SaC v2.0

new in v2.0:
e support for type pattern
e support for (co)-domain constraints
e support for modulo
e support for gpumem pragma

e support for ctype pragma

1 Program Structure
prg = [(module | class) | [interface | *

[structdef]* [typedef | * [objectdef | *
[function | *

2 Module Declarations

module = module id [deprecated str] ;
class = class id [deprecated str] ; classtype
classtype = classtype type ;

|

extern classtype ; [interface pragma | *

3 Import / Export
interface = (import [use) id : symbolset ;
|

(export | provide) symbolset ;

symbolset = all [except { ext_id [, ext id] }]
| { ext id [, ext_id/ }

4 Structure Definitions

structdef = struct id { /type id [, Ld/* ;/* Yo

5 Type Definitions

typedef = loctypedef
| exttypedef
loctypedef = typedef type id ;
exttypedef = external typedef id ; [interface pragma | *

6 Object Definitions

objectdef = (locobjdef | extobjdef)
locobjdef = objdef type id = funcall ;
extobjdef = external objdef type id ; [interface_pragma]| *

7 Function Declarations and Definitions

function = estfundec [(interface_pragma | funtion_pragma) | *
| specfundec [function_pragma | *
| fundef
| main
extfundec = external wvarsignature ;
specfundec = specialize fizsignature ;
fundef = [(inline / noinline) | fizsignature || exprs |
[function_pragma | * body
fizsignature = fizrets ext _id (fizargs)
| operator_sig
varsignature = wvarrets ext_id (wvarargs)
| operator_sig
operator _sig = type (ext_op) (arg)
| type (ext_op) (arg , arg)
fizargs = (arg [, arg]* | [void])
varargs = fizargs
| arg [, arg | * ,
arg = type_pattern [& | id
fizrets = (rtype_pattern [, rtype_pattern | * | [void])
varrets = fizrets
| rtype_ pattern /, rtype_pattern/* ’
main = int main (/void /) body

8 Function Bodies

body = { [cachesim_pragma | [vardec | * [statement | * [return | }
vardec = type id [, gi/* ;
statement = ;
| assignment ;
| funcall ;
| withloop ;
| cond
| doloop
| whileloop
| forloop
return = return [expr] ;
| return ([exprs |) ;
assignment = assign_lhs [, assign_lhs | * assign_op expr
| assign_lhs (++ /] -)
assign__lhs = ud
| assign_lhs [exprs]
| assign_lhs . id
assign_ op = (= [+=[|-=[x=]/=]%=)
cond = if (expr) statementblock /else Statementblock/
doloop = do statementblock while (expr) ;
whileloop = while (expr) statementblock
forloop = for (assignment [, assignment /*

; expr ; assignment /, assignment /*)
statementblock

statementblock = { [cachesim_pragma | [statement |* }
| statement

9 Expressions

unary _prf (expr)

qual_ext _op expr

binary _prf (expr , expr)

expr qual_ext_op expr

ternary _prf (expr , expr , expr)

{ tc_def [; tc_def/* }

id —> expr [| tc_constraint |

[[id _or mdot [, id or mdot]*] 1 -> expr [| tc_constraint |
expr (< | <=) (id] id_vec) [step expr [width expr |]

(id | id _wvec) (< | <=) expr [step expr [width expr]/

expr (<[<=) (id]id vec) (<[] <=) expr
[step expr [width expr |]

tensor_comp
tc_ def

tc_ constraint

exprs = expr [, ewpr |*
expr_or_dot = (expr /.)
expr_or_mdot = (expr | . | ...)
expr = const

| qual_ext_id

| funcall

| withloop

| tensor_comp

| array

| struct

| expr || expr

| erpr && expr

\ expr ? ewpr : expr

| (type) expr

L Ceapr)
arrray = [/ exprs]]

| type]

| expr [[expr_or mdot [, expr or mdot |*]]
struct = id { exprs }

| dd { [. id = expr [, . id = expr]*] }

| expr . id
funcall = qual_ext_id ([exprs |)

|

|

|

|

|

=

=

|

=

|

|

10 With-Loops

modarray (expr)

fold ((qual ext id | qual ext op) [(exprs)] , expr)

foldfix ((qual_ext_id | qual_ext _op) [(exprs)] , expr , expr)
propagate (id)

withloop = with [generators | : operations
generators = { [withloop_pmgma] /genemtor]* }
generator = (index_set) [generator pragma | [{ [statement |* }] : gen_exprs ;
index_set = expr_or dot (<[<=) index wars (<<=) expr or dot
[step ezpr [width expr |]
index_ vars = id [= id vec |
| id wvec
id_vec = | [id [, id]*]]
gen_ exprs = void
| expr
| Ceapr [, expr]*)
operations = void
| operation
| (operation [, operation | *)
operation = genarray (expr [, expr /)
|
|
|
|

