
SaC v2.0
new in v2.0:

• support for type pattern

• support for (co)-domain constraints

• support for modulo

• support for gpumem pragma

• support for ctype pragma

1 Program Structure

prg ⇒ [(module | class)] [interface] *
[structdef] * [typedef] * [objectdef] *
[function] *

2 Module Declarations

module ⇒ module id [deprecated str] ;

class ⇒ class id [deprecated str] ; classtype

classtype ⇒ classtype type ;
| extern classtype ; [interface_pragma] *

3 Import / Export

interface ⇒ (import | use) id : symbolset ;
| (export | provide) symbolset ;

symbolset ⇒ all [except { ext_id [, ext_id] }]
| { ext_id [, ext_id] }

4 Structure Definitions

structdef ⇒ struct id { [type id [, id] * ;] * } ;

5 Type Definitions

typedef ⇒ loctypedef
| exttypedef

loctypedef ⇒ typedef type id ;

exttypedef ⇒ external typedef id ; [interface_pragma] *

1

6 Object Definitions

objectdef ⇒ (locobjdef | extobjdef)

locobjdef ⇒ objdef type id = funcall ;

extobjdef ⇒ external objdef type id ; [interface_pragma] *

7 Function Declarations and Definitions

function ⇒ extfundec [(interface_pragma | funtion_pragma)] *
| specfundec [function_pragma] *
| fundef
| main

extfundec ⇒ external varsignature ;

specfundec ⇒ specialize fixsignature ;

fundef ⇒ [(inline | noinline)] fixsignature [| exprs]
[function_pragma] * body

fixsignature ⇒ fixrets ext_id (fixargs)
| operator_sig

varsignature ⇒ varrets ext_id (varargs)
| operator_sig

operator_sig ⇒ type (ext_op) (arg)
| type (ext_op) (arg , arg)

fixargs ⇒ (arg [, arg] * | [void])

varargs ⇒ fixargs
| arg [, arg] * , ...

arg ⇒ type_pattern [&] id

fixrets ⇒ (rtype_pattern [, rtype_pattern] * | [void])

varrets ⇒ fixrets
| rtype_pattern [, rtype_pattern] * , ...

main ⇒ int main ([void]) body

2

8 Function Bodies

body ⇒ { [cachesim_pragma] [vardec] * [statement] * [return] }

vardec ⇒ type id [, id] * ;

statement ⇒ ;
| assignment ;
| funcall ;
| withloop ;
| cond
| doloop
| whileloop
| forloop

return ⇒ return [expr] ;
| return ([exprs]) ;

assignment ⇒ assign_lhs [, assign_lhs] * assign_op expr
| assign_lhs (++ | -)

assign_lhs ⇒ id
| assign_lhs [exprs]
| assign_lhs . id

assign_op ⇒ (= | += | -= | *= | /= | %=)

cond ⇒ if (expr) statementblock [else statementblock]

doloop ⇒ do statementblock while (expr) ;

whileloop ⇒ while (expr) statementblock

forloop ⇒ for (assignment [, assignment] *
; expr ; assignment [, assignment] *)
statementblock

statementblock ⇒ { [cachesim_pragma] [statement] * }
| statement

3

9 Expressions

exprs ⇒ expr [, expr] *

expr_or_dot ⇒ (expr | .)

expr_or_mdot ⇒ (expr | . | ...)

expr ⇒ const
| qual_ext_id
| funcall
| withloop
| tensor_comp
| array
| struct
| expr || expr
| expr && expr
| expr ? expr : expr
| (type) expr
| (expr)

arrray ⇒ [[exprs]]
| [: type]
| expr [[expr_or_mdot [, expr_or_mdot] *]]

struct ⇒ id { exprs }
| id { [. id = expr [, . id = expr] *] }
| expr . id

funcall ⇒ qual_ext_id ([exprs])
| unary_prf (expr)
| qual_ext_op expr
| binary_prf (expr , expr)
| expr qual_ext_op expr
| ternary_prf (expr , expr , expr)

tensor_comp ⇒ { tc_def [; tc_def] * }

tc_def ⇒ id -> expr [| tc_constraint]
| [[id_or_mdot [, id_or_mdot] *]] -> expr [| tc_constraint]

tc_constraint ⇒ expr (< | <=) (id | id_vec) [step expr [width expr]]
| (id | id_vec) (< | <=) expr [step expr [width expr]]
| expr (< | <=) (id | id_vec) (< | <=) expr

[step expr [width expr]]

4

10 With-Loops

withloop ⇒ with [generators] : operations

generators ⇒ { [withloop_pragma] [generator] * }

generator ⇒ (index_set) [generator_pragma] [{ [statement] * }] : gen_exprs ;

index_set ⇒ expr_or_dot (< | <=) index_vars (< | <=) expr_or_dot
[step expr [width expr]]

index_vars ⇒ id [= id_vec]
| id_vec

id_vec ⇒ [[id [, id] *]]

gen_exprs ⇒ void
| expr
| (expr [, expr] *)

operations ⇒ void
| operation
| (operation [, operation] *)

operation ⇒ genarray (expr [, expr])
| modarray (expr)
| fold ((qual_ext_id | qual_ext_op) [(exprs)] , expr)
| foldfix ((qual_ext_id | qual_ext_op) [(exprs)] , expr , expr)
| propagate (id)

