Generic Programming on the Structure of Homogeneously
Nested Arrays

Stephan Herhditand Sven-Bodo Schdlz

Dept. of Computer Science, University of Hertfordshire jtdd Kingdom
e-mail: {S.A.Herhut,S.Scholz@herts.ac.uk

Abstract

In this paper we propose a new means to model and operate tad ragsays that

allows for a high level of abstraction without introducingerformance penalty. We
achieve this by using a nesting structure on array typeshwdliows us to shift the

nesting information of arrays from the runtime represénitdevel to the type system
level. This information can then be exploited for generiediion definitions on the

nesting structure of arrays which, as we show, neatly iategrwith subtyping based
function overloading. Finally, we demonstrate for an exknfpw nested arrays
and generic function definitions can be fully stripped ouhg®xisting optimisation

techniques.

1 INTRODUCTION

Poor runtime efficiency is no longer a show stopper for using functiorralya
languages. Techniques for enabling destructive updates via mona€4][bP
uniqueness types [vG97] in a lazy setting as well as reference courasedb
approaches [Can89] in a strict setting provide the grounds for raht®mun-
time performance. Various compiler optimization techniques have been dedelop
[Sch03, Sch98, CKO01, GST04, GHS06] for generating more efficiexigutable
code from high-level specifications. Most recent application studies hat real
world numerical applications can benefit two-fold from applying functiqgora-
gramming languages such as@& Programs can be specified more conveniently
than in traditional, BRTRAN based languages, and they can be compiled into more
efficiently executable code [SS196].

The expressiveness of languages suchas &ems from its capability to han-
dle n-dimensional arrays in a uniform way, similar to the capabilities of traditiona
array languages such as APL or NIAL. The effective use of n-dileasarrays
(as opposed to the vectors-of-vectors of C or SISAL) forces a kggytio have
n-dimensional arrays as abstract data which can themselves servectentieats
of other m-dimensional arrays. Such structures are referredrtested arraysand
several approaches have been developed in order to provider pr@ggamming
language support for them [Ben92, Ber88, JG89]. However, adietlapproaches
have in common that the programmer needs to be aware of the nesting ofha give
data structure. All operations apply on the outer nesting level only. Wieeraa
inner level is be to be tackled, the programmer has to make that explicit, either by
denesting the array or by denoting the axes to be operated on.

We propose a novel approach which uses function overloading facibtias
type system to propagate operational behaviour to the desired levektige
Thus, functionality can be specified separately for all intermediate leveissif
ing, enabling the programmer to keep proper data hiding for the absttadiygas
involved. Furthermore, this approach enables the compiler to flatten ouv-all h
mogeneously nested arrays into non-nested n-dimensional arrayshiéveathat
goal, only some specialization machinery needs to be put in place. Highly opti-
mizing compilers such asac2c (cf. http://www.sac-home.org/) provide enough
optimization infrastructure to statically eliminate all nesting as well as all function
overloading involved.

The remainder of this paper is organised as follows. In the next sect@n, w
give a short overview of &C and its array types. Based thereon, we introduce a
means to model nested arrays on the type level in Section 3. Section 4 insoduce
inductive definitions of generic functions on nested array types. Itid3eB, an
extension of the subtyping based function overloadingA& $o generic functions
on nested array types is presented. Section 6 gives a full example cogihésted
array types, generic functions and overloading. Furthermore, theilztiop into
efficient code is demonstrated. Finally, after giving related work in Segtidhe
conclusion is drawn.

2 SINGLE ASSIGNMENT C

In this section we give a short overview oAS and introduce its existing array
types. C is a purely functional first-order programming language targeted at
numerical applications on homogeneous arrays. Therefore, it d8pgoays as
first class objects of the language. In the type system, this manifests in thefor
dedicated array types.

In general, a 8C array type consists of two components: an element #ype
and a shape vectshp The element typ& — as its name suggests — gives the type
of the scalar elements of the array. Note here, that for the curredttygpe system,
only the S\C built in base types can be used as element type.