11 Types

basetype [shape spec |

*]
+]
[[, -]*]]

nums]

type

shape_ spec [
[
[
[
type_ pattern /{ 1d }]
basetype /[features]/

[feature [, feature | *]
(single | multiple)

riype_ pattern
type _pattern
features
feature
single

num

id

*

+

id [> num | : id

num : id

multiple

basetype simpletype
usertype

structtype
byte
short

int

simpletype

long
longlong
ubyte
ushort
uint
ulong
ulonglong
float
bool
char
double

[id ::] struct id

[id ::] id

structtype

b e ——) ——— b —— b L ———

usertype

12 Identifiers

(id /. [...)
[id ::] ext_id
(id | reservedid)

genarray

id_or_ mdot
qual_ext id
ext id
reservedid
modarray
fold
foldfix
propagate
all

except

[id ::] ext op
(op | reservedop)

qual_ext op
ext op

&
&&

reservedop

- —————— oy

13 Constants

const numbyte
numshort

numint

=
|
|
| numlong
| numlonglong
| numubyte
| numushort
| numuint
| numulong
| numulonglong
| num
| float
| double
| char
| [str] T
| true
| false

nums = [num [, num]*]

14 Builtin Operations

unary_ prf = (_tob S / tos S / toi S / tol S |/ toll S)
(toub S |/ tous S / toui S / toul S / toull S)
_tof S
_tod S
toc S
tobool S

/| mot V)

| _neg_V_)
_ S |/ __abs_ 'V)
dim_ A

-+

no

ne

abs

(C
0w »n

~TN

|
|
|
|
|
|
|
|
|
| __shape A
ternary _prf = _modarray AxVxS
binary prf = (_add SxS |/ add SxV_ |/ add VxS |/ add VxV_)
| (_sub SxS |/ sub SxV_ |/ sub VxS /| sub VxV_)
| (_mul SxS / mul SxV_ / mul VxS |/ mul VxV_)
| (div_SxS |/ div_SxV_ | div.VxS | div_VxV_)
| (_aplmod SxS |/ aplmod SxV)
| (_aplmod VxS /| aplmod VxV_)
| (mod SxS |/ mod SxV_ |/ mod VxS |/ mod VxV_)
| (min SxS / min SxV_ |/ min VxS / min VxV_)
| (_max SxS |/ max SxV_ |/ max VxS |/ max VxV_)
| (_eq SxS | eq SxV_ | eq VxS | eq VxV_)
| (_neq SxS | mneq SxV_ | neq VxS | neq VxV_)
| (le SxS |/ le SxV_ |/ le VxS | le VxV_)
| (t SxS |/ It SxV_ |/ It VxS | It VxV_)
| (ge SxS | ge SxV_ | ge VxS | ge VxV_)
| (gt SxS |/ gt SxV_ | gt VxS | gt VxV_)
| (_and SxS |/ and SxV_ |/ and VxS / and VxV_)
| (_or SxS |/ or SxV_ |/ or VxS | or VxV_)
| __reshape VxA
| _sel VxA
| __take SxV
| _drop_ SxV
| _cat_VxV __

15 Pragmas
interface pragme> pragma linkname str

pragma header sir

pragma linkwith [str] =

pragma linkobj [str/ +

pragma copyfun sir

pragma freefun str

pragma ctype sir

pragma linksign [nums]

pragma sacarg [nums]

pragma refcounting [nums]

pragma gpumem [nums]

pragma effect qual ext id [, qual ext id] *

withloop pragmes pragma wlcomp wc_ funcall

generator pragmd

pragma nocuda

H R FH FHEHFHEFEFEHFEFERFEF

pragma gpukernel GridBlock (num , gk funcall)

Default
All ()
Cubes ()

we_ funcall

=
|

|

| ConstSegs (/[nums 1 , [nums] ,]Jr we_ funcall)
| NoBlocking (wc_ funcall)

\ BvLO ([[nums], /+ we__funcall)

| BvLl ([[nums] ,]+ we_ funcall)

| BvL2 ¢ [[nums 1 , /+ we_ funcall)

| Ubv ([[nums] , /Jr we_funcall)
|

|

=

|

\

|

|

|

|

Scheduling (sched param , wc_ funcall)
Tasksel (tsel param , wc_funcall)

gk funcall Gen
ShiftLB (gk funcall)
CompressGrid ([nums 1 , gk_funcall)
Permute ([nums] , gk funcall)

FoldLast2 (gk funcall)
SplitLast (num , gk funcall)
PadLast (num , gk funcall)

cachesim_pragme- # pragma cachesim [str/*

function_pragme> # pragma recountdots
| # pragma noinline

10

