
Generic Programming on the Structure of Homogeneously
Nested Arrays

Stephan Herhut1 and Sven-Bodo Scholz1

Dept. of Computer Science, University of Hertfordshire, United Kingdom
e-mail:{S.A.Herhut,S.Scholz}@herts.ac.uk

Abstract

In this paper we propose a new means to model and operate on nested arrays that
allows for a high level of abstraction without introducing aperformance penalty. We
achieve this by using a nesting structure on array types which allows us to shift the
nesting information of arrays from the runtime representation level to the type system
level. This information can then be exploited for generic function definitions on the
nesting structure of arrays which, as we show, neatly integrates with subtyping based
function overloading. Finally, we demonstrate for an example how nested arrays
and generic function definitions can be fully stripped out using existing optimisation
techniques.

1 INTRODUCTION

Poor runtime efficiency is no longer a show stopper for using functional array
languages. Techniques for enabling destructive updates via monads [LP94] or
uniqueness types [vG97] in a lazy setting as well as reference counting based
approaches [Can89] in a strict setting provide the grounds for reasonable run-
time performance. Various compiler optimization techniques have been developed
[Sch03, Sch98, CK01, GST04, GHS06] for generating more efficientlyexecutable
code from high-level specifications. Most recent application studies show that real
world numerical applications can benefit two-fold from applying functional pro-
gramming languages such as SAC. Programs can be specified more conveniently
than in traditional, FORTRAN based languages, and they can be compiled into more
efficiently executable code [SSH+06].

The expressiveness of languages such as SAC stems from its capability to han-
dle n-dimensional arrays in a uniform way, similar to the capabilities of traditional
array languages such as APL or NIAL. The effective use of n-dimensional arrays
(as opposed to the vectors-of-vectors of C or SISAL) forces a language to have
n-dimensional arrays as abstract data which can themselves serve as theelements
of other m-dimensional arrays. Such structures are referred to asnested arraysand
several approaches have been developed in order to provide proper programming
language support for them [Ben92, Ber88, JG89]. However, all these approaches
have in common that the programmer needs to be aware of the nesting of a given
data structure. All operations apply on the outer nesting level only. Whenever an
inner level is be to be tackled, the programmer has to make that explicit, either by
denesting the array or by denoting the axes to be operated on.

We propose a novel approach which uses function overloading facilitiesof a
type system to propagate operational behaviour to the desired level of nesting.
Thus, functionality can be specified separately for all intermediate levels ofnest-
ing, enabling the programmer to keep proper data hiding for the abstract data types
involved. Furthermore, this approach enables the compiler to flatten out all ho-
mogeneously nested arrays into non-nested n-dimensional arrays. To achieve that
goal, only some specialization machinery needs to be put in place. Highly opti-
mizing compilers such assac2c (cf. http://www.sac-home.org/) provide enough
optimization infrastructure to statically eliminate all nesting as well as all function
overloading involved.

The remainder of this paper is organised as follows. In the next section, we
give a short overview of SAC and its array types. Based thereon, we introduce a
means to model nested arrays on the type level in Section 3. Section 4 introduces
inductive definitions of generic functions on nested array types. In Section 5, an
extension of the subtyping based function overloading in SAC to generic functions
on nested array types is presented. Section 6 gives a full example combining nested
array types, generic functions and overloading. Furthermore, the compilation into
efficient code is demonstrated. Finally, after giving related work in Section7, the
conclusion is drawn.

2 SINGLE ASSIGNMENT C

In this section we give a short overview of SAC and introduce its existing array
types. SAC is a purely functional first-order programming language targeted at
numerical applications on homogeneous arrays. Therefore, it supports arrays as
first class objects of the language. In the type system, this manifests in the form of
dedicated array types.

In general, a SAC array type consists of two components: an element typeE

and a shape vectorshp. The element typeE – as its name suggests – gives the type
of the scalar elements of the array. Note here, that for the current SAC type system,
only the SAC built in base types can be used as element type.

The second component, the shape vectorshp, gives the shape, or number of
elements along each axis of the array, written in row-major order.

Array shapes and dimensionality may be fixed or dynamic. Dynamic shapes
and dimensionality are specified syntactically by wild-card specifiers within the
shape vector. The* wild card within the shape vector denotes an array of unknown
dimensionality and shape. An array of integer values with unknown dimensionality
thus has the typeint[*].

