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Abstract

We propose a method called user-defined constraints specifically
for shape-generic multi-dimensional array programming. Our pro-
posed technique allows programmers to make implicit constraints
in the domain and codomain of functions explicit. This method
can help compilers to generate more reliable code, improve per-
formance through better optimization and improve software docu-
mentation.

We propose and motivate a syntax extension for the functional
array language SAC and describe steps to systematically transform
source-level constraints into existing intermediate code representa-
tions. We discuss ways of statically resolving constraints through
aggressive partial evaluation and propose some form of syntactic
sugar that blurs the line between user-defined constraints and fully-
fledged dependent types.

1. Introduction

SAC (Single Assignment C) is an array programming language
that supports shape-generic programming[1], i.e., functions may
accept argument arrays with statically unknown size in a statically
unknown number of dimensions. This generic array programming
style brings many software engineering benefits, from ease of pro-
gram development to ample code reuse opportunities.

However, generic array programming also introduces some sub-
tle pitfalls. Many array operations are characterized by implicit
shape constraints on parameters or return values. For example, ma-
trix multiplication requires the second axis of the first parameter to
be as long as the first axis of the second parameter; in element-wise
arithmetic (e.g. sums and products of two arrays) it is often desir-
able to ask for shape equality of arguments. If programmers do not
express implicit constraints in the code, merely depending on infer-
ring shape information of parameters by compiler (which is really
hard) is not enough to generate reliable executable code. Insuffi-
cient information about relationship of function parameters and re-
sult values is a problem. Program execution may encounter runtime
errors, e.g. out-of-bound array indexing, if implicit constraints are
violated, or program execution may simply yield erroneous results.
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How to express constraints of functions is a question. For in-
stance, programmers may add conditional code around function ap-
plications or in the definition of the applied function. However, both
approaches have their disadvantages. In the first case, programmers
write redundant code for each function application, which violates
software engineering principles. In the second case, compilers have
little opportunity to prove constraints, and most constraints have to
be left for dynamic checks. The lack of distinction between func-
tionally relevant and constraint checking code in both scenarios fur-
ther complicates a compiler’s job.

Therefore, it is useful if programmers can explicitly supply con-
straints in code. We propose user-defined constraints that explicitly
annotate relations between parameters and/or return values of func-
tions. This approach facilitates program error detection and helps to
infer more precise type information for smooth optimization. Using
this approach, we obtain the following benefits:

1. User-defined constraints can help a compiler to generate more
reliable code. For instance, a generic function vector add takes
two vectors of the same size as parameters and yields a new
vector whose values are the sums of the corresponding elements
of the two argument vectors. In the absence of shape constraints
the only way to avoid potential out-of-bound indexing into one
of the argument vectors is to generate a vector whose length
equals that of the shorter of the two argument vectors. With
the proposed user-defined shape constraints, we instead could
explicitly restrict the domain of the vector add function.

2. Using annotated code can improve performance through better
optimization. If the constraints can be statically resolved, cor-
responding code will be removed, and resolved constraints can
be propagated to facilitate further optimization.

3. Showing constraints of function, to some extent, can represent
software documentation. Since relationships of return values or
parameters are given, it helps programmers to better understand
code, e.g. generic function definition of matrix multiplication
with user-defined constraints.

The main contributions of this paper are:

1. a new method called user-defined constraints that explicitly
express constraints of functions;

2. an outline of syntax of the innovative method;
3. a discussion about where and how to assert the constraints;

4. a practical case is given to show how this approach works.
The paper is structured as follows. We start with a brief intro-
duction to the array calculus and the type system of SAC in Sec-

tion 2. Section 3 presents the motivation of the proposed method. A
detailed description and syntax of user-defined constraints is given
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rank: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

1 2 3
4 5 6
7T 8 9
rank: 2
shape:  [3,3]

data: [1,2,3,4,5,6,7,8,9]

[1,2,3,4,5,6]

rank: 1
shape:  [6]
data: [1,2,3,4,5,6]

42
rank: 0
shape: []
data: [42]

Figure 1. Calculus of multidimensional arrays

in Section 4. Section 5 describes code transformation of constraints,
and Section 6 discusses where and how to insert constraints into
intermediate code. We sketch out some syntactic sugar for shape
constraints in Section 7. Related work is discussed in Section 8.
Finally, we draw conclusions in Section 9.