The second component, the shape vestgy gives the shape, or number of
elements along each axis of the array, written in row-major order.

Array shapes and dimensionality may be fixed or dynamic. Dynamic shapes
and dimensionality are specified syntactically by wild-card specifiers within the
shape vector. The wild card within the shape vector denotes an array of unknown
dimensionality and shape. An array of integer values with unknown dimead&ion
thus has the typent [*] .

To specify the type for an array of known dimensionality but unknowmpsha
the. wild card is used to mark those dimensions within the shape vector whose
extent is not known. A two-dimensional matrix of integer values with unknown
shape therefore has the typat [., .]. Note here that mixing the wild card
with dimensions of known extent is not permitted. The complete syntaxa@f S

T = £ [shp]
- EL []
| E[+]
E = int
| double
| float
| char
shp = Num/, Num/

FIGURE 1. Arraytypesin SAC.

int[+]

N

int[.] int] int[.,.,.]-

NI |

int[] int[1] int[4]---int[7,2] int[2,9]---int[9,8, 11] -
FIGURE 2. Subtyping structureon array typesin SAC.

array types is shown in figure 1.

The three classes of array types introduced above naturally formexldwvel
subtyping hierarchy. A schematic outline of this hierarchy is given in figure

On top of the hierarchy resides the typat [=] * which represents arrays
of arbitrary dimensionality. Obviously, any array type of known dimendigna
particularly is an array of arbitrary dimensionality. Thus each type frontldes
of array types with statically known dimensionality is a subtype of the type for
arrays with statically unknown dimensionality.

Furthermore, an array of known shape is, clearly, an array of kratimen-
sionality. So each type from the class of array types with statically knowpesisa
a subtype of the corresponding type from the class of array typesvamy the
dimensionality is statically known.

In SAC, this subtyping structure is exploited for the definition of shape generic
functions and for overloading functions on the shape of their argumekgsan
example consider the following shape generic definition of a function foneié

Iwe have chosen to use the element tiypé here for demonstration purposes. The hierarchy is
identical for any built in base type.

[

wise multiplication of two arrays.
int[] (*) (int[] A int[] B)

{
return(_mul (A B));
}
int[*] (%) (int[*x] A int[*] B)
{
return({ iv -> Aliv] = B[iv] });
}

The first instance of defined in line 1 is defined on arguments of scalar yie
returns the result of calling the built in primitive functiomrul _ to multiply the
two scalar arguments.

As a second instance, is defined in line 7 on arguments of arbitrary dimen-
sionality. The expressiof iv -> Aliv] * B[iv] } usedin line 9 within
the definition of+ is known as axis control notation; it iterates over the full shape
of arraysA andB and applies the function to each pair of scalar elements. A full
explanation of the axis control notation would be beyond the scope of thir.pa
Details can be found in [GSO03].

By using subtyping-based function overloading, both instancesasfdefined
above are combined to one overloaded functiamhich is defined for arrays of ar-
bitrary dimensionality. Each application efis then dispatched to the instance
whose argument types are the least possible supertypes of the actuisleat
types.

As an example consider an applicatiorrdb two integer vectors. Aisnt []
is the least supertype oht [.] for which an instance is defined, the function ap-
plication will be dispatched to the second instance. Within its body; thgeration
is mapped down to scalar level using the axis control notation. Theref@eap-
plication of* in line 8 is dispatched to thient [] instance, agsnt[] is the least
supertype of nt [] for which an instance is defined.

Finally, thex operation is performed on the scalar level by the builtiul _
function.

A complete description of &C, its type system and the function overloading
mechanism can be found in [Sch03].