To specify the type for an array of known dimensionality but unknown shape,
the. wild card is used to mark those dimensions within the shape vector whose
extent is not known. A two-dimensional matrix of integer values with unknown
shape therefore has the typeint[.,.]. Note here that mixing the. wild card
with dimensions of known extent is not permitted. The complete syntax of SAC

T ⇒ E [shp]
| E [. [, .]*]
| E [*]

E ⇒ int
| double
| float
| char

shp ⇒ Num[, Num]

FIGURE 1. Array types in SAC.

int[*]

int[.] int[.,.] int[.,.,.]· · ·

int[1] int[4]· · · int[7,2] int[2,9]· · · int[9,8,11]· · ·int[]

FIGURE 2. Subtyping structure on array types in SAC.

array types is shown in figure 1.
The three classes of array types introduced above naturally form a three-level

subtyping hierarchy. A schematic outline of this hierarchy is given in figure2.
On top of the hierarchy resides the typeint[*]1 which represents arrays

of arbitrary dimensionality. Obviously, any array type of known dimensionality
particularly is an array of arbitrary dimensionality. Thus each type from theclass
of array types with statically known dimensionality is a subtype of the type for
arrays with statically unknown dimensionality.

Furthermore, an array of known shape is, clearly, an array of knowndimen-
sionality. So each type from the class of array types with statically known shape is
a subtype of the corresponding type from the class of array types where only the
dimensionality is statically known.

In SAC, this subtyping structure is exploited for the definition of shape generic
functions and for overloading functions on the shape of their arguments.As an
example consider the following shape generic definition of a function for element

1We have chosen to use the element typeint here for demonstration purposes. The hierarchy is
identical for any built in base type.

wise multiplication of two arrays.

1 int[] (*) (int[] A, int[] B)
{

3 return(_mul_(A, B));
}

5

int[*] (*) (int[*] A, int[*] B)
7 {

return({ iv -> A[iv] * B[iv] });
9 }

The first instance of* defined in line 1 is defined on arguments of scalar type2. It
returns the result of calling the built in primitive function_mul_ to multiply the
two scalar arguments.

As a second instance,* is defined in line 7 on arguments of arbitrary dimen-
sionality. The expression{ iv -> A[iv] * B[iv] } used in line 9 within
the definition of* is known as axis control notation; it iterates over the full shape
of arraysA andB and applies the function* to each pair of scalar elements. A full
explanation of the axis control notation would be beyond the scope of this paper.
Details can be found in [GS03].

By using subtyping-based function overloading, both instances of* as defined
above are combined to one overloaded function* which is defined for arrays of ar-
bitrary dimensionality. Each application of* is then dispatched to the instance
whose argument types are the least possible supertypes of the actual argument
types.

As an example consider an application of* to two integer vectors. Asint[*]
is the least supertype ofint[.] for which an instance is defined, the function ap-
plication will be dispatched to the second instance. Within its body, the* operation
is mapped down to scalar level using the axis control notation. Therefore,the ap-
plication of* in line 8 is dispatched to theint[] instance, asint[] is the least
supertype ofint[] for which an instance is defined.

Finally, the* operation is performed on the scalar level by the built in_mul_
function.

A complete description of SAC, its type system and the function overloading
mechanism can be found in [Sch03].

3 NESTED ARRAY TYPES

In this section, building upon the array types presented above, we introduce a
means to represent nested arrays. For the array types presented so far, nesting
was prohibited by limiting the element type of arrays to the built in SAC types.
To overcome this limitation and to allow for representing nested arrays within the

2Scalar values are represented as 0 dimensional arrays in SAC.

E ⇒ int
| double
| float
| char
| < Id = E [shp] >

FIGURE 3. Nested array types in SAC.

type, we introduce one further element type. An overview of the new syntax is
given in figure 3.

Aside of SAC built in types, additionally a nesting constructor can now be
used as element type. The nesting constructor consists of anId, giving the name of
the nested type, an inner element typeE and a nesting shapeshp, which gives the
number and extent of the nested dimensions. As the inner element typeE may even
be a further nesting constructor, arbitrary finite nesting structures can be modelled
this way. Note here that the nesting shape always is a fixed shape vector,wild cards
as* and. are not allowed in nested types.

As an illustration of nested types as introduced above, consider the type ofa
n-element vector of complex numbers. We will use this example throughout the
paper.