2. SAC — Single Assignment C

As the name suggests, SAC is a functional language with a C-
like syntax. We interpret sequences of assignment statements as
cascading let-expressions while branches and loops are nothing but
syntactic sugar for conditional expressions and tail-end recursion,
respectively. Details can be found in [1, 2]. The main contribution
of SAC, however, is the array support, which we elaborate on in the
remainder of this section.

2.1 Array calculus

SAC implements a formal calculus of multidimensional arrays. As
illustrated in Fig. 1, an array is represented by a natural number,
named the rank, a vector of natural numbers, named the shape vec-
tor, and a vector of whatever data type is stored in the array, named
the data vector. The rank of an array is another word for the number
of dimensions or axes. The elements of the shape vector determine
the extent of the array along each of the array’s dimensions. Hence,
the rank of an array equals the length of that array’s shape vector,
and the product of the shape vector elements equals the length of
the data vector and, thus, the number of elements of an array. The
data vector contains the array’s elements in a flat contiguous repre-
sentation along ascending axes and indices. As shown in Fig. 1, the
array calculus nicely extends to “scalars” as rank-zero arrays.

AUD Class:
rank: dynamic
shape: dynamic
AKD Class:
rank: static
shape: dynamic
AKS Class:
rank: static
shape: static

int int[1] .. int[42] ..  int[1,1] .. int[37] ..

Figure 2. Type hierarchy of SAC

2.2 Array types

The type system of SAC is polymorphic in the structure of ar-
rays, as illustrated in Fig. 2. For each base type (int in the exam-
ple), there is a hierarchy of array types with three levels of varying
static information on the shape: on the first level, named AKS, we
have complete compile time shape information. On the intermedi-
ate AKD level we still know the rank of an array but not its con-
crete shape. Last not least, the AUD level supports entirely generic
arrays for which not even the number of axes is determined at com-
pile time. SAC supports overloading on this subtyping hierarchy,
i.e. generic and concrete definitions of the same function may exist
side-by-side.

2.3 Array operations

SAC only provides a small set of built-in array operations, essen-
tially to retrieve the rank (dim(array)) or shape (shape (array))
of an array and to select elements or subarrays (array Lidxvec]).
All aggregate array operations are specified using with-loop expres-
sions, a SAC-specific array comprehension:

with {

( lower_bound <= idxvec < upper_bound) : expr;

( lower_bound <= idxvec < upper_bound) : expr;
}: genarray( shape, default)

This with-loop defines an array of shape shape whose elements
are by default set to the value of the default expression. The
body consists of multiple (disjoint) partitions. Here, lower_bound
and upper_bound denote expressions that must evaluate to integer
vectors of equal length. They define a rectangular (generally mul-
tidimensional) index set. The identifier idxvec represents elements
of this set, similar to induction variables in for-loops. We call the
specification of such an index set a generator and associate it with
some potentially complex SAC expression that is evaluated for each
element of the generator-defined index set.

Based on these with-loops and the support for rank- and shape-
invariant programming SAC comes with a comprehensive array
library that provides similar functionality as built-in operations
in other array languages and beyond. For the SAC programmer
these operations are hardly distinguishable from built-ins, but from
the language implementor perspective the library approach offers
better maintainability and extensibility.

3. Motivation

In this section, we use matrix multiplication (“matmul” for short)
as example to show how to define a function on different levels of
abstraction according to the hierarchy of array types of SAC. We
demonstrate the existence of implicit constraints and motivate the
desire for explicit constraints.
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1 float[3,6] matmul (float[3,5] A, float[5,6] B)
2 A

3 BT = transpose(B);

4 C = with{

5 ([0,0]1<=[i,j]1<[3,6]):sum(A[il*BT[j]1);
6 }:genarray ([3,6]1,0f);

7 return(C);

8 }

Figure 3. Function definition of matrix multiplication with AKS

type

3.1 AKS function definition

Fig. 3 shows how to define matrix multiplication for arrays of
fixed shapes. We first transpose array B (line 3) before we use
a single with-loop for the standard textbook definition of matrix
multiplication (line 4-7).