3 NESTED ARRAY TYPES

In this section, building upon the array types presented above, we iotaau
means to represent nested arrays. For the array types presentad sesfing
was prohibited by limiting the element type of arrays to the built KCStypes.
To overcome this limitation and to allow for representing nested arrays within the

2Scalar values are represented as 0 dimensional arraysdn S

E = int

doubl e

fl oat

char

<Ild=%][shp] >

FIGURE 3. Nested array typesin SAC.

type, we introduce one further element type. An overview of the new syata
given in figure 3.

Aside of SAC built in types, additionally a nesting constructor can now be
used as element type. The nesting constructor consistsldf giving the name of
the nested type, an inner element type@nd a nesting shagp which gives the
number and extent of the nested dimensions. As the inner elemertt tyjzg even
be a further nesting constructor, arbitrary finite nesting structureseamblelled
this way. Note here that the nesting shape always is a fixed shape véldtaards
as* and. are not allowed in nested types.

As an illustration of nested types as introduced above, consider the tygpe of
n-element vector of complex numbers. We will use this example throughout the
paper.

A complex number can be modelled as a tuple of double values, which repre-
sent the real and imaginary part. Using that model, a vector of complex mambe
can be represented asm & 2 array of double values.

The corresponding nestedAS type is< conpl ex=doubl e[2] >[.].

The nesting constructer conpl ex=doubl e[2] > specifies the element type
of the array: a one dimensional, two element array of double values. Asrtgth
of the vector is unknown, the outer shap¢ iy .

To be able to operate on the structure of nested arrays, we define tvediops
similar to the APLencl ose anddi scl ose functions. Other than their APL
counterparts, these manipulate the type of an array instead of alteringralye ar
itself.

Thet ype_encl ose operation converts the type of the array passed as the
second argument to a nested type by nesting the inner dimensions usingehe typ
passed as first argument. As an example, the applicatygre_encl ose(<
conmpl ex=doubl e[2] >, A) with A being an array of typedoubl e[5, 2]
converts the type of arrafto < conpl ex=doubl e[2] >[5] . Note here that
thet ype_encl ose operation can only be applied if the shape of the inner di-
mensions of the array argument and its element type match those nested by the
type argument.

Similar, thet ype_di scl ose operation converts the type of its argument to
the type with one nesting level stripped off. The applicatigipe di scl ose(

A) with array A being of type< conpl ex=doubl e[2] >[5] results in the

&)

type of arrayA being converted tdoubl e[5, 2] .

Using the given nesting structure on types and the two operations intebduce
above, we can now define functions inductively on the nesting strucfuien
arguments. As an example consider #fiepe function which returns the shape
vector of its first argument. For vectors of complex numbers as introdemeier,
theshape function can be defined as follows.

int[.] shape(< conpl ex=double[2] >[.] A

{
A = type_disclose(A;

result = drop(-1, shape(A));

return(result);

}

In the above code, first the type of arrdyis denested. The application of the
functionshape to arrayAin line 5 is thus not a recursive call of the given function
itself but is instead dispatched for an argument of typabl e[. , .] 3. Thus the
shape returned by the application in line 5 is a two element vector, giving thietex
of both dimensions of argumeAt The consecutive application df op then strips
the extent of the inner dimensions, leading to the final result.

With nested array types and thgpe_encl ose andt ype_decl ose ope-
rations at hand, the programmer can easily define nested arrays aradicmm
thereon. Although this gives the desired level of abstraction it comestdtavely
high cost to the programmer. As, using the presented approach, defiested
arrays always comes with defining new types, the programmer canrs# tee
operations that are defined within the standard library. Instead, foy @vieo-
duced nested array type, all basic operations tike, shape, etc. have to be
redefined. Although a definition in most cases can be easily given, ginecéll
the basic operations for every type is a tedious and error-prone task.

