
Polyhedral Methods for Improving Parallel Update-in-Place

Jing Guo
University of Hertfordshire, Hatfield

United Kindgom
Jing.Guo@herts.ac.uk

Robert Bernecky
Snake Island Research,

Toronto
Canada

bernecky@acm.org
Jeyarajan Thiyagalingam

Oxford e-Research Centre,
University of Oxford, Oxford

United Kingdom
jeyan@bcs.org

Sven-Bodo Scholz
Heriot-Watt University,

Edinburgh
United Kingdom

S.Scholz@hw.ac.uk

ABSTRACT
We demonstrate an optimization, denoted as polyhedral reuse
analysis (PRA), that uses polyhedral methods to improve
the analysis of in-place update for single-assignment arrays.
The PRA optimization attempts to determine when parallel
array operations that jointly define new arrays from exist-
ing ones can reuse the memory of the existing arrays, rather
than creating new ones. Polyhedral representations and re-
lated dependency inference methods facilitate that analysis.

In the context of SaC, we demonstrate the impact of this
optimisation using two non-trivial benchmarks evaluated on
conventional shared memory machines and on GPUs, ob-
taining performance improvements of 2–8 times for LU De-
composition and of 2–10 times for Needleman-Wunsch, over
the same computations with PRA disabled.

1. INTRODUCTION
Aggregate updates [12] are a well-known problem in im-

plementing efficient computations on large, aggregate data
structures, such as arrays in functional languages. The side-
effect-free nature of functional languages demands that all
assignments, including those to aggregates, are single assign-
ment. Consequently, successive array modifications, at least
on a conceptual level, demand the creation of new arrays for
every individual modification operation, even if the original
and the modified array differ in one element only.

A significant amount of research has gone into attempts to
eliminate or reduce this potential source of excessive copy-
ing and memory demand. The most effective techniques
found thus far are based on advanced forms of reference
counting [5, 8, 10]. These techniques combine static anal-
ysis and code transformation with dynamic counters that
maintain the number of active references to each individual
use of every array. This knowledge enables the executing

IMPACT 2014
Fourth International Workshop on Polyhedral Compilation Techniques
Jan 20, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://impact.gforge.inria.fr/impact2014

code to avoid memory allocations and copying, in almost all
cases. In particular, successive modifications of one individ-
ual array can be identified, and then compiled into code of
identical efficiency to its imperative counterpart.

While such reference-counting-based techniques suffice for
update operations of individual array elements, the situation
becomes more challenging when dealing with update oper-
ations that permit parallel updates of several elements of
arrays. By parallel update, we mean update operations in
which the semantics of the language does not impose any
particular compute order for individual elements of the re-
sult array. For such parallel-update operations, memory
reuse is a more complex problem. In many cases, increased
potential for memory reuse can be gained by imposing a
schedule – restrictions on the compute order of the individual
elements. In our environment, we are not willing to sacrifice
any potential parallelism, as we want to target architectures,
such as GPUs, that offer high-levels of parallelism with min-
imal overhead. Consequently, we are exclusively interested
in analyses that identify memory-reuse potential, without
restricting the compute order at all. I.e., the compiler has
to ensure that sharing the memory between unmodified and
modified arrays does not introduce undesired dependencies.

The Polyhedral Model is known for its ability to trans-
form complex loop nests, as a way to improve the generated
code in various ways, such as improving memory usage and
locality of reference. Key to this ability is the systematic
capture of data dependencies within loop nests, including al-
ternative control paths governed by predicates. This paper
shows how polyhedral methods can identify whether paral-
lel updates of array elements can be done in place, with-
out restricting potential execution schedules. We present
this work in the context of the functional array program-
ming language SaC (Single Assignment C), and we evaluate
its impact on sequential execution for conventional shared-
memory systems and for parallel execution on GPUs. We
feel that this work applies equally well in an imperative set-
ting, particularly when polyhedral techniques for code gen-
eration are used.

The paper is structured as follows: Section 2 expands on
the problem of data-parallel update-in-place. It provides the
necessary background in SaC, its data-parallel update op-
erations and the basic reference counting technique that is
used. Section 3 explains how we use a polyhedral represen-
tation for update-in-place analysis optimization. It sketches

1

http://impact.gforge.inria.fr/impact2014

the analysis algorithm and its implementation using exist-
ing polyhedral tools. Section 4 discusses the performance
impact of this analysis on two benchmarks on conventional
CPU-based systems and on highly parallel GPU systems.
Section 5 relates our work to existing work; Section 6 sum-
marizes the salient features and impact of our approach, and
its potential relevance to domain-specific languages (DSL).

2. UPDATE-IN-PLACE CHALLENGE
The programming language SaC combines a Matlab-like

array programming style with support for high-performance
execution on parallel platforms, such as shared-memory multi-
core systems or GPU accelerated systems (see e.g. [18,19]).
The transformation of high level, generic code in SaC into ef-
ficient, multi-threaded executables for various parallel plat-
forms hinges, to a large degree, on the functional founda-
tions of SaC. The side-effect-free setting of SaC guarantees
that all data dependencies are explicit. Moreover, it lays the
foundation for all concurrency being directly derivable.