5

11 Types

type ⇒ basetype [shape_spec]

shape_spec ⇒ [*]
| [+]
| [[. [, .] *]]
| [nums]

rtype_pattern ⇒ type_pattern [{ id }]

type_pattern ⇒ basetype [[features]]

features ⇒ [feature [, feature] *]

feature ⇒ (single | multiple)

single ⇒ .
| num
| id

multiple ⇒ *
| +
| id [> num] : id
| num : id

basetype ⇒ simpletype
| usertype
| structtype

simpletype ⇒ byte
| short
| int
| long
| longlong
| ubyte
| ushort
| uint
| ulong
| ulonglong
| float
| bool
| char
| double

structtype ⇒ [id ::] struct id

usertype ⇒ [id ::] id

6

12 Identifiers

id_or_mdot ⇒ (id | . | ...)

qual_ext_id ⇒ [id ::] ext_id

ext_id ⇒ (id | reservedid)

reservedid ⇒ genarray
| modarray
| fold
| foldfix
| propagate
| all
| except

qual_ext_op ⇒ [id ::] ext_op

ext_op ⇒ (op | reservedop)

reservedop ⇒ &
| &&
| ||
| !
| ˜
+
*
/
%
<=
<
>=
>
»
«
ˆ
++
-

7

13 Constants

const ⇒ numbyte
| numshort
| numint
| numlong
| numlonglong
| numubyte
| numushort
| numuint
| numulong
| numulonglong
| num
| float
| double
| char
| [str] +

| true
| false

nums ⇒ [num [, num] *]

8

14 Builtin Operations

unary_prf ⇒ (_tob_S_ | _tos_S_ | _toi_S_ | _tol_S_ | _toll_S_)
| (_toub_S_ | _tous_S_ | _toui_S_ | _toul_S_ | _toull_S_)
| _tof_S_
| _tod_S_
| _toc_S_
| _tobool_S_
| (_not_S_ | _not_V_)
| (_neg_S_ | _neg_V_)
| (_abs_S_ | _abs_V_)
| _dim_A_
| _shape_A_

ternary_prf ⇒ _modarray_AxVxS_

binary_prf ⇒ (_add_SxS_ | _add_SxV_ | _add_VxS_ | _add_VxV_)
| (_sub_SxS_ | _sub_SxV_ | _sub_VxS_ | _sub_VxV_)
| (_mul_SxS_ | _mul_SxV_ | _mul_VxS_ | _mul_VxV_)
| (_div_SxS_ | _div_SxV_ | _div_VxS_ | _div_VxV_)
| (_aplmod_SxS_ | _aplmod_SxV_)
| (_aplmod_VxS_ | _aplmod_VxV_)
| (_mod_SxS_ | _mod_SxV_ | _mod_VxS_ | _mod_VxV_)
| (_min_SxS_ | _min_SxV_ | _min_VxS_ | _min_VxV_)
| (_max_SxS_ | _max_SxV_ | _max_VxS_ | _max_VxV_)
| (_eq_SxS_ | _eq_SxV_ | _eq_VxS_ | _eq_VxV_)
| (_neq_SxS_ | _neq_SxV_ | _neq_VxS_ | _neq_VxV_)
| (_le_SxS_ | _le_SxV_ | _le_VxS_ | _le_VxV_)
| (_lt_SxS_ | _lt_SxV_ | _lt_VxS_ | _lt_VxV_)
| (_ge_SxS_ | _ge_SxV_ | _ge_VxS_ | _ge_VxV_)
| (_gt_SxS_ | _gt_SxV_ | _gt_VxS_ | _gt_VxV_)
| (_and_SxS_ | _and_SxV_ | _and_VxS_ | _and_VxV_)
| (_or_SxS_ | _or_SxV_ | _or_VxS_ | _or_VxV_)
| _reshape_VxA_
| _sel_VxA_
| _take_SxV_
| _drop_SxV_
| _cat_VxV_

9

15 Pragmas

interface_pragma⇒ # pragma linkname str
| # pragma header str
| # pragma linkwith [str] +

| # pragma linkobj [str] +

| # pragma copyfun str
| # pragma freefun str
| # pragma ctype str
| # pragma linksign [nums]
| # pragma sacarg [nums]
| # pragma refcounting [nums]
| # pragma gpumem [nums]
| # pragma effect qual_ext_id [, qual_ext_id] *

withloop_pragma⇒ # pragma wlcomp wc_funcall
| # pragma nocuda

generator_pragma⇒ # pragma gpukernel GridBlock (num , gk_funcall)

wc_funcall ⇒ Default
| All ()
| Cubes ()

| ConstSegs ([[nums] , [nums] ,] + wc_funcall)
| NoBlocking (wc_funcall)

| BvL0 ([[nums] ,] + wc_funcall)

| BvL1 ([[nums] ,] + wc_funcall)

| BvL2 ([[nums] ,] + wc_funcall)

| Ubv ([[nums] ,] + wc_funcall)
| Scheduling (sched_param , wc_funcall)
| Tasksel (tsel_param , wc_funcall)

gk_funcall ⇒ Gen
| ShiftLB (gk_funcall)
| CompressGrid ([nums] , gk_funcall)
| Permute ([nums] , gk_funcall)
| FoldLast2 (gk_funcall)
| SplitLast (num , gk_funcall)
| PadLast (num , gk_funcall)

cachesim_pragma⇒ # pragma cachesim [str] *

function_pragma⇒ # pragma recountdots
| # pragma noinline

10