To overcome this limitation, the next section introduces a further extension to
SAC that allows definition of generic functions on the structure of array types

4 GENERIC FUNCTIONSON NESTED TYPES

A closer examination of the instance of functishape given in the last section
reveals that its definition does not depend on the semantics ottyppl ex but

merely on the nesting structure of the type. The result of the function forasied

type is computed on the basis of the inner nesting shape and the denested type
of the argument. For the functiawhape in particular, this is done by dropping

the elements corresponding to the nested dimension from the shape veitter of

3As mixing wild cards with fixed shapes is not allowed inGtypes, a type like
doubl e[., 2] is no valid S\C type. Therefore the type is promoteddoubl e[., .] instead.

10

12

denested type. In general, this pattern is common to many functions that can be
defined inductively on the nesting structure of arrays.

As the nesting structure is modelled in the type, instead of defining functions on
a specific type, a generic definition can be given on the type constractnes$ted
arrays. All that is needed to give such a generic specification is thednaste
denested type of the arguments and the nesting shape. Supplying this tidarma
to the algorithm allows to fully abstract from any given nesting structure.

As an example, reconsider te@ape function we introduced in the last sec-
tion. Using the above approach, a more generic definition can be giehaass.

generic int[.] shape(< a=b[shp] >[*] A

{
A = type_disclose(A;

return(drop(- len(shp), shape(A)));
}

Here, instead of using the concrete typespl ex anddoubl e within the nest-
ing structure of the type declaration of the first argument, we have usetyp&o
variablesa andb; for the inner nesting shape, we have introduced the varidige
< a=n[shp] >[*] thus matches any nested array type. To distinguish generic
function definitions on the structure of an argument from function defirgtimm
specific nested types, the keywadner i c is used.

To calculate the generic shape for an array with the given type strustorie,
lar to the concrete example foonpl ex, the elements of the shape vector corres-
ponding to nested dimensions need to be dropped. The number of elemeats to b
dropped can hereby be deducted from the length of the nesting shape

As a further example of a function that inductively extends over arratings
we give a generic definition of the arithmetic function

generic < a=b[shp] >[] (*)(< a=b[shp] >[] A
< a=b[shp] >[] B)

{
A
B

type_di scl ose(A);
type_di scl ose(B);

A * B:

result

type_encl ose(< a=b[shp] >, result);

result

return(result);

}

In the example above, the dual to the denesting of arguments is used fetutre r
value. The ype_encl ose operation in line 9 nests the type of the array given as
its second argument with the nesting constructor given as its first argument.

Note here that the application of functienin line 7 within the function body
is dispatched for the denested type and thus is not a recursive call givire
instance ot . Instead, the operator is inductively extended across array nestings.
As the nesting structure is finite, the recursion terminates with a call to an iestanc
of the* function on a built in type as defined in section 2.

Although a generic definition can be given in that way for all primitive opera
tions, an operation may not be homomorphic for all nested array types able
to mix generic and specific definitions of operations, we introduce the nofion o
overloading of generic functions in the next section.

5 OVERLOADING ON NESTED ARRAY TYPES

In the previous section, we introduced an inductive definition for-ttperation

on the nesting structure of arrays. This definition suffices, as long agthantics

of the multiplication operation is the same for both, the nested and denested type.
This is not always the case. For instance, the semantieoafcomplex numbers
differs from the semantics ef on tuples of double values. As both instances are
not homomorphic, no common generic instance can be defined.

An ad hoc approach to solve this problem would be to define a secontibiunc
e.g. conpl exmul , implementing the semantics of multiplication for complex
numbers. Using this approach, the programmer has to be aware of whidfofu
to use, depending on the underlying semantics of a nested array. Agaagsicg
the correct instance by hand is a error prone task and may lead to hatdigko
bugs.

Encoding the nesting structure within the type of an array allows to go for a
similar approach as used for shape generic functions. As introducedtiors 2,
SAC exploits the subtyping structure of array shapes for function ovarigadhe
same can be done for the nesting structure of array types by introdusirigyging
relation on nested element types.