Even though it seems that this function definition reveals the
well-known shape constraints on function parameters, it merely
does so for the concrete argument shapes, but it does not reveal
the underlying general relationship. What’s more, this code only
works for one pair of array shapes, which very much limits code
reuse. Therefore, a more generic solution is needed.

3.2 AKD function definition

As introduced in Section 2, an AKD type, e.g. float[.,.], defines
the number of axes, but leaves the extent along each axis open.
Matrix multiplication can be written in a shape-generic way, as
shown in Fig. 4.

1 float[.,.] matmul(float[.,.] A,float[.,.] B)
2 A

3 BT = transpose(B);

4 a0 = shape(A)[0];

5 bl = shape(B)[1];

6 C = with{

7 ([0,01<=[i,j]l<[a0,b1]):sum(A[i]*BT[j]);
8 }: genarray([a0,b1],0f);

9 return(C);

10

}
Figure 4. Function definition of matrix multiplication with AKD
type

In this generic code, we did not supply constraints for function.
What happens if we apply the function to wrongly shaped argu-
ments? We give mismatched matrices for this function, for instance,
two arrays with shape of [3,5] and [6,3], respectively. Element-wise
vector multiplication (e.g. A[i]1*BT[j]) is defined in the SAC stan-
dard library. In the absence of shape constraints it is defined to yield
a vector whose length equals the minimum of the lengths of the
argument vectors. This way, out-of-bound array indexing can be
avoided at the expense of an additional minimum computation and
obfuscation of the shape relationships, which is detrimental for fur-
ther optimization. For our definition of matrix multiplication this
means that we avoid a runtime error and make function matmul to-
tal, but we do this outside the mathematical definition of matrix
product.

3.3 AUD function definition

Array programs are composed from general-purpose array opera-
tions, and many operations are rank-generic, i.e. they are applicable
to arrays with arbitrary number of axes. AUD types like float [*]
encompass all arrays of a given base type regardless of their struc-
ture. Here we generalise matmul to innerproduct. As shown in
Fig. 5, function innerproduct takes two arrays A and B, where the
last axis of A has to be as long as the first axis of B.

float [*] innerproduct(float[*] A,float[*] B)
{

1

2

3 al = dim(A)-1;

4 bl = dim(B)-1;

5 a = drop([-1],shape(A));

6 b = drop([1], shape(B));

7 v = a++b;

8 C = with{

9 (O*xv<=iv<v) {

10 m = take([all,iv);
11 n = take([-bl],iv);
12 var = sum(take(m,A)*take(n,B));
13 }:var;

14 }:genarray(v,0f);

15 return(C);

16 }

Figure 5. Function definition of inner product with AUD type

Values al and bl are computed and used in line 10-11 for taking
specific axis. Line 5-6 get first al and last bl axis from two shape of
parameters respectively by using drop function for simple, which
comprise shape of final result in line 7. Line 8-13 do inner product
computation with with-loop.

Functions take(sv,a) and drop(sv,a) take and drop as many
elements from array a as indicated by shape vector sv, respectively.
Each element of sv corresponds to one axis of a starting from
the leftmost one. For positive components of sv, the elements are
taken or dropped from the “beginning”, i.e., starting with index 0.
Otherwise, they are taken or dropped from the “end”, i.e., starting
from the maximum legal index of the corresponding axis.

3.4 Implicit constraints

Program errors are common in software systems and often hard to
detect, especially the implicit constraints discussed above, which
may cause runtime errors, e.g. out-of-bound array access. What’s
more, such constraints are enforced by means of dynamic checks
that carry a performance penalty. To avoid this problem, program-
mers could add additional conditional statements either in the callee
or in the caller function, but none of them can express constraints
in function level. In the next section, we introduce a user-defined
constraints technology, which can express constraints explicitly.
Through existing aggressive partial evaluation in SAC, these user-
defined constraints may be resolved and removed by compiler to
avoid runtime checks.