However, a side-effect-free setting comes at a price: a
fundamental challenge of that setting is that modification
operations are forbidden. Instead, they are interpreted as
the creation of new objects from existing ones, even though
those objects may differ in only a few elements. Apparently
imperative programs, such as this SaC code:

1 a = [1 , 1 , 1 , 1 , 1] ;
a [3] = 42 ;

3 return (a) ;

must, in fact, be considered as two variable definitions:

1 a = [1 , 1 , 1 , 1 , 1] ;
a’ = modarray (a , [3] , 42);

3 return (a ’) ;

where the conceptually different arrays, a and a’, are explic-
itly defined. When compiling such code for high-performance
execution, it is paramount to find ways to project the alloca-
tion of a and a’ into the same memory space and, thereby, to
end up with a runtime update-in-place operation, in much
the same way as a naive imperative interpretation of the
above code would suggest. Key to being able to do this kind
of optimisation is a sharing analysis of variables, to keep
track of the number of references to a given data object.
Advanced reference-counting techniques, such as those pio-
neered in the context of SISAL [5,9], and later refined in the
context of SaC [10], deliver this information, in most cases,
at compile time and in the few remaining cases, at runtime.

While these techniques suffice in the example given above,
the situation becomes more involved when looking at data-
parallel update operations that concurrently modify more
than one element of an array. Consider a straightforward
extension of the previous example to a two-dimensional case.
In SaC , we can modify entire rows of a matrix by means of
a single assignment:

1 a = [[1 , 2 , 3]
, [4 , 5 , 6]] ;

3 a [0] = [4 2 , 4 2 , 4 2] ;
return (a) ;

This replaces the entire first row of the initial 2× 3 matrix
a by a 3-element vector of values 42. As in the scalar case
above, our compiler will identify that the second version of a,
defined through the modarray operation, can, in fact, reuse
the original matrix a, thereby saving a second allocation as
well as the need to copy the array row values [4,5,6].

Things are more complicated when the values to be mod-
ified depend on existing entries in the same array. An ex-
ample of this is an element-wise increment, such as:

a = [[1 , 2 , 3]
2 , [4 , 5 , 6]] ;

a [0] = [a [0 ,0]+1 , a [0 ,1]+1 , a [0 , 2]+1] ;
4 return (a) ;

This can reuse the memory of a, as all reads are local, i.e.,
it reads only from the same position that is to be modified.
Now consider a slight variant of the previous example:

a = [[1 , 2 , 3]
2 , [4 , 5 , 6]] ;

a [0] = [a [0 , 2] , a [0 , 1] , a [0 , 0]] ;
4 return (a) ;

In this example, we reverse the order of the elements of the
first row. Here, the non-local read accesses in line 3 into
the matrix a defined in line 1 inhibit a direct reuse of the
memory of a. The only way to reuse the memory of a in this
example would be to store the read values in an intermediate
location before performing the in-place updates.

Interestingly, there are situations where we can do without
intermediate storage, despite having non-local read accesses.
Consider yet another slight modification of our example:

a = [[1 , 2 , 3]
2 , [4 , 5 , 6]] ;

a [0] = [a [1 , 2] , a [1 , 1] , a [1 , 0]] ;
4 return (a) ;

The only difference from the previous example is that ele-
ments from the second row are placed in reversed order into
the first row. The values for updates are read from an area
of the argument arrays that is identical to the correspond-
ing area of the result array, so no intermediate structure is
needed to hold those elements.

From these few examples, we learn that, for memory reuse
of parallel update operations: The ability to map the ar-
gument array a and the result array a into a single mem-
ory location depends on two things: As in the non-parallel,
single-element-update case, it depends on the number and
location of references to a. In addition, it depends on the
index range which the parallel update reads from. If all those
reads are local or fall into a region that remains unmodified,
sharing the memory does not impose new dependencies.

Parallel array update functions in SaC are defined via its
data-parallel construct, the with-loop, including the modar-
ray operation seen in the above examples. with-loops de-
fine new arrays from existing ones, in a map-like, parallel
fashion.

2.1 Running Example
Figure 1 gives a SaC running example with-loop in which

a 60-element vector d is defined from vectors a, b, and c; Fig-
ure 2 shows an equivalent C version. The with-loop contains
three different index ranges, with separate definitions. For
the first 20 elements (indices 0 to 19), the values are copied
from vector a; for the last 20 elements the values are copied
from vector c. The 20 middle elements are alternately copied
from b, or computed as a sum from one element of a, b, and
c, as depicted at the bottom of Figure 1.

All with-loops are inherently data-parallel: their seman-
tics guarantees that all elements of the result can be com-
puted in parallel. Furthermore, single assignment semantics
requires that the array d, defined here, cannot be referenced
on the right-hand side of the assignment. The individual

2

d = with {
2 ([0] <= [i] < [2 0]) : a [i] ;

([2 0] <= [i] < [4 0]) :
4 ((i % 2) == 0) ?

b [i] :
6 a [i −20] + b [i −1] + c [i +10] ;

([4 0] <= [i] < [6 0]) : c [i] ;
8 } : genarray ([6 0] , 0) ;

..."

a"

b"

c"

d"

a[i]"
b[i]"

c[i]"

a[i)20]"+"b[i)1]"+"c[i+10]"

0" 20" 40"

Figure 1: Running example: vector d = f(a, b, c)

index ranges are currently restricted to rectangular grids of
potentially statically unknown sizes and stepping, but could,
in principle, be extended to allow for arbitrary polyhedra.
Missing indices within the result array are filled with the
default element, 0 in this example.