A complex number can be modelled as a tuple of double values, which repre-
sent the real and imaginary part. Using that model, a vector of complex numbers
can be represented as an×2 array of double values.

The corresponding nested SAC type is< complex=double[2] >[.].
The nesting constructor< complex=double[2] > specifies the element type
of the array: a one dimensional, two element array of double values. As thelength
of the vector is unknown, the outer shape is[.].

To be able to operate on the structure of nested arrays, we define two operations
similar to the APLenclose anddisclose functions. Other than their APL
counterparts, these manipulate the type of an array instead of altering the array
itself.

The type enclose operation converts the type of the array passed as the
second argument to a nested type by nesting the inner dimensions using the type
passed as first argument. As an example, the applicationtype enclose(<
complex=double[2] >, A) with A being an array of typedouble[5,2]
converts the type of arrayA to < complex=double[2] >[5]. Note here that
the type enclose operation can only be applied if the shape of the inner di-
mensions of the array argument and its element type match those nested by the
type argument.

Similar, thetype disclose operation converts the type of its argument to
the type with one nesting level stripped off. The applicationtype disclose(
A) with arrayA being of type< complex=double[2] >[5] results in the

type of arrayA being converted todouble[5,2].
Using the given nesting structure on types and the two operations introduced

above, we can now define functions inductively on the nesting structure of their
arguments. As an example consider theshape function which returns the shape
vector of its first argument. For vectors of complex numbers as introducedearlier,
theshape function can be defined as follows.

1 int[.] shape(< complex=double[2] >[.] A)
{

3 A = type_disclose(A);

5 result = drop(-1, shape(A));

7 return(result);
}

In the above code, first the type of arrayA is denested. The application of the
functionshape to arrayA in line 5 is thus not a recursive call of the given function
itself but is instead dispatched for an argument of typedouble[.,.]3. Thus the
shape returned by the application in line 5 is a two element vector, giving the extent
of both dimensions of argumentA. The consecutive application ofdrop then strips
the extent of the inner dimensions, leading to the final result.

With nested array types and thetype enclose andtype declose ope-
rations at hand, the programmer can easily define nested arrays and operations
thereon. Although this gives the desired level of abstraction it comes at a relatively
high cost to the programmer. As, using the presented approach, definingnested
arrays always comes with defining new types, the programmer cannot reuse the
operations that are defined within the standard library. Instead, for every intro-
duced nested array type, all basic operations like+, *, shape, etc. have to be
redefined. Although a definition in most cases can be easily given, specifying all
the basic operations for every type is a tedious and error-prone task.

To overcome this limitation, the next section introduces a further extension to
SAC that allows definition of generic functions on the structure of array types.

4 GENERIC FUNCTIONS ON NESTED TYPES

A closer examination of the instance of functionshape given in the last section
reveals that its definition does not depend on the semantics of typecomplex but
merely on the nesting structure of the type. The result of the function for thenested
type is computed on the basis of the inner nesting shape and the denested type
of the argument. For the functionshape in particular, this is done by dropping
the elements corresponding to the nested dimension from the shape vector ofthe

3As mixing wild cards with fixed shapes is not allowed in SAC types, a type like
double[.,2] is no valid SAC type. Therefore the type is promoted todouble[.,.] instead.

denested type. In general, this pattern is common to many functions that can be
defined inductively on the nesting structure of arrays.

As the nesting structure is modelled in the type, instead of defining functions on
a specific type, a generic definition can be given on the type constructor for nested
arrays. All that is needed to give such a generic specification is the nested and
denested type of the arguments and the nesting shape. Supplying this information
to the algorithm allows to fully abstract from any given nesting structure.

As an example, reconsider theshape function we introduced in the last sec-
tion. Using the above approach, a more generic definition can be given asfollows.

generic int[.] shape(< a=b[shp] >[*] A)
2 {

A = type_disclose(A);
4

return(drop(- len(shp), shape(A)));
6 }

Here, instead of using the concrete typescomplex anddouble within the nest-
ing structure of the type declaration of the first argument, we have used twotype
variablesa andb; for the inner nesting shape, we have introduced the variableshp.
< a=n[shp] >[*] thus matches any nested array type. To distinguish generic
function definitions on the structure of an argument from function definitions on
specific nested types, the keywordgeneric is used.

To calculate the generic shape for an array with the given type structure,simi-
lar to the concrete example forcomplex, the elements of the shape vector corres-
ponding to nested dimensions need to be dropped. The number of elements to be
dropped can hereby be deducted from the length of the nesting shapeshp.