4. Proposed user-defined constraints

The constraints in program vary, which not only focus on parame-
ter, but also return value in generic functions. In this section, a com-
piler technology called user-defined constraints is introduced. This
technique allows programmers to express constraints of functions
explicitly. While still writing code in a generic way, programmers
can add their desired annotations between function declaration and
function body, which indicates compiler constraints on parameters
and/or return value without losing generalization.

According to different usage of constraints, the technology can
be divided into two parts:

1. Precondition (user-defined constraints on parameters): pro-
grammers can specify the limitations of parameters using dedi-
cated expression;

2. Postcondition (user-defined constraints on return values): pro-
grammers can also add constraints on shape or rank information
of return value.
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We introduce two key words for SAC: where is used to express
the constraints between function parameters while assert is used
to indicate shape or rank information of return values.

4.1 User-defined constraints on parameters

In this part, we use where to express constraints between param-
eters. For function in Fig. 4, because the ranks of parameters are
known and equal, programmers just need to restrict specific axes
of parameters, as demonstrated in Fig. 6. Using this method, the
function matmul documents the constraint clearly: the second axis
of the first parameter has to be as long as the first axis of the second
parameter.

1 float[.,.] matmul(float[.,.] A,float[.,.] B)
2 where(shape(A) [1]==shape(B) [0])
3 {

/*Computation*/

}
Figure 6. Constraint on dedicated axis of parameters in AKD type

(O N

Fig. 6 shows basic usage of user-defined constraints on specific
axes of parameters. There are some other abstract restrictions of
function parameters. For example, the generic array addition func-
tion in Fig. 7 requires the shape of array A to be equal to the shape
of array B. Just using the above method — express axis-wise equal-
ity — would be tedious and even impossible for AUD-style func-
tions. Therefore, we directly use the equality of shape vectors of
parameters to express this constraint, as shown in Fig. 7.

I int[*] addition(int([*] A, int[x] B)
2 where(shape (A)==shape(B))

3 1

4 /*Computation*/

5 }

Figure 7. Constraint on shape of parameters

In Fig. 6, == is used to represent equality of two scalar values,
however, here, vectors appear as operands. In SAC, == is more
general operation which can indicate the equality not only between
scalars but also vectors and arrays. How == will be transformed will
be illustrated in next section. shape (A) ==shape (B) means shape of
parameters A and B are the same. At the same time, it indicates
that the ranks of the two array have to be equal as well, which is an
implicit constraint inflicted by the user-defined constraint.

Compared with matrix multiplication, our function innerproduct
in Fig. 5 has a similar restriction: the last axis of the first parameter
and the first axis of the second parameter must coincide in length.
The built-in function take is used to retrieve elements from the
shape vector. We can extend builtin functions in where domain as
well, as illustrated in Fig. 8.

1 float[*] innerproduct(float[*] A,float[*] B)
2 where(take([-1],shape(A))

3 ==take ([1], shape(B)))

4 A

5 /*Computation*/

6 )
Figure 8. Constraints on dedicated axis of parameter in AUD type

Some applications may have other kinds of restrictions among
parameters. For instance, function specialfun in Fig. 9 has a con-
straint that from the second element of the shapes of arrays A and
B to the sixth, each element must be equal. These constraints can
be expressed as in Fig. 9. The function tile(sv,ov,a) takes a tile
of shape sv from a starting at offset ov from array a.