We allow programmers to specify overlapping index ranges,
but internally split those with-loops into non-overlapping
ones, then use an optimisation to fold, whenever possible,
those with-loops back into with-loops with multiple, non-
overlapping index ranges. This guarantees that the indi-
vidual index ranges of all with-loops are non-overlapping,
before doing any analysis of memory layout. More details
on the semantics of with-loops in SaC , and on how non-
overlapping ranges are enforced can be found in [16].

As in the modarray example above, with-loops define new
arrays. For this paper, we furthermore assume that the lay-
out of the result in memory is given and cannot be changed.
We are interested in finding out whether any one of the ar-
rays from which some values are being copied into d can be
updated in place. This eliminates the need to allocate and
deallocate memory; more importantly, it eliminates the need
to copy those elements from one array into another.

Looking more closely at our running example, we observe
that more than one array could serve as what we call a reuse
candidate: Besides the obvious candidate a, the vector b

could be reused. For both arrays, all read accesses are to
elements that are copied in an unmodified fashion.

In contrast, the vector c cannot serve as a reuse candidate:
some read accesses into c overlap with some of the non-
copying write accesses into d, e.g., the computation of d[21],
which refers to c[31].

The central contribution of this paper is to define an anal-
ysis based on polyhedral methods that identifies memory-
reuse candidates for arrays that hold the results of with-
loops. This analysis, combined with pre-existing reference-
counting techniques, enables extended reuse of memory; it
also reduces the need to copy unmodified parts of arrays.

3. POLYHEDRAL REUSE ANALYSIS
In the previous section, we identified that it is key to this

optimisation to be able to analyse index spaces, their map-
pings through access functions and their intersections. The
polyhedral model offers a concise and suitable representa-
tion for these aspects; it also comes with readily available
tools for computing such mappings and intersections. We
now show how we map our with-loops into the polyhedral
setting, then we formulate our analysis in terms of such a
polyhedral representation.

3.1 A Polyhedral Formulation
When switching to a polyhedral formulation, we map with-

loops into an equivalent representation, with loops using ex-
plicit read and write accesses. Every with-loop represents a
sequence of loop nestings of identical nesting depth, given by
the length of the index vector ([i] in Figure 1). The number
of subsequent nestings is given by the number of definitions
within the with-loop. In our example we have three defini-
tions ranging over 20 elements each. The innermost bodies
of the nestings contain assignments to the result array at
the corresponding position. The resulting representation of
our example with-loop as standard for-loops is shown in
Figure 2.

d = (int ∗) mal loc (60 ∗ s izeof (int)) ;
2

for (i =0; i <20; i++)
4 d [i] = a [i] ;

6 for (i =20; i <40; i++)
i f ((i % 2) == 0) {

8 d [i] = b [i] ;
} else {

10 d [i] = a [i −20] + b [i −1] + c [i +10] ;
}

12

for (i =40; i <60; i++)
14 d [i] = c [i] ;

Figure 2: Running example in C.

In general, the loop nests generated from with-loops have
several invariants that stem from their semantics and that
cannot be compromised even though with-loops can contain
arbitrary SaC expressions, including conditionals, loops, or
with-loops: The data-parallel nature of with-loops guar-
antees that all write accesses into a result array appear as
the last operation within all loop nests. It is also guaranteed
that the iteration space and the result array data space have
a one-to-one correspondence, ensuring that every element is
written to exactly once.

We first formalise our analysis requirements in terms of
conventional loop representations. Since with-loops can be
defined in a nested fashion, we distinguish between the local
and global write accesses of each with-loop Wl represented
by conventional loops: local write accesses refer to arrays
defined inside the body of a Wl , whereas global ones refer
to the result of the Wl itself. For our purposes, we are
only interested in global write accesses, since they determine
whether Wl can be performed in-place or not.

An in-place read of a with-loop is an array access A[Iv]
which resides at the same loop level as a global write access
A′[Iv]. If array A is reused to be destructively updated by
the with-loop, i.e., A = A′, both accesses will reference the
same memory location during each iteration of the enclosing

3

with-loop nest, causing a loop-independent anti-dependence
from A[Iv] to A′[Iv]. However, since the write is always
performed after the read, that dependence is guaranteed to
be preserved, irrespective of the relative execution order of
different iterations. Therefore, in-place reads can never pre-
vent the reuse of their accessed arrays for in-place update.
In Figure 2, the accesses in lines 4, 8, and 14 are all in-place
reads since they are at the same loop levels and have the
same index vectors as the respective global write accesses.

A copy assignment in a with-loop is of the form A[Iv] =
A′[Iv] where A[Iv] is a global write access and A′[Iv] is an
in-place read. Essentially, it performs data copying from A′

to A in an element-wise manner. All three assignments with
in-place reads in our example are of this nature.

With this nomenclature at hand, we can formulate our
problem as follows:

An array A is a reuse candidate iff the iteration spaces as-
sociated to all non-in-place reads from A map into iteration
spaces of copy assignments with in-place reads from A.