As a further example of a function that inductively extends over array nestings
we give a generic definition of the arithmetic function*.

generic < a=b[shp] >[] (*)(< a=b[shp] >[] A,
2 < a=b[shp] >[] B)
{

4 A = type_disclose(A);
B = type_disclose(B);

6

result = A * B;
8

result = type_enclose(< a=b[shp] >, result);
10

return(result);
12 }

In the example above, the dual to the denesting of arguments is used for the return
value. Thetype enclose operation in line 9 nests the type of the array given as
its second argument with the nesting constructor given as its first argument.

Note here that the application of function* in line 7 within the function body
is dispatched for the denested type and thus is not a recursive call of thegiven
instance of*. Instead, the* operator is inductively extended across array nestings.
As the nesting structure is finite, the recursion terminates with a call to an instance
of the* function on a built in type as defined in section 2.

Although a generic definition can be given in that way for all primitive opera-
tions, an operation may not be homomorphic for all nested array types. To be able
to mix generic and specific definitions of operations, we introduce the notion of
overloading of generic functions in the next section.

5 OVERLOADING ON NESTED ARRAY TYPES

In the previous section, we introduced an inductive definition for the* operation
on the nesting structure of arrays. This definition suffices, as long as thesemantics
of the multiplication operation is the same for both, the nested and denested type.
This is not always the case. For instance, the semantics of* on complex numbers
differs from the semantics of* on tuples of double values. As both instances are
not homomorphic, no common generic instance can be defined.

An ad hoc approach to solve this problem would be to define a second function,
e.g. complexmul, implementing the semantics of multiplication for complex
numbers. Using this approach, the programmer has to be aware of which function
to use, depending on the underlying semantics of a nested array. Again, choosing
the correct instance by hand is a error prone task and may lead to hardly totrack
bugs.

Encoding the nesting structure within the type of an array allows to go for a
similar approach as used for shape generic functions. As introduced in section 2,
SAC exploits the subtyping structure of array shapes for function overloading. The
same can be done for the nesting structure of array types by introducing asubtyping
relation on nested element types.

Quite naturally, every concrete nesting type is a subtype of the generic nesting
type as used for generic function definitions. Furthermore, this subtype relation
neatly integrates with the existing subtyping on array shapes. An array of known
nesting structure and shape is, clearly, a subtype of an array of unknown (generic)
nesting structure and unknown shape. More precisely, typeα is a subtype of an-
other typeβ, if both its element type and shape component are in subtype rela-
tion with the element type and shape component ofβ. Figure 4 gives a schematic
overview of this extended subtype hierarchy. The grey triangles indicatethe shape
subtyping hierarchy, whereas the nesting structure based subtyping is shown for
two exemplary types. Subtype relations are denoted by arrows, pointing from the
supertype to the subtype. The dashed arrows illustrate an exemplary subset of the
combined subtyping relation.

Given this two-dimensional subtype relation, we need to uniquely define the
least supertype. As shape-generic instances in general are homomorphic in SAC,

< a=b[shp] >

< complex=double[2] > < tuple=double[2] >

[*]

[]

[1,2,3]

[*]

[]

[1,2,3]

[*]

[]

[1,2,3]

FIGURE 4. Extended SAC subtyping hierarchy.

whereas they might not be homomorphic with nesting-generic instances, we give
precedence to the shape-generic subtyping. Thus, whenever possible, a function
application is dispatched for the specific nesting type. Only if no non-nesting-
generic instance matches, the nesting-generic instances are consideredfor dispatch.

Given this extended subtype relation, we can now overload functions on the
shape and structure of their arguments. As an example for a non-genericinstance
specification, consider the* operation on values of typecomplex as given below.

< complex=double[2] >[] (*)(< complex=double[2] >[] A,
2 < complex=double[2] >[] B)
{

4 A = type_disclose(A);
B = type_disclose(B);

6

result = [A[0]*B[0] - A[1]*B[1],
8 A[0]*B[1] + A[1]*B[0]];

10 result = type_enclose(< complex=double[2] >,
result);

12

return(result);
14 }

The function above implements the multiplication on complex numbers. The
first element of the underlying double tuple is thereby treated as the real part and
the second element as the imaginary part of the complex number.