1 int[*] specialfun(int[*] A, int[*] B)
2 where(tile ([2],[4],shape(A))

3 ==tile ([2],[4],shape(B)))

4 A

5 /*Computation*/

6 }

Figure 9. Constraints on arbitrary shape domain

4.2 User-defined constraints on return values

In some cases, programmers may also want to restrict shapes or
ranks of return values or express shapely relationships between
multiple return values. Such information can prove indispensable to
resolve further constraints later in the code. To express constraints
involving return values of functions we need a way to refer to re-
turn values in constraint expressions. As shown in Fig. 10, func-
tion addsub has a comma-separated list of return types in front
of the function name and return-statement in the function defini-
tion likewise contains a comma-separated list of expressions. At
first glance, we could be tempted to use variables occurring in the
return-statement. However, in practice we must be able to express
constraints without having access to the complete function defini-
tion. To solve both issues, we extend the syntax of function defini-
tions to explicitly name return values, just as function parameters.

Constraints among return values For generic functions, like
addsub in Fig. 10, shape and rank of parameters and return values
are all unknown. assert expression is used to indicate that the
shapes of the two return values should be equal.

1 int[*] x,int[*] y addsub(int[*] A,int[*] B)
2 where(shape (A)==shape(B))

3 assert(shape(x)==shape(y))

4 {

5 x = A+B;

6 y = A-B;

7 return(x,y);

8

Figure 10. Constraints among return values

Constraints between parameters and return values

In practice, most return values have some shape relationship
with parameters. Take matrix multiplication as an example. The
shape of return value contains two elements. The first element
is equal to the first axis of the first parameter, and the second
element is equal to the second axis of the second parameters. This
relationship can be represented as demonstrated in Fig. 11.

1 float[.,.] x matmul(float[.,.] A,floatl[.,.]
2 where(shape(A) [1]==shape(B) [0])

3 assert(shape(x)[0]l==shape(A)[0],

4 shape (x) [1]==shape (B) [1])

5 9

6 /*Computationx*/

7 }

Figure 11. Constraints between parameters and return values on
dedicated axis

4.3 Syntax of user-defined constraints

We introduce a concrete syntax for user-defined constraints as
shown in Fig. 12, +, -, * is extended in SAC to be used in scalar and
array operations. Primitive functions shape, dim, tile, drop, take
and concatenate are used in this syntax. We simplify the syntax
and leave out irrelevant SAC features.
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rets funid (args) /constraint /body

fundef =
rets = (Tet/,ret/* \/.void /)
args = (paranz[,paran@/* |/.void ])
ret = param
| type
param = typeid
constraint = / where (exprs) // assert (exprs) /
exprs = expr/}expr/*
expr = info_scalar equality expr_scalar
| infowector equality expr_vector
info_scalar = dim (i)
| shape (id) [const]
in fo_vector = shape (id)
| take ( expr_vector, shape (id) )
| drop ( expr_vector, shape (id) )
| tile ( expr_vector,expr_vector, shape (id) )
expr_scalar = num opinfo_scalar
| info-scalar
| num
|
expr_vector = num opinfo_vector
| infowector
| concatenate ( expr_vector, expr_vector )
| array
array [expr,scalar/, expr_scalar /*]
equality =
op +

—— 44l
|
I

Figure 12. Syntax of user-defined constraints of SAC

5. Transformation of user-defined constraints

Implicit constraints can be expressed explicitly using user-defined
constraints. Before making use of this kind of information, how-
ever, we must first transform these abstract representations into
more concrete code using primitive functions. Since where and
assert constraints are comma-separated lists of expressions,
we can distinguish each sub-constraint expression according to
comma, for example, the function in Fig. 10 has an assert ex-
pression that contains three constraints.

It is convenient to represent user-defined constraints by primi-
tive functions in SAC. At compile time, compiler does code trans-
formation to represent user-defined constraints by primitive func-
tion. In the following, the detail of transformation will be given.
Some of where and assert expressions can be transformed into
builtin functions directly. However, some user-defined constraints
may introduce new implicit constraints. For example, if program-
mers use shape (4) [2] to query for the third axis of array A while A
actually is a matrix (i.e. 2-dimensional), the index is out of bounds.
Therefore, the compiler must represent these implicitly induced
constraints as further explicit constraints to ensure user-defined
constraints are valid.

In the following, we will take where expression as example to
show the representation of constraints.