3.2 Identifying Reuse Candidates
A formalisation of the in-place update analysis is shown

in Algorithm 1. Given a with-loopWl, the algorithm infers
the set of reuse candidates whose memory can be reused for
destructive update by Wl. Each array access A[Iv] in Wl
is associated with an iteration vector I and a control path
set CP. I describes the polyhedron that Iv ranges over and
CP is a normalised form of all predicates that dominate that
particular array access. CP contains a set of lists of simple
predicates, representing a disjunctive normal form of these
predicates. CP may contain only one empty path if A[Iv]
is not in any conditionals. Depending on the type of A[Iv],
one of two different accessed data spaces is computed:

• If A[Iv] is a non-in-place read, the data space DS it
reads under the enclosing with-loops and conditionals
is computed. The total read data space of A (stored in
table RDS) is then updated by taking its union with
DS. In-place reads are ignored, as they can never be
reuse-preventing, as discussed previously.

• If A[Iv] is the global write access of a copy assignment
A[Iv] = A′[Iv], the data space DS of A′ copied by
this assignment under the enclosing with-loops and
conditionals is computed. The total copy data space
of A′ (stored in table CDS) is then updated by taking
its union with DS.

To compute DS for A[Iv], the index vector Iv, iteration
vector I and control path set CP of A[Iv] are passed to
Algorithm 2, which analyses whether A[Iv] constitutes an
affine access within the given iteration space and symbolic
constants. That algorithm calls procedure Access Analysis,
which returns an array access function F , represented by a
suitable matrix, or NULL if an affine access cannot be de-
termined.

If such a matrix F is found, we compute the relevant por-
tion of the iteration domain by extending the affine descrip-
tion of the iteration domain with the constraints of the in-
dividual control paths. The impact of a particular control
path in CP on the iteration vector is computed by a call to
the Domain Analysis procedure, resulting in a potentially
restricted sub-domain ID. Each of these sub-domains are
then mapped into the array access domains by computing

Algorithm 1: In-place Update Analysis

Input: A with-loop Wl which the in-place update
analysis is performed upon;

1 Let RDS be a (initially empty) table with pairs
(A 7→ RDS) where A is an array and RDS is its data
space read by Wl;

2 Let CDS be a (initially empty) table with pairs
(A 7→ CDS) where A is an array and CDS is its data
space copied by Wl;

3 Let the vector of symbolic constants referred to in Wl
be SCiv= [sc1 . . . scm];

4 foreach Array access A[Iv] in Wl do
5 Let I be the iteration vector associated with this

access;
6 Let CP be the set of control paths associated with

this access;
7 if A[Iv] is a non-in-place read access then
8 Affine, DS ← Get_Data_Space(I, Iv, CP,

SCiv);
9 if Affine = True then

10 RDS[A]← RDS[A] ∪ DS;

11 else
12 Terminate;

13 else if A[Iv] is the global write access in a copy
assignment then

14 Let A′[Iv] be the in-place read of this copy
assignment;

15 Affine, DS ← Get_Data_Space(I, Iv, CP,
SCiv);

16 if Affine = True then
17 CDS[A′]← CDS[A′] ∪ DS;

18 else
19 Terminate;

20 else
21 Continue;

22 RC← ∅;
23 foreach A with (A 7→ CDS) ∈ CDS do
24 if RDS[A] ⊆ CDS[A] then
25 RC← RC ∪ {A};

Output: A set of arrays RC that can be reused for
in-place update by Wl.

4

F•ID. The result is the union of all such array access spaces
under different control paths. After all array accesses in Wl
have been examined, each entry (A 7→ RDS) in table RDS
represents the total data space of A that is read byWl , not
including those accessed by in-place reads. Similarly, each
entry (A 7→ CDS) in table RDS represents the total data
space of A that is copied by Wl.

Algorithm 2: GetDataSpace (I, Iv, CP, SCiv)

Input: A loop iteration vector − I;
An access index vector − Iv;
A control path set − CP;
Symbolic constant vector − SCiv;

1 Affine ← False;
2 DS ← NULL;

3 F ← Access_Analysis(Iv, I, SCiv);
4 if F 6= NULL then
5 Affine ← True;
6 foreach CP ∈ CP do
7 ID ← Domain_Analysis(I, CP, SCiv);
8 if ID 6= NULL then
9 DS ← DS ∪ F • ID;

10 else
11 Affine ← False;
12 DS ← NULL;
13 Break;

Output: Affine − True if the iteration domain and
access are affine, False otherwise;
DS − Data space accessed, NULL if Affine

is False;

After computing all relevant data spaces, the algorithm
infers the set of valid reuse candidates. An array A is con-
sidered only if part of it is copied by Wl (i.e., there is an
entry (A 7→ CDS) in table CDS). This ensures the effective-
ness of copy elimination if A is selected to be reused. Array
A may potentially be a reuse candidate if its read data space
is a subset of its copy data space. In other words, if A is
reused for in-place update, every read from A will return
the same result, irrespective of its relative execution order
with a write to the same array location. Therefore, iter-
ations can be executed in arbitrary order while preserving
determinism.

In our implementation, we build on functions from the
Polylib library to perform the various operations over poly-
hedra, such as computing the union of data spaces (e.g., ∪),
determining the inclusion relationship (e.g,, ⊆) and finding
the image of a polytope under affine transformation (i.e., •).

4. PERFORMANCE IMPACT
We evaluated the effectiveness of our polyhedral-model-

based, update-in-place optimization using two benchmarks:
LU Decomposition and Needleman-Wunsch [14], generating
sequential and Cuda codes, referred to here as SaC-seq
and SaC-cuda . Our experiments were conducted on two
Linux64 2.6.35 platforms: The first system, dubbed C1060,
comprises an earlier generation of GPU on a 2-core, 1.6G Hz
Aeon 5110, L1=32B, L2=4MB; the second system, dubbed
GTE480, comprises a GTE480 GPU on a 4-core 2.8G Hz

Intel i7, L1=64B, L2=256B, L3=8MB.