Quite naturally, every concrete nesting type is a subtype of the genetinges
type as used for generic function definitions. Furthermore, this substpgan
neatly integrates with the existing subtyping on array shapes. An arrayowefrk
nesting structure and shape is, clearly, a subtype of an array of wnkfgeneric)
nesting structure and unknown shape. More precisely, dyjsea subtype of an-
other typep, if both its element type and shape component are in subtype rela-
tion with the element type and shape componeri.dfigure 4 gives a schematic
overview of this extended subtype hierarchy. The grey triangles indicatehape
subtyping hierarchy, whereas the nesting structure based subtypihgvws sor
two exemplary types. Subtype relations are denoted by arrows, pointimgtre
supertype to the subtype. The dashed arrows illustrate an exemplagt stiize
combined subtyping relation.

Given this two-dimensional subtype relation, we need to uniquely define the
least supertype. As shape-generic instances in general are honideriargaC,

< a=b[shp] >

- [- SO
< conpl ex:doyblre[,Z]" > < tup1f\e;\:(doubl e[2] >
[o i BN

»
[

FIGURE 4. Extended SAC subtyping hierarchy.

whereas they might not be homomorphic with nesting-generic instancesyeve g
precedence to the shape-generic subtyping. Thus, wheneverlppssfinction
application is dispatched for the specific nesting type. Only if no non-nesting
generic instance matches, the nesting-generic instances are con&iddispatch.
Given this extended subtype relation, we can now overload functionseon th
shape and structure of their arguments. As an example for a non-gerstaicce
specification, consider theoperation on values of tygsonpl ex as given below.

< conpl ex=doubl e[2] >[] (*)(< conplex=double[2] >[] A
2 < conpl ex=doubl e[2] >[] B)
{

+ A = type_disclose(A;

B = type_discl ose(B);
result = [A0]*B[0] - Al 1]*B[1],
8 A0l B[1] + A[1]*B[O]];
0w result = type_enclose(< conpl ex=doubl e[2] >,

result);
12

return(result);

14}

The function above implements the multiplication on complex numbers. The
first element of the underlying double tuple is thereby treated as the neanmh
the second element as the imaginary part of the complex number.

Furthermore, we define a shape and structure generic versioaofollows.

generic < a=b[shp] >[*] (*)(< a=b[shp] >[*] A,

2

4

< a=b[shp] >[+] B)
{

}

Similar to the instance of presented in section 2, the above instance maps ap-
plications of* on arrays down to scalar level. Other than the instance defined in
section 2, this instance is defined for arrays of arbitrary nested types.

Using these instances, an overloaded functiotonsisting of the above two
instance and the generic instance for scalar values defined in the Ere@ction
can be defined.

As an example, consider an application of this function to two arrays of com-
plex values. As the type of the argument is a subtype d=b[shp] >[*],
and as this is the only matching instance, the application would be dispatched to
the generic instance on arrays. As that instance maps the multiplication down to
scalar level, the application efcontained in the body has now to be dispatched for
type< conpl ex=doubl e[*] >[]. Here, all instances are defined on super-
types of the argument types. As described in section 2, the least posgibltype
is chosen and the application is therefore dispatched to the instance dorents
of type< conpl ex=doubl e[*] >[]. This leads to the correct result.

As nested array types are named wCS even different instances for the same
structure but different semantics can be defined. As an example, eorsidp-
plication of the above introduced overloaded functoto a tuple of double values
of type< tupl e=doubl e[2] >. Although the structure of the tuple of double
values is equivalent to the structureofconpl ex=doubl e[2] >, an applica-
tion of » would be dispatched to the generic instance for scalar values and thereby
transparently mapped onto the inner dimension.