5.1 Equality of dimensionality

Even though in previous function definition, we did not introduce
the constraint on rank of array, it may be used in some applications.
Lets assume there is a constraint on rank of parameters A and B in
a generic function, i.e. dim(A)==dim(B).

Here, == is a user-defined overloaded function. SAC compiler
resolve overloading of operations into vectors or scalar operations
depending on type of arguments. The scalar operation (eq_SxS) just
evaluates the equality of scalar values, while the vector operation
(eq_VxV) introduces an implicit constraint, i.e., it only compares
elements of vectors without checking the size of vectors, because
this tacitly assumes their lengths coincide.

Since the return value of dim(A) is scalar, the constraint can be
represented by primitive function eq_SxS.

where(dim(A)==dim(B)) = where(eq_SxS(dim(A),dim(B)))

5.2 Equality of dedicated axis

The constraint (shape (A) [i]==shape(B) [j]) can be transformed
into the equality of two scalar values as well. To make the example
more general, integers i, j, m, n etc. are used to indicate the index
of shape of parameters in the user-defined constraints. However, be
aware of an implicit restriction underlying the constraint, i.e. the
index of shape(A) and shape(B) have to be valid. The following
transformation makes the implicit constraints explicitly.

where (shape (A) [i]==shape(B)[j]) ==>
where (gt_SxS(dim(A),1i);
gt_SxS(dim(B),j);
eq_SxS (shape(A)[i], shape(B)[j1))

gt_SxS is a builtin function which evaluate to true if its first
argument is greater than the second one.

5.3 [Equality of shape

Abstract user-defined constraints are more powerful at representing
equality of dedicated axis. However, because of its abstract and
generic there are some implicit constraints underlying. To evaluate
equality of shape, we should compare the rank of two parameters
first, if that hold, we evaluate their shape equality. The primitive
function eq_VxV evaluates whether two vectors are equal or not.

where (shape (A)==shape(B)) ==>
where (eq_SxS(dim(A) ,dim(B)),
eq_VxV(shape (A),shape(B)))

5.4 Arbitrary equality of shape axes

Arbitrary equality of shape axes is much more powerful and com-
plicated. The complexity and further implicit constraints make
transformation much more intricate. Implicit constraints underly-
ing in primitive function tile is shown as following. Here, ge_SxS
is a builtin function which evaluate to true if its first argument is
greater than or equal to the second one.

where(tile ([i],[j],shape(A))
==tile ([m], [n],shape(B))) ==>
where (eq_SxS(i,m),
ge_SxS(dim(A) ,i+j),
ge_SxS(dim(B) ,m+n),
eq_VxV(tile([i],[j],shape(A)),
tile ([m], [n],shape(B))))
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6. Wrap user-defined constraints into program

At some point, user-defined constraints must be inserted into code.
There are several points should be considered to make constraints
more useful when assert. First, only if where constraints evalu-
ate to true, callee function will be executed, otherwise the pro-
gram should terminate with an error. Second, if assert constraints
do not hold, program should terminate with an error message.
Third, user-defined constraints can be resolved as far as possible.
Fourth, constraints should be accessible to compiler optimization,
and knowledge gained by evaluating constraints should be propa-
gated as far as possible.

6.1 Where to insert constraints into code

There are several possible strategies to insert and thus evaluate
where and assert constraints. They can be inserted into caller
function or callee function or even both.

Precondition Intuitively, it is feasible to insert the where ex-
pression into the caller function before applying arguments to
callee function. Reasons to do this are as follows:

1. The callee function will not be executed if where constraints do
not hold, and the program will be terminated.

2. More importantly, putting constraints into the caller function is
crucial for the compiler to resolve constraints statically because
shape information on arguments can only be acquired in the
caller function.

However, we have to consider another aspect: can these con-
straints be used in callee function? No matter whether where ex-
pression evaluates to true or not, for callee function, these con-
straints will be treated as static knowledge, since once callee func-
tion is evaluated, it means the precondition holds. We need to in-
sert these preconditions into the callee function as statically known
knowledge, which can benefit further optimizations. Therefore,
where constraints should be inserted into both caller and callee
functions.