4.1 LU Decomposition
The kernel of the SaC implementation of LU Decomposi-

tion is shown in Figure 3. We observe that both with-loops

for (k = 0 ; k < N−1; k++) {
2 A = with {

([k+1,k] <= [i , j] < [N, k+1])
4 : A[i , j] /A[k , k] ;

} : modarray (A) ;
6 A = with {

([k+1,k+1] <= [i , j] < [N,N])
8 : A[i , j]−A[i , k]∗A[k , j] ;

} : modarray (A) ;
10 }

Figure 3: SaC implementation of LU Decomposition.

in this algorithm can be performed in place. The only non-

1kx1k 2kx2k 3kx3k 4kx4k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LUD SAC-SEQ Runtime Dissection (C1060)

Other
Compute
Copy

Problem Sizes

P
er

ce
nt

ag
es

1kx1k 2kx2k 3kx3k 4kx4k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LUD SAC-SEQ Runtime Dissection (GTX480)

Other
Compute
Copy

Problem Sizes

P
er

ce
nt

ag
es

Figure 4: LU Decomposition SaC-seq dissections

in-place read in the first with-loop is the selection A[k,k] in
line 4, which refers to an index outside the specified range.
Since we are dealing with a modarray-with-loop, all miss-
ing elements are inserted as index ranges over copy assign-
ments from A. Consequently, our analysis identifies A as a
reuse candidate for the with-loop in lines 2-5. Similarly,
the two non-in-place reads in line 8 are identified as reads
into copy assignment ranges leading to a further reuse of the
memory of a for the with-loop in lines 6-9. Note here, that
our previous technique described in [10] would not consider
any reuse possible here due to the occurance of non-in-place
reads in both cases.

Figures 4 and 5 show the runtime dissections of SaC-seq
and SaC-cuda, without in-place update, on several differ-
ent problem sizes. The total execution time is divided into
three components: compute time of the actual decomposi-
tion (i.e. column and sub-matrix computations), data copy-

5

1kx1k 2kx2k 3kx3k 4kx4k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LUD SAC-CUDA Runtime Dissection (C1060)

Other
Compute
Copy

Problem Sizes

P
er

ce
nt

ag
es

1kx1k 2kx2k 3kx3k 4kx4k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LUD SAC-CUDA Runtime Dissection (GTX480)

Other
Compute
Copy

Problem Sizes

P
er

ce
nt

ag
es

Figure 5: LU Decomposition SaC-cuda dissections

ing time, and other overheads (mainly as a result of the
memory management overhead). As can be observed from
the dissections of SaC-seq runtime, the average percentages
of the three components are very consistent across all prob-
lem sizes on both platforms at 10% for overheads, 29% for
computation and 61% for data copying. The only exception
is for 1024×1024 matrix on C1060 where the overheads are
almost negligible. This is because allocating or freeing mem-
ory of size 1024 × 1024 × 8 = 8MB (assuming double data
type) is considerably faster than the other sizes on C1060.
By contrast, the SaC-cuda runtime dissections show that
the execution components with the highest percentages are
computation (54% on average) and overheads (52% on av-
erage) on C1060 and Gtx480 respectively. The two main
factors that cause the reduced significance of data copying
are: (i) Data copying between arrays in the GPU memory
is significantly faster than it is in the CPU memory due to
the much higher GPU memory bandwidth. This substan-
tially reduces the absolute data copying time and (ii) GPU
memory deallocation operation on Gtx480 is considerably
more expensive than its counterpart on either the host or
C1060.

Figure 6 shows the effect on wall-clock runtime when us-
ing our polyhedral update-in-place code. On average, the
performance of SaC-seq is improved by 6.9× and 9.2× on
C1060 and Gtx480 respectively. These speedups, at first
glance, appear to be in contradiction to the dissection graphs
shown in Figure 4. Those graphs show that computation
takes approximately 29% of total execution time on both
platforms. Therefore, an average improvement of only 3.3×
is expected if both the overheads and data copying are elim-
inated by the optimization. Analysis revealed that polyhe-
dral in-place computations improved cache behavior, leading
to unexpected performance gains.

By contrast, the performance improvements of SaC-cuda
are more consistent with the corresponding runtime dissec-

1kx1k 2kx2k 3kx3k 4kx4k
0

2

4

6

8

10

12

14

Speedups of LUD with In-place Update (SAC-SEQ)

C1060
GTX480

Problem Sizes

S
pe

ed
up

s

1kx1k 2kx2k 3kx3k 4kx4k
0

1

2

3

4

5

6

7

8

Speedups of LUD with In-place Update (SAC-CUDA)

C1060
GTX480

Problem Sizes

S
pe

ed
up

s

Figure 6: LU speedups using update-in-place

Size SEQ SEQ CUDA CUDA MEM MEM
+PRA +PRA +PRA

1024 0.28 1.49 0.56 10.21 16 9
2048 0.19 1.33 0.97 11.22 66 34
4096 0.19 1.29 1.15 11.39 258 130

Table 1: Performance of the LUD Benchmark on the
Zen platform in GFLOPS and memory use in MB

tion graphs. The average speedups are 2.2× and 6× on
C1060 and Gtx480 respectively. The absence of cache hi-
erarchy in C1060 means a write will always access the global
memory directly regardless of whether the same element has
been read before or not. Therefore, in-place update does
provide the benefits as those described in the sequential case.
In the Gtx480, a 768B L2 cache was introduced to provide
fast data access for all processing cores (there is also an L1
cache but it is read-only). However, since the cache is often
shared among tens of thousands of concurrently executing
threads, the cache line loaded due to the access of an el-
ement is less likely to be present when the corresponding
write is issued. Therefore, write misses may still occur with
high frequency, a situation similar to writing to a different
array.

