful results.

Although some of our other findings may not be ‘new’

to the software evolution community, the fact that our

approach is able to generate these standard kinds of

metrics in evolution confirms that our approach

produces meaningful results when analysing software

evolution. Further work may be able to establish

additional metrics that can be generated by Ferret.

In terms of our more specific results, we found that:

• For both systems studied, after their initial releases

there was subsequently a small amount of

incremental growth per release.

• For both systems, there was a high average

similarity in subsequent versions of the same file

• Our n-gram analysis is able to differentiate

between different types of ‘file histories’ e.g.

stable, revised and changeable. There is however a

wide range in the number of files in each type e.g.

SAC had 19% of stable files whilst Ferret had 52%

stable, and 35% vs. 12% for revised files. Possibly

this reflects the fact that SAC is a larger system

that has been worked on extensively by a team,

whereas the Ferret source code has been under the

custody of a single programmer.

• Our n-gram analysis is capable of identifying

regressed files and ‘reborn’ files’ i.e. where files

‘reappear’ in later releases after having been

removed from earlier releases. For the two systems

we studied, we were not able find examples of the

regression and ‘rebirth’ but we believe this is a

characteristic of the systems studied rather than the

n-gram approach we used.

• Our n-gram analysis detected cases of split files.

• The Ferret implementation of n-grams is extremely

efficient e.g. for the larger system, SAC, this was

effectively 14150 pairs of files compared per

second.

One of the advantages of the n-gram approach is

that it provides a language-independent analysis, and

one of the advantages of the implementation of trigram

analysis in Ferret is that the analysis is very quick.

Although not discussed in this paper, Ferret also

provides a graphical user interface to allow the user to

examine copying in the source code for any two files of

interest. This functionality can easily be modified to

output detailed comparisons between files. We are also

conscious however that we have reported our analysis

for only two relatively small systems.

There are a number of directions in which we can

extend this research. We are interested in applying n-

gram analysis to other programming languages, and to

other types of programming language, such as

functional languages. We also want to apply our n-

gram approach to larger software systems, such as the

various BSD operating systems investigated by

Yamamoto et al. [7]. Our research on the application of

n-gram analysis to plagiarism detection has indicated

that three-token sequences (trigrams) are sufficiently

effective, but we note that McNamee and Mayfield [5]

used 4-token sequences for their investigation of

information retrieval, and Broder [9] used larger

sequences again, so there may be benefits for

characterising software evolution using longer

sequences. Finally, we want to compare the

performance and effectiveness of Ferret against other

syntactic approaches, but also to consider how Ferret

can complement semantic approaches.

 51

9. Conclusion

We have demonstrated the application of n-grams to

characterise the evolution of software code by applying

the Ferret copy detection tool, which computes

similarity based on trigrams, to two software systems,

SAC and Ferret. Our trigram analysis has been able to

differentiate different types of changes to source files,

characterise the history of changes to individual files,

identify file splitting and, in principle, identify

regressed and ‘reborn’ files. The Ferret implementation

of n-grams is extremely efficient, operating at one to

two orders of magnitude faster than diff. For the larger

system SAC, this was effectively 14150 pairs of files

compared per second. We believe our results are

sufficiently encouraging to warrant further research and

tool development in the study of software evolution.

Acknowledgements

We thank the three reviewers for their constructive

criticisms of an earlier version of this paper. SAC not

yet open source and therefore is only available on

individual request by contacting the SAC project team

(info@sac-home.org).

References

1. Beck, K., Test-driven development: By example. 2003,

Reading, MA.: Addison-Wesley.

2. Fowler, M., et al., Refactoring: Improving the Design

of Existing Code. 1999: Addison-Wesley Professional.

3. Milewski, B., C++ in action: industrial-strength

programming techniques. 2001, Upper Saddle River,

NJ.: Addison Wesley.

4. Tomović, A., P. Janičić, and V. Kešelj, "n-Gram-based

classification and unsupervised hierarchical clustering

of genome sequences". Computer Methods and

Programs in Biomedicine, 2006. 81(2): p. 137 - 153.

5. McNamee, P. and J. Mayfield, "Character N-Gram

Tokenization for European Language Text Retrieval ".

Information Retrieval, 2004. 7(1-2): p. 73-97.

6. Rieck, K. and P. Laskov, "Detecting Unknown

Network Attacks Using Language Models". In

Detection of Intrusions and Malware & Vulnerability

Assessment. 2006, Springer Berlin / Heidelberg. p. 74-

90.

7. Yamamoto, T., et al., "Measuring Similarity of Large

Software Systems Based on Source Code

Correspondence". In Product Focused Software

Process Improvement (PROFES 2005), F. Bomarius

and S. Komi-Sirviö, Editors. 2005, Springer Berlin /

Heidelberg.

8. Bellon, S., et al., "Comparison and Evaluation of Clone

Detection Tools". IEEE Transactions on Software

Engineering, 2007. 33(9): p. 577 - 591.

9. Broder, A.Z., "On the resemblance and containment of

documents". Proceedings of Compression and

Complexity of Sequences, 1998: p. 21-29.

10. Bao, J.P., C.M. Lyon, and P.C.R. Lane, "Copy

detection in Chinese documents using Ferret".

Language resources and evaluation, 2006. 40: p. 357-

365.

11. Lyon, C.M., R. Barrett, and J.A. Malcolm. "A

theoretical basis to the automated detection of copying

between texts, and its practical implementation in the

Ferret plagiarism and collusion detector". In JISC

conference on plagiarism: prevention, practice and

policies. 2004.

12. Manning, C.D. and H. Schütze, Foundations of

statistical natural language processing. 2001,

Cambridge, MA.: The MIT Press.

13. Zipf, G.K., Human behavior and the principle of least

effort. 1949, Cambridge, Mass: Addison-Wesley Press

14. Bao, J., et al., "Comparing different methods to detect

text similarity". 2007, Science and Technology

Research Institute, University of Hertfordshire,

Technical Report CS-TR-461.

15. Lyon, C., R. Barrett, and J. Malcolm, "Experiments in

electronic plagiarism detection". 2003, Computer

Science Department, University of Hertfordshire,

Technical Report CS-TR-388

16. Godfrey, M.W. and L. Zou:, "Using Origin Analysis to

Detect Merging and Splitting of Source Code Entities"

IEEE Transactions on Software Engineering, 2005.

31(2): p. 166-181.

17. Godfrey, M.W. and Q. Tu. "Tracking Structural

Evolution Using Origin Analysis". In International

Workshop Principles of Software Evolution (IWPSE-

02), May 2002. 2002.

18. Antoniol, G., M.D. Penta, and E. Merlo. "An

Automatic Approach to identify Class Evolution

Discontinuities". In 7th International Workshop on

Principles of Software Evolution (IWPSE’04). 2004.

19. Hunt, J.W. and M.D. McIlroy, "An algorithm for

differential file comparison". 1976, Computing

Science, Bell Laboratories, Murray Hill, New Jersey.

20. Neamtiu, I., J.S. Foster, and M. Hicks. "Understanding

Source Code Evolution Using Abstract Syntax Tree

Matching". In International workshop on mining

software repositories (MSR ’05), May 17, 2005. 2005.

Saint Louis, Missouri, USA.

21. Necula, G.C., et al., "CIL: Intermediate Language and

Tools for Analysis and Transformation of C Programs"

In 11th International Conference on Compiler

Construction (Lecture Notes in Computer Science

2304). 2002, London, UK Springer-Verlag p. 213-

228.

 52