Postcondition The assert expressions include constraints
among return values and constraints between return values and
parameters. For assert constraints among return values, it is bet-
ter to insert constraints into callee function since shape information
of return values could be only acquired inside the callee function
body, which is a prerequisite for the compiler to resolve any con-
straint statically. For assert constraints between arguments and
parameters, it seems a bit complicated, because information of re-
turn values and parameters can be acquired from callee and caller
function, respectively.

In fact, the situation regarding postconditions is quite similar
to that of preconditions. Whenever program execution returns to a
caller function, this sheer fact means that the postcondition holds.
Thus, we can use the postcondition as static knowledge in the caller
function subsequent to the function application itself..

Therefore, we use redundant insertion methods to insert both
where and assert constraints into both callee function and caller
function.

6.2 How to insert constraints into code

Insert by conditionals The intuitive way to insert constraints
is wrapping user-defined constraints and their implicit constraints
into a conditional statement. Using conditional statement, callee
function will be evaluated only if parameters satisfy constraints.
Since the where expressions are inserted into caller function, it is
possible to use implicit knowledge of parameters in caller function
to resolve constraints as well. However, with respect to fourth
point mentioned in the beginning of this section, this method is
not optimal, because the result of constraints is only available

float[.,.] bar(int x, int y, int =z, int w)

= .
[}

with{([0,0]1<=[iv]<[x,yl):1£f;}:
genarray ([x,y]1);

with{([0,0]<=[iv]<[z,w]):2f;}:
genarray ([z,w]);

C = matmul (A,B);

return C;

— O 000NN AW =
(o8]
[

—_—

Figure 13. Function definition of bar which call function matmul

float[.,.] bar(int x, int y, int =z, int w)

= .
[}

1

2

3

4 with{([0,0]<=[iv]<[x,y1):1£f;}
5 :genarray ([x,y]);
6

7

8

(o8]
[

with{([0,0]<=[iv]<[z,w]):2f;}
:genarray ([z,w]);

9 gl = guard(gt_SxS(dim(A),0));

10 g2 = guard(gt_SxS(dim(B),1));

11 g3 = guard(eq_SxS(shape(A)[1],shape(B)[0]1));
12 A = after_guard(A,gl,g2,g3);

13

14 C = matmul (A,B);

15

16 g4 = guard_hold(gt_SxS(dim(A),0);

17 gh = guard_hold(gt_SxS(dim(B),1);

18 g6 = guard_hold(gt_SxS(dim(C) ,1);

19 g7 = guard_hold(

20 eq_SxS(shape(C) [0],shape(A)[0]1));
21 g8 = guard_hold(

22 eq_SxS (shape (C) [1],shape(B)[1]));
23 Cl = after_guard(C,g4,g5,g86,87,88);

24 e

25 return C1;

26}

Figure 14. Function bar after code transformation

within the scope of conditional. Optimization or partial evaluation
cannot exploit these additional knowledges. Therefore, this kind of
insertion is not good enough.

Using explicit evidence To avoid that problem, we use explicit
evidence[3] to insert constraints and weave these contracts into the
dataflow. We implement this by using a primitive function guard
[4], which return true if its argument evaluates to true, otherwise it
terminates further evaluation and reports the error.

As discussed above, the resolved constraints have to become
a property of program that can be used in the further evalua-
tion. Therefore, we introduce a new kind of guard function named
guard_hold. It always evaluates to true and mainly serves to pro-
vide additional knowledge for further evaluation. Before code gen-
eration guard_hold annotations will uniformly be removed.