We show the absolute performance and memory require-
ments of the LUD benchmark in Table 1 as obtained from
the Zen platform (OS: Linux 2.6.35, CPU: Intel X5650i at
2.67GHz, GPU: nVidia C2070, Memory: 24GB, L1:32KB,
L2: 256KB and L3:12MB). The +PRA columns indicate the
performance when the re-use optimisation is enabled.

We can see an almost 7-fold increase in sequential per-
formance reflected in an increase from 190 MFLOPS to 1.3
GFLOPS. On the GPU, we see an even higher improvement
from roughly 1 GFLOP to 11 GFLOPS. The memory use
decreases by the amount needed for exactly one array of the

6

problem size. Sinze the entire application mainly requires
one array of that size only, we see an almost 50% reduction
in space demand. However, for all problem sizes the entire
memory demand fits into the L2 cache.

4.2 Needleman-Wunsch
The Needleman-Wunsch algorithm is a non-linear, global

optimisation method for DNA sequence alignments. The
wavefront nature of the computation is such that the value
of each data element depends on the values of its north-,
west- and north-west neighbouring elements.

/∗ Compute upper l e f t t r i angu la r matrix ∗/
2 for (i = 1 ; i < N; i++) {

A = with {
4 ([1 , 1] <= [r , c] < [i +1, i +1])

: (r == (i − c + 1) ?
6 maximum(A[r−1,c−1] + r e f [r , c] ,

A[r , c−1] − penalty ,
8 A[r−1,c] − penalty)

: A[r , c]) ;
10 } : modarray (A) ;
}

12

/∗ Compute lower r i g h t t r i angu la r matrix ∗/
14 for (i = 1 ; i < N; i++) {

A = with {
16 ([i +1, i +1] <= [r , c] < [N,N])

: (r == (N − c + i) ?
18 maximum(A[r−1,c−1] + r e f [r , c] ,

A[r , c−1] − penalty ,
20 A[r−1,c] − penalty)

: A[r , c]) ;
22 } : modarray (A) ;
}

Figure 7: SaC implementation of Needleman-Wunsch.

The performance-relevant kernel of the SaC implemen-
tation of the algorithm is shown in Figure 7. The general
structure is that we twice have a for-loop, within which a
recomputation of a diagonal is specified by means of a modar-

ray-with-loop. However, since with-loops can only express
rectangular data/iteration space, a conditional statement is
required to ensure that only elements on the diagonal are
computed. The predicates in both with-loops are affine, as
they depend only on with-loop indices and symbolic con-
stants. Consequently, during each for-loop iteration, only
the diagonal elements are updated with new values, while
the rest of the matrix is copied over to the output array.

A closer examination of the accesses reveals that the com-
putation of each diagonal only depends on data in two other
diagonals which are copied from the previous version to the
new output matrix. As in the LU example, our in-place
analysis successfully identifies A as being a reuse candidate
and eliminates all overhead that would result otherwise.

Figures 8 and 9 show the runtime dissections of SaC-seq
and SaC-cuda in the absence of in-place update. Similar
to the LU example, three different components have been
measured: compute time, data copying time, and other over-
heads. The dissection graphs show that the application de-
votes most of its execution time to data copying (between
46% and 66%) for sequential and parallel execution.

Figure 10 shows the effect of doing in-place updates. The
performance of SaC-seq is improved by about 3× and 2.6×
on the C1060 and Gtx480, respectively. The SaC-cuda
benefits are greater, with average speedups of 9.7× and

1kx1k 2kx2k 3kx3k 4kx4k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NW SAC-SEQ Runtime Dissection (C1060)

Other
Compute
Copy

Problem Sizes

P
er

ce
nt

ag
es

1kx1k 2kx2k 3kx3k 4kx4k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NW SAC-SEQ Runtime Dissection (GTX480)

Other
Compute
Copy

Problem Sizes

P
er

ce
nt

ag
es

Figure 8: Needleman-Wunsch SaC-seq dissections

Size SEQ SEQ CUDA CUDA MEM MEM
+pra +pra +pra

1024 1.58 5.95 4.29 47.57 26 18
2048 0.69 2.60 3.72 24.65 98 66
4096 0.35 1.30 2.13 12.59 386 258

Table 2: Performance of the NW Benchmark on the
Zen platform in MFLOPS and memory use in MB

10.3× observed on the two platforms. The disproportion-
ate gains in the GPU setting here are a consequence of con-
ditionals within the parallel code. By identifying the reuse,
one of the branches of the conditionals becomes empty, which
triggers different, more efficient GPU code generation.

Table 2 shows the absolute performance of the NW bench-
mark with and without the PRA-optimisation on the Zen
platform as well as the application’s memory demand.