Using the subtyping based overloading approach presented abesdleasise
of nested arrays even further, as the programmer is fully liberated frera#hk to
choose the correct instance depending on the semantical context.

return({ iv -> Aliv] *= B[iv] });

6 PUTTINGIT ALL TOGETHER

To demonstrate the interplay of nested array types, generic functioritidefmon
the nesting structure and function overloading, we give an example obtieetbat
is necessary to introduce a new nested array type. In a second stepowédiow
the generically specified code is transformed into bagi€ $ode without nested
arrays and generic functions by applying well known techniques liketiom spe-
cialisation, function inlining and withloop-scalarisation[GST04].

To shorten the amount of code to be given, we introduce two shortcut nota
tions. As applying ype _di scl ose to the arguments is a quite common pattern,
we use< conpl ex->doubl e[2] > in argument type position to implicitly
convert the type of an argument to its denested counterpart within the fanctio
body. Dually,< conpl ex<- doubl e[2] > as return type is used as a shortcut

(&)

~

11

13

15

17

19

21

23

25

27

notation for applying thé ype_encl ose function to the return values.

First, we give parts of the generic definitions for nested array type<tmae
with the standard library and that do not need to be specified by the applicatio
programmer.

nodul e ArrayGeneri cs;

use Array : all;

export all;

generic int[.] shape(< a->b[shp] >[*x] A

{
return(drop(- len(shp), shape(A)));

}

N

generic < a<-b[shp] >[] (*)(a->b[shp] >[] A

a->b[shp] >[] B)

N

{
return(A * B);

}

N

generic < a=b[shp] >[«] (*)(< a=b[shp] >[+] A

a=b[shp] >[+] B)

N

{
return({ iv -> Aliv] = B[iv] });

}

generic < a=b[shp] >[] scalarprod(< a=b[shp] >[.] A
< a=b[shp] >[.] B)
{
return(sun{ A * B));
}

Most functions shown above have already been used in this paperdiie
tionalscal ar pr od function in line 24 defines the scalar product of two arbitrary
vectors. The application of sum in line 27 computes the sum of all elements of
a given vector. Using the above generic function definitionsciepl ex type
introduced earlier can now be defined along with multiplication operations gn it b
the following code.

nodul e Conpl ex;
i mport ArrayGenerics : all;

< conpl ex<-doubl e[2] >[] (*)(

6

8

10

< conpl ex->doubl e[2] >[] A
< conpl ex->doubl e[2] >[] B)
{
return([A[O]*B[0] - A[1]=*B[1],
A0l +B[1] + A[1]*B[O]]);

Thei nmport statement in line 3 imports all functions and generic definitions
from moduleAr r ayGener i cs into the namespace of modubanpl ex. Thus,
the generic definitions for, shape andscal ar pr od become immediately
available for type< conpl ex=doubl e[2] >. To represent the difference in
semantics of the operation on complex numbers, we further overloadtloper-
ation for the type< conpl ex=doubl e[2] >[].

As the above example shows, using the techniques presented in this paper,
introducing new nested array types comes at a significant lower cost frdhe
grammer as he can reuse most existing generic definitions.

As an example, consider the following application of the function
scal ar pr od as generically defined iAr r ayGener i cs to two vectorsA and
B of type< conpl ex=doubl e[2] >[.].

S = scalarprod(A B);

The application is dispatched to the single generic instanse af ar pr od
defined earlier. As the arguments of the application are vectors, the djgplioa
* within scal ar pr od is dispatched to the generic array instance, which maps
the application to scalar level. As we defined an explicit instance for sa@ar a
ments of type< conpl ex=doubl e[2] >[], within the generic array instance
of function * the instance for scalar complex values is used for dispatch. This
instance finally computes the product.

Although an application of conceptually results in rather many dispatch de-
cisions and function applications, this does not necessarily imply a bad rupgime
haviour. By specialisingcal ar pr od and for type< conpl ex=doubl e[2]
> and consecutively applying function inlining and loop scalarisation, alladcsp
decisions can be made statically and function aplications can be fully removed.
One retains the following code:

1 A = type_disclose(A;

o8}
1

type_di scl ose(B);

0]
1

sum({ [i] ->[Ali,0]*B[i,0] - Ali,1]+=8[i,1],
Ali,0]*B[i,1] + Ali,1]*B[i,0]]}):

Note here that the entire operation is performed on the denested type. The
multiplication within the axis control notation in line 4 has been scalarised and
is now performed directly on the elements of the underhdiogibl e array. By
doing so, array nesting has been completely removed from the algorithm.