Furthermore, we define a shape and structure generic version of* as follows.

generic < a=b[shp] >[*] (*)(< a=b[shp] >[*] A,

2 < a=b[shp] >[*] B)
{

4 return({ iv -> A[iv] * B[iv] });
}

Similar to the instance of* presented in section 2, the above instance maps ap-
plications of* on arrays down to scalar level. Other than the instance defined in
section 2, this instance is defined for arrays of arbitrary nested types.

Using these instances, an overloaded function* consisting of the above two
instance and the generic instance for scalar values defined in the previous section
can be defined.

As an example, consider an application of this function to two arrays of com-
plex values. As the type of the argument is a subtype of< a=b[shp] >[*],
and as this is the only matching instance, the application would be dispatched to
the generic instance on arrays. As that instance maps the multiplication down to
scalar level, the application of* contained in the body has now to be dispatched for
type< complex=double[*] >[]. Here, all instances are defined on super-
types of the argument types. As described in section 2, the least possible supertype
is chosen and the application is therefore dispatched to the instance for arguments
of type< complex=double[*] >[]. This leads to the correct result.

As nested array types are named in SAC, even different instances for the same
structure but different semantics can be defined. As an example, consider an ap-
plication of the above introduced overloaded function* to a tuple of double values
of type< tuple=double[2] >. Although the structure of the tuple of double
values is equivalent to the structure of< complex=double[2] >, an applica-
tion of * would be dispatched to the generic instance for scalar values and thereby
transparently mapped onto the inner dimension.

Using the subtyping based overloading approach presented above eases the use
of nested arrays even further, as the programmer is fully liberated from the task to
choose the correct instance depending on the semantical context.

6 PUTTING IT ALL TOGETHER

To demonstrate the interplay of nested array types, generic function definitions on
the nesting structure and function overloading, we give an example of the code that
is necessary to introduce a new nested array type. In a second step, weshow how
the generically specified code is transformed into basic SAC code without nested
arrays and generic functions by applying well known techniques like function spe-
cialisation, function inlining and withloop-scalarisation[GST04].

To shorten the amount of code to be given, we introduce two shortcut nota-
tions. As applyingtype disclose to the arguments is a quite common pattern,
we use< complex->double[2] > in argument type position to implicitly
convert the type of an argument to its denested counterpart within the function
body. Dually,< complex<-double[2] > as return type is used as a shortcut

notation for applying thetype enclose function to the return values.
First, we give parts of the generic definitions for nested array types thatcome

with the standard library and that do not need to be specified by the application
programmer.

1 module ArrayGenerics;

3 use Array : all;

5 export all;

7 generic int[.] shape(< a->b[shp] >[*] A)
{

9 return(drop(- len(shp), shape(A)));
}

11

generic < a<-b[shp] >[] (*)(< a->b[shp] >[] A,
13 < a->b[shp] >[] B)
{

15 return(A * B);
}

17

generic < a=b[shp] >[*] (*)(< a=b[shp] >[*] A,
19 < a=b[shp] >[*] B)
{

21 return({ iv -> A[iv] * B[iv] });
}

23

generic < a=b[shp] >[] scalarprod(< a=b[shp] >[.] A,
25 < a=b[shp] >[.] B)
{

27 return(sum(A * B));
}

Most functions shown above have already been used in this paper. Theaddi-
tionalscalarprod function in line 24 defines the scalar product of two arbitrary
vectors. The application of sum in line 27 computes the sum of all elements of
a given vector. Using the above generic function definitions, thecomplex type
introduced earlier can now be defined along with multiplication operations on it by
the following code.

module Complex;
2

import ArrayGenerics : all;
4

< complex<-double[2] >[] (*)(

6 < complex->double[2] >[] A,
< complex->double[2] >[] B)

8 {
return([A[0]*B[0] - A[1]*B[1],

10 A[0]*B[1] + A[1]*B[0]]);
}

Theimport statement in line 3 imports all functions and generic definitions
from moduleArrayGenerics into the namespace of moduleComplex. Thus,
the generic definitions for*, shape and scalarprod become immediately
available for type< complex=double[2] >. To represent the difference in
semantics of the* operation on complex numbers, we further overload the* oper-
ation for the type< complex=double[2] >[].

As the above example shows, using the techniques presented in this paper,
introducing new nested array types comes at a significant lower cost to thepro-
grammer as he can reuse most existing generic definitions.