While we again see the relative improvements reflected in
the performance, the overall performance for the benchmark
lies in the MFLOPS range rather than reaching into the
GFLOPS. This is a consequence of the limitation of the in-
dex ranges in with-loops to rectangular spaces. If we would
support arbitrary polyhedra further improvements would be
achieved here. Nevertheless, the improvements due to PRA
are clearly reflected in the 3-4 fold improvements on the
sequential case and in the 6-11 fold improvements on the
GPU. On the memory side we can again observe that we
improve by exactly one array of the full size. However, since
2 big arrays are inevitable (a and ref) we only see a 30%
improvement for all sizes.

5. RELATED WORK
Our work directly extends prior work on reference count-

ing for solving the update-in-place problem. Work in SISAL
[5, 8, 9] focuses mainly on aliasing analysis and techniques,

7

1kx1k 2kx2k 3kx3k 4kx4k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NW SAC-CUDA Runtime Dissection (C1060)

Other
Compute
Copy

Problem Sizes

P
er

ce
nt

ag
es

1kx1k 2kx2k 3kx3k 4kx4k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NW SAC-CUDA Runtime Dissection (GTX480)

Other
Compute
Copy

Problem Sizes

P
er

ce
nt

ag
es

Figure 9: Needleman-Wunsch SaC-cuda dissections

to linearise data-flow graphs so as to maximise reuse poten-
tial. Later work, in SaC [10], incorporates parallel update
operations that support local read operations. The work
presented in this paper extends update-in-place further, by
allowing non-local read operations whenever we can prove
that those refer to non-modified regions.

Most of the work in the context of polyhedral techniques
assumes a far more general setting than the restricted update-
in-place problem considered in this paper. Those works gen-
erally start by assuming that loop nests may contain arbi-
trary read and write operations, and that they may have
memory-introduced, as well as non-memory-introduced de-
pendencies. In contrast, we start from a single-assignment
setting that is guaranteed to be completely dependence-free.
This simplifies our analysis considerably, as is often the case
when using single-assignment methods.

Much of the polyhedral work is concerned with specific
aspects, such as tilings to improve cache locality [4], restruc-
turing data to enable vectorisation of stencil codes [11], or
data organisation for creating efficient GPU codes [1–3]. In
that context, update-in-place plays little or no role.

Other polyhedral work focuses on the reduction of the
memory used, for instance, due to limited memory resources
on a given architecture or even to reduce required memory
bandwidth. Rather early work, in the context of the pro-
gramming language ALPHA by Wilde et al. [20] and later
by Quillere et al. [15], applies the polyhedral model to min-
imise the memory use given a fixed schedule. Starting from
a fixed set of variables, they minimise the index spaces used
by mapping several subsequent assignments to different lo-
cations into multiple assignments of fewer locations, effec-
tively reducing the index spaces required for the variables
involved. Similarly, the work by Lefebvre et al. [13] and
that of de Greef et al. [7] aims at reducing memory require-
ments within a specified schedule.

Later work on reducing memory-introduced dependencies,

1kx1k 2kx2k 3kx3k 4kx4k
0

0.5

1

1.5

2

2.5

3

3.5

Speedups of NW with In-place Update (SAC-SEQ)

C1060
GTX480

Problem Sizes

S
pe

ed
up

s

1kx1k 2kx2k 3kx3k 4kx4k
0

2

4

6

8

10

12

Speedups of NW with In-place Update (SAC-CUDA)

C1060
GTX480

Problem Sizes

S
pe

ed
up

s

Figure 10: NW speedups with update-in-place

by Strout et al. [17], as well as by Cohen [6], attempts to
expand loop nests, then to compress memory demand again,
without reintroducing dependencies. While this work is very
close to ours in spirit, the setting is vastly different. In our
setting, full expansion is a given, as we are always deal-
ing with data-parallel operations. Our main goal is not an
attempt to reduce storage requirements, but to avoid super-
fluous copying which has been introduced by the inherently
data-parallel construction of the program.

6. CONCLUSIONS
In this paper, we demonstrate how polyhedral methods

can be used to improve in-place updates for data-parallel
array updates in functional languages. In doing so we vastly
deviate from the classical use of the polyhedral approach.
Firstly, our starting point is very different. We do not as-
sume arbitrary nestings of loops with potential dependen-
cies. Instead, we have dependency-free single assignment
loops as a starting point. Secondly, we do not intend to
use the polyhedral framework to transform loop nestings
for improved parallelism, locality or minimised representa-
tions of intermediate data structures. Instead, we limit the
use of the polyhedral approach to representing the access
pattern within our code and to conveniently implementing
our update-in-place analysis by means of readily available
libraries on top of this representation.

For two example codes, we demonstrate the potential ben-
efits of this technique. We look at two different target plat-
forms: sequential shared-memory execution and execution
on GPUs. In both cases we see speedups of a factor be-
tween 2 and 12. While the speed up factor of two is roughly
the expected baseline that stems from the eradication of
memory management overhead as well as from the eradica-
tion of copy operations, the further improvements can be
attributed to architecture specific effects, such as improved

8

cache behaviour or the improvement of lock-step execution.
The resulting codes match their imperative counterparts,

showing how we are closing the performance gap between
side-effect-free, data-parallel languages, and imperative, low-
level languages.