As all function applications can be statically dispatched for the correspgnd
base types of their arguments, thgpe di scl ose operations can be removed
as well. The resulting code thus fully resembles a definition without nesteg arra
types and generics.

7 RELATED WORK

In the field of array programming languages, NIAL[JJ93] is a promingatre

ple of a language with built in support for nested arrays. Other than {h®agh
presented in this paper, in NIAL the nesting structure of an array hasegpie

citly defined by the programmer using a so called nesting vector. Furtherihore
is the programmers responsibility to explicitly state the mapping of each function
application to the nesting level it is intended to operate on.

In APL[BB93], nested arrays are handled using explicit applications of
encl ose anddi scl ose functions. encl ose boxes an array into a scalar,
whereas the dual operatiah scl ose unboxes it. As with nesting vectors in
NIAL, the programmer has to be aware of the nesting structure and has to man
ually insert the appropriate nesting and denesting operations to extectibfun
applications across array nestings.

For other functional languages likeAdKELL or CLEAN, generic program-
ming extensions for algebraic datatypes have been proposed[JJ9D, AIRO2].
Similar to our approach, they allow to define generic instances on the type con
structor level instead of on types. To our best knowledge, these agips have
not been applied to other datatypes or even arrays.

8 CONCLUSION

We have introduced a new means to model and operate on nested arta@aasta
program specification by facilitating a high level of abstraction without intcoty
a performance penalty.

As a key concept, we presented a nesting structure on array types. t{sas
to represent nestings allows us to shift the nesting information of arraystfre
runtime representation level into the type system.

This approach further enables us to exploit the structural informatioiufar
tion definitions. We did so by introducing generic function definitions on thesstr
ture of nested arrays types. Moreover, we gave an example of howehtl/n
integrates with the function overloading capabilities aiCS

Finally we gave a demonstration on how nested arrays and generic function
definitions can be fully stripped out using existing optimisation techniques. The
impact of array nestings and generic program specification on the runtitimasis
expected to be minimal.

The extension of 8C as proposed in this paper introduces an additional sub-
type hierarchy. To develop a means to add further subtyping hierartchiles ex-

isting SAC subtyping relation and making them available for function overloading,
remains as future work. One interesting aspect here could be to add hoptoeno
subtyping on built in types as proposed in [SS05].

9 ACKNOWLEDGEMENTS

This work was funded by the European Union A£THER project.

REFERENCES

[AP02] Artem Alimarine and Marinus J. Plasmeijer. A gengriogramming extension
for clean. InIFL '02: Selected Papers from the 13th International Wodslon
Implementation of Functional Languagemges 168-185, London, UK, 2002.
Springer-Verlag.

[BB93] Robert Bernecky and Paul BernSHARP APL Reference Manualverson
Software Inc., 33 Major St., Toronto, Canada, 2nd editi®@93L

[Ben92] J.P. Benkard. Nested Arrays and Operators — Somegss Depth. In
Proceedings of the International Conference on Array Pssigg Languages
(APL'92), St.Petersburg, RussiAPL Quote Quad, pages 7-21. ACM Press,
1992.

[Ber88] R. Bernecky. An Introduction to Function Rank. Rmoceedings of the Inter-
national Conference on Array Processing Languages (APL.'8§dney, Aus-
tralia, volume 18 ofAPL Quote Quadpages 39-43. ACM Press, 1988.

[Can89] D.C. Cann. Compilation Techniques for High Perfance Applicative Com-
putation. Technical Report CS-89-108, Lawrence Livernidational Labora-
tory, LLNL, Livermore California, 1989.