As an example, consider the following application of the function
scalarprod as generically defined inArrayGenerics to two vectorsA and
B of type< complex=double[2] >[.].

1 S = scalarprod(A, B);

The application is dispatched to the single generic instance ofscalarprod
defined earlier. As the arguments of the application are vectors, the application of

* within scalarprod is dispatched to the generic array instance, which maps
the application to scalar level. As we defined an explicit instance for scalar argu-
ments of type< complex=double[2] >[], within the generic array instance
of function * the instance for scalar complex values is used for dispatch. This
instance finally computes the product.

Although an application of* conceptually results in rather many dispatch de-
cisions and function applications, this does not necessarily imply a bad runtimebe-
haviour. By specialisingscalarprod and* for type< complex=double[2]
> and consecutively applying function inlining and loop scalarisation, all dispatch
decisions can be made statically and function aplications can be fully removed.
One retains the following code:

1 A = type_disclose(A);
B = type_disclose(B);

3

S = sum({ [i] -> [A[i,0]*B[i,0] - A[i,1]*B[i,1],
5 A[i,0]*B[i,1] + A[i,1]*B[i,0]]});

Note here that the entire operation is performed on the denested type. The
multiplication within the axis control notation in line 4 has been scalarised and
is now performed directly on the elements of the underlyingdouble array. By
doing so, array nesting has been completely removed from the algorithm.

As all function applications can be statically dispatched for the corresponding
base types of their arguments, thetype disclose operations can be removed
as well. The resulting code thus fully resembles a definition without nested array
types and generics.

7 RELATED WORK

In the field of array programming languages, NIAL[JJ93] is a prominent exam-
ple of a language with built in support for nested arrays. Other than the approach
presented in this paper, in NIAL the nesting structure of an array has to beexpli-
citly defined by the programmer using a so called nesting vector. Furthermore, it
is the programmers responsibility to explicitly state the mapping of each function
application to the nesting level it is intended to operate on.

In APL[BB93], nested arrays are handled using explicit applications of
enclose anddisclose functions. enclose boxes an array into a scalar,
whereas the dual operationdisclose unboxes it. As with nesting vectors in
NIAL, the programmer has to be aware of the nesting structure and has to man-
ually insert the appropriate nesting and denesting operations to extend function
applications across array nestings.

For other functional languages like HASKELL or CLEAN, generic program-
ming extensions for algebraic datatypes have been proposed[JJ97, Hin00, AP02].
Similar to our approach, they allow to define generic instances on the type con-
structor level instead of on types. To our best knowledge, these approaches have
not been applied to other datatypes or even arrays.

8 CONCLUSION

We have introduced a new means to model and operate on nested arrays that eases
program specification by facilitating a high level of abstraction without introducing
a performance penalty.

As a key concept, we presented a nesting structure on array types. Using types
to represent nestings allows us to shift the nesting information of arrays from the
runtime representation level into the type system.

This approach further enables us to exploit the structural information forfunc-
tion definitions. We did so by introducing generic function definitions on the struc-
ture of nested arrays types. Moreover, we gave an example of how this neatly
integrates with the function overloading capabilities of SAC.

Finally we gave a demonstration on how nested arrays and generic function
definitions can be fully stripped out using existing optimisation techniques. The
impact of array nestings and generic program specification on the runtime isthus
expected to be minimal.

The extension of SAC as proposed in this paper introduces an additional sub-
type hierarchy. To develop a means to add further subtyping hierarchiesto the ex-

isting SAC subtyping relation and making them available for function overloading,
remains as future work. One interesting aspect here could be to add homomorphic
subtyping on built in types as proposed in [SS05].

9 ACKNOWLEDGEMENTS

This work was funded by the European Union ÆTHER project.

REFERENCES

[AP02] Artem Alimarine and Marinus J. Plasmeijer. A genericprogramming extension
for clean. InIFL ’02: Selected Papers from the 13th International Workshop on
Implementation of Functional Languages, pages 168–185, London, UK, 2002.
Springer-Verlag.

[BB93] Robert Bernecky and Paul Berry.SHARP APL Reference Manual. Iverson
Software Inc., 33 Major St., Toronto, Canada, 2nd edition, 1993.

[Ben92] J.P. Benkard. Nested Arrays and Operators — Some Issues in Depth. In
Proceedings of the International Conference on Array Processing Languages
(APL’92), St.Petersburg, Russia, APL Quote Quad, pages 7–21. ACM Press,
1992.