While this may appear to be a rather specific issue in the
context of compiling data-parallel functional programs, we
expect further practical applicability in the context of code
generation for domain specific languages (DSLs). Whenever
basic building blocks of array manipulations are encapsu-
lated in individual functions, which are expected to be com-
bined at later stages to achieve more complex operations,
the identification of potential reuses for entire arrays is cru-
cial for achieving good runtime performance. As this paper
shows, polyhedral analyses prove to be an excellent vehicle
to determine the potential for such in-place updates.

7. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

valuable feedback and suggestions.

8. REFERENCES
[1] M. Baskaran, J. Ramanujam, and P. Sadayappan.

Automatic C-to-CUDA Code Generation for Affine
Programs. In R. Gupta, editor, Compiler
Construction, volume 6011 of Lecture Notes in
Computer Science, pages 244–263. Springer Berlin
Heidelberg, 2010.

[2] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Automatic data movement and computation mapping
for multi-level parallel architectures with explicitly
managed memories. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, PPoPP ’08, pages 1–10, New
York, NY, USA, 2008. ACM.

[3] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. A
compiler framework for optimization of affine loop
nests for gpgpus. In Proceedings of the 22nd annual
international conference on Supercomputing, ICS ’08,
pages 225–234, New York, NY, USA, 2008. ACM.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of
the 2008 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’08, pages
101–113, New York, NY, USA, 2008. ACM.

[5] D. Cann. Compilation Techniques for High
Performance Applicative Computation. Technical
Report CS-89-108, Lawrence Livermore National
Laboratory, LLNL, Livermore California, 1989.

[6] A. Cohen. Parallelization via constrained storage
mapping optimization. In Lecture Notes in Computer
Science, pages 1615–83, 1999.

[7] E. De Greef, F. Catthoor, and H. De Man. Memory
size reduction through storage order optimization for
embedded parallel multimedia applications. Parallel
Comput., 23(12):1811–1837, Dec. 1997.

[8] S. Fitzgerald and R. Oldehoeft. Update-in-place
Analysis for True Multidimensional Arrays. In

A. Böhm and J. Feo, editors, High Performance
Functional Computing, pages 105–118, 1995.

[9] J.-L. Gaudiot, T. DeBoni, J. Feo, W. Böhm,
W. Najjar, and P. Miller. Compiler optimizations for
scalable parallel systems. chapter The Sisal Project:
Real World Functional Programming, pages 45–72.
Springer-Verlag New York, Inc., New York, NY, USA,
2001.

[10] C. Grelck and K. Trojahner. Implicit Memory
Management for SaC. In C. Grelck and F. Huch,
editors, Implementation and Application of Functional
Languages, 16th International Workshop, IFL’04,
pages 335–348. University of Kiel, Institute of
Computer Science and Applied Mathematics, 2004.
Technical Report 0408.

[11] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet,
J. Ramanujam, and P. Sadayappan. A stencil compiler
for short-vector simd architectures. In ACM
International Conference on Supercomputing (ICS’13),
Eugene, OR, June 2013. ACM Press.

[12] P. Hudak and A. Bloss. The Aggregate Update
Problem in Functional Programming Systems. In
POPL ’85, pages 300–313. ACM Press, 1985.

[13] V. Lefebvre and P. Feautrier. Optimizing storage size
for static control programs in automatic parallelizers.
In In Proc. EuroPar Conference, pages 356–363.
Springer Verlag, 1997.

[14] S. B. Needleman and C. D. Wunsch. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, Mar. 1970.

[15] F. Quilleré and S. Rajopadhye. Optimizing memory
usage in the polyhedral model. ACM Trans. Program.
Lang. Syst., 22(5):773–815, Sept. 2000.

[16] S. B. Scholz. Single Assignment C – Efficient Support
for High-Level Array Operations in a Functional
Setting. Journal of Functional Programming,
13(6):1005–1059, 2003.

[17] M. M. Strout, L. Carter, J. Ferrante, and B. Simon.
Schedule-independent storage mapping for loops. In
Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 24–33, San Jose, California,
October 3–7, 1998. ACM SIGARCH, SIGOPS,
SIGPLAN, and the IEEE Computer Society.

[18] A. Šinkarovs, S. Scholz, R. Bernecky, R. Douma, and
C. Grelck. SAC/C formulations of the all-pairs
N-body problem and their performance on SMPs and
GPGPUs. Concurrency and Computation: Practice
and Experience, 2013.

[19] V. Wieser, C. Grelck, P. Haslinger, J. Guo,
F. Korzeniowski, R. Bernecky, B. Moser, and
S. Scholz. Combining high productivity and high
performance in image processing using Single
Assignment C on multi-core CPUs and many-core
GPUs. Journal of Electronic Imaging, 21(2), 2012.

[20] D. Wilde and S. Rajopadhye. Memory reuse analysis
in the polyhedral model. In L. Bougé, P. Fraigniaud,
A. Mignotte, and Y. Robert, editors, Euro-Par’96
Parallel Processing, volume 1123 of Lecture Notes in
Computer Science, pages 389–397. Springer Berlin
Heidelberg, 1996.

9

	Introduction
	Update-in-Place Challenge
	Running Example

	Polyhedral Reuse Analysis
	A Polyhedral Formulation
	Identifying Reuse Candidates

	Performance Impact
	LU Decomposition
	Needleman-Wunsch

	Related Work
	Conclusions
	Acknowledgments
	References