[CKO1] M.M.T. Chakravarty and G. Keller. Functional Arrayugion. In X. Leroy,
editor, Proceedings of ICFP’0JACM-Press, 2001.

[GHS06] C. Grelck, K. Hinkful3, and S.-B. Scholz. With-Loopdton for Data Locality
and Parallelism. In A. Butterfield, editdmplementation and Application of
Functional Languages, 17th INternational Workshop, I3, @elected Papers
volume ??? oENCS Springer, 2006. to appear.

[GS03] C. Grelck and S.-B. Scholz. Axis Control in SAC. In RfiR and T. Arts,
editors, Proceedings of the 14th International Workshop on Impleaten
of Functional Languages (IFL'02), Madrid, Spain, RevisedeSted Papers
volume 2670 oLecture Notes in Computer Scienpages 182-198. Springer-
Verlag, Berlin, Germany, 2003.

[GST04] C. Grelck, S.-B. Scholz, and K. Trojahner. WITH-Ld®palarization — Merg-
ing Nested Array Operations. In G. Michaelson and P. Tripelditors,Proc. of
the 15th International Workshop on Implementation of Fiomatl Languages
(IFL'03), Edinburgh, UK, Selected Paperolume 3145 o£ NCS pages 118—
134. Springer, 2004.

[Hin00] Ralf Hinze. A new approach to generic functionalgmamming. INPOPL "00:
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium arciplés of
programming languagegages 119-132, New York, NY, USA, 2000. ACM
Press.

[JG89]
[3J93]

[3J97]

[LP94]

[Schos]

[Sch03]

[SS05]

[SSH*06]

[vG97]

M.A. Jenkins and J.I. Glasgow. A Logical Basis for téelsArray Data Struc-
tures.Computer Languages Journdl4(1):35-51, 1989.

M.A. Jenkins and W.H. JenkinBhe Q’Nial Language and Reference Manuals
Nial Systems Ltd., Ottawa, Canada, 1993.

Patrik Jansson and Johan Jeuring. PolyP—A polytypigramming language
extension. InConf. Record 24th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, POPL’'97, Paris, France, 15-177 7897 pages
470-482. ACM Press, New York, 1997.

J. Launchbury and S. Peyton Jones. Lazy FunctiorbeSthreads. IfPro-
gramming Languages Design and Implementat®&@M Press, 1994.

S.-B. Scholz. With-loop-folding inAc—-Condensing Consecutive Array Ope-
rations. In C. Clack, K.Hammond, and T. Davie, editdraplementation of
Functional Languages, 9th International Workshop, IFL'$T. Andrews, Scot-
land, UK, September 1997, Selected Papestume 1467 of NCS pages 72—
92. Springer, 1998.

Sven-Bodo Scholz. Single Assignment C — efficiemipsut for high-level
array operations in a functional settingournal of Functional Programming
13(6):1005-1059, 2003.

A. Shafarenko and S.-B. Scholz. General Homomorg@hierloading. In
C. Grelck and F. Huch, editor®roc. of the 16th International Workshop on
Implementation of Functional Languages (IFL’'04)ideck, Germany, Selected
Papers volume 3474 o£. NCS pages 195-210. Springer, 2005.

A. Shafarenko, S.-B. Scholz, S. Herhut, C. Grelck, andi¢jahner. Imple-
menting a numerical solution for the KPI equation using &#gssignment C:
lessons and experience. In A. Butterfield, ediboplementation and Applica-
tion of Functional Languages, 17th INternational Workshi#l'05, LNCS.
Springer, 2006. to appear.

J. van Groningen. The Implementation and Efficientpways in Clean 1.1.
In Werner Kluge, editorimplementation of Functional Languages, 8th Inter-
national Workshop, Bad Godesberg, Germany, September, 829écted Pa-
pers volume 1268 oL NCS pages 105-124. Springer, 1997.