[Ber88] R. Bernecky. An Introduction to Function Rank. InProceedings of the Inter-
national Conference on Array Processing Languages (APL’88), Sydney, Aus-
tralia, volume 18 ofAPL Quote Quad, pages 39–43. ACM Press, 1988.

[Can89] D.C. Cann. Compilation Techniques for High Performance Applicative Com-
putation. Technical Report CS-89-108, Lawrence LivermoreNational Labora-
tory, LLNL, Livermore California, 1989.

[CK01] M.M.T. Chakravarty and G. Keller. Functional Array Fusion. In X. Leroy,
editor,Proceedings of ICFP’01. ACM-Press, 2001.

[GHS06] C. Grelck, K. Hinkfuß, and S.-B. Scholz. With-Loop Fusion for Data Locality
and Parallelism. In A. Butterfield, editor,Implementation and Application of
Functional Languages, 17th INternational Workshop, IFL’05, Selected Papers,
volume ??? ofLNCS. Springer, 2006. to appear.

[GS03] C. Grelck and S.-B. Scholz. Axis Control in SAC. In R. Peña and T. Arts,
editors,Proceedings of the 14th International Workshop on Implementation
of Functional Languages (IFL’02), Madrid, Spain, Revised Selected Papers,
volume 2670 ofLecture Notes in Computer Science, pages 182–198. Springer-
Verlag, Berlin, Germany, 2003.

[GST04] C. Grelck, S.-B. Scholz, and K. Trojahner. WITH-LoopScalarization – Merg-
ing Nested Array Operations. In G. Michaelson and P. Trinder, editors,Proc. of
the 15th International Workshop on Implementation of Functional Languages
(IFL’03), Edinburgh, UK, Selected Papers, volume 3145 ofLNCS, pages 118–
134. Springer, 2004.

[Hin00] Ralf Hinze. A new approach to generic functional programming. InPOPL ’00:
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 119–132, New York, NY, USA, 2000. ACM
Press.

[JG89] M.A. Jenkins and J.I. Glasgow. A Logical Basis for Nested Array Data Struc-
tures.Computer Languages Journal, 14(1):35–51, 1989.

[JJ93] M.A. Jenkins and W.H. Jenkins.The Q’Nial Language and Reference Manuals.
Nial Systems Ltd., Ottawa, Canada, 1993.

[JJ97] Patrik Jansson and Johan Jeuring. PolyP—A polytypic programming language
extension. InConf. Record 24th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, POPL’97, Paris, France, 15–17 Jan 1997, pages
470–482. ACM Press, New York, 1997.

[LP94] J. Launchbury and S. Peyton Jones. Lazy Functional State Threads. InPro-
gramming Languages Design and Implementation. ACM Press, 1994.

[Sch98] S.-B. Scholz. With-loop-folding inSAC–Condensing Consecutive Array Ope-
rations. In C. Clack, K.Hammond, and T. Davie, editors,Implementation of
Functional Languages, 9th International Workshop, IFL’97, St. Andrews, Scot-
land, UK, September 1997, Selected Papers, volume 1467 ofLNCS, pages 72–
92. Springer, 1998.

[Sch03] Sven-Bodo Scholz. Single Assignment C — efficient support for high-level
array operations in a functional setting.Journal of Functional Programming,
13(6):1005–1059, 2003.

[SS05] A. Shafarenko and S.-B. Scholz. General HomomorphicOverloading. In
C. Grelck and F. Huch, editors,Proc. of the 16th International Workshop on
Implementation of Functional Languages (IFL’04), Lübeck, Germany, Selected
Papers, volume 3474 ofLNCS, pages 195–210. Springer, 2005.

[SSH+06] A. Shafarenko, S.-B. Scholz, S. Herhut, C. Grelck, and K.Trojahner. Imple-
menting a numerical solution for the KPI equation using Single Assignment C:
lessons and experience. In A. Butterfield, editor,Implementation and Applica-
tion of Functional Languages, 17th INternational Workshop, IFL’05, LNCS.
Springer, 2006. to appear.

[vG97] J. van Groningen. The Implementation and Efficiency of Arrays in Clean 1.1.
In Werner Kluge, editor,Implementation of Functional Languages, 8th Inter-
national Workshop, Bad Godesberg, Germany, September 1996, Selected Pa-
pers, volume 1268 ofLNCS, pages 105–124. Springer, 1997.