Let’s assume there is a piece of code in Fig. 13 that call function
matmul, as defined in Fig. 11. The caller function in Fig. 14 con-
tains addtional guard function, i.e. g1, g2 are constraints introduced
by g3. In Fig. 15, g1, g2, g3 become a static knowledge for callee
function, which is used for further evaluation. We use guard_hold
to indicate its argument evaluates to true. after_guard takes two or
more arguments, and the result of it is the first argument if all con-
secutive arguments evaluate to true; otherwise, it terminate evalua-
tion.
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1 float[.,.] x matmul(float[.,.] A,float[.,.] B)
2 A

3 gl = guard_hold(gt_SxS(dim(A),0));

4 g2 = guard_hold(gt_SxS(dim(B),1));

5 g3 = guard_hold(

6 eq_SxS(shape (A) [1],shape(B)[0]));

7 A = after_guard(A,gl,g2,g3);

8

9 BT = transpose(B);

10 a0 = shape(A)[0];

11 bl = shape(B)[1];

12 C = with {

13 ([0,01<=[i,jl<[a0,b1]):sum(A[i] * BT[j1);
14 }:genarray ([a0,b1],0f);

16 g6 = guard(gt_SxS(dim(A),0));

17 g7 = guard(gt_SxS(dim(B),1));

18 g8 = guard(gt_SxS(dim(C),1));

19 g9 = guard(eq_SxS(shape(C)[0],shape(A)[0]));
20 gl0 = guard(

21 eq_SxS (shape (C) [1],shape(B) [1]));

22 Cl1 = after_guard(C,g6,g7,g8,g10);

23

24 return C1;

25 }

Figure 15. Function matmul after code transformation

If the constraints can be resolved at compile time, the guard
function may be removed partially by partial evaluation. Here,
guard_hold will stay and conditional removed after partial eval-
uation.

7. Syntactic sugar for shape constraints

Our shape constraints are a syntactically restricted form of Boolean
expressions. While this approach provides a certain degree of gen-
erality, phrasing of shape constraints can often be significantly sim-
plified by adding some syntactic sugar to the specification of types.

The matrix multiplication example discussed throughout the pa-
per illustrates the common need to access extents of argument ar-
rays along individual axes. In Fig. 6 we used the term shape (4) [1]
to express this. Fig. 16 shows the same example with a little bit of
syntactic sugar: by using identifiers instead of dots in AKD types,
we can elegantly bind identifiers to the extents of argument arrays
along relevant axes.

1 float[.,.] matmul(float[.,al] A,float[b0,.] B)
2 where (al==b0)

3 {

4 /*Computation*/

5}

Figure 16. Matrix multiplication of Fig. 6 with syntactic for sugar
constraints

We can even go one step further and express equality constraints
by repeatedly using the same identifier instead of anonymous dots.
Fig. 17 demonstrates this with a complete description of the inher-
ent shape constraints of matrix multiplication, without making any
use of any explicit where and assert constraints.

1 float[x,z] matmul (float[x,y] A,float[y,z] B)
2 A

3 /*Computation*/

4 }

Figure 17. Fully sugared expression of matrix multiplication
shape constraints

Desugaring of the above examples into explicit constraints is a
fairly straightforward preprocessing step.

8. Related work

Programming errors are common in software system and hard to
detect. Much research attention has been paid to error detection.
One popular approach is design by contract proposed by Bertrand
Meyer [5, 6], which is widely used both in object-oriented pro-
gramming languages [7, 8] and functional programming languages
[3, 9, 10]. But none of them has concrete shape restrictions on ar-
rays as described in this paper.

Interpreted array programming languages like APL[11], J [12]
are dynamically typed. When the interpreter encounters an array
operation, it checks whether its arguments are proper, if so, per-
forms computation by invoking native implementation, otherwise,
aborts program with error message. Without a priori static analysis
makes bugs hard to find, and What’s more, this design decision has
a considerable runtime impact [13]. Our proposed compiler tech-
nology can counter these issues. The SAC compiler tries to stati-
cally resolve all user-defined constraints. If the constraints do not
hold, it reports error message. For the constraints that can not be
resolved at compile time, we will leave them to dynamic check.

Our work indeed is similar to Qube [14, 15], a programming
language that combines the expressiveness of array programming
with the power of dependent type. We try to express implicit con-
straints explicitly and resolve constraints statically. However, our
approach is much more programmer friendly and expressiveness,
and we eliminate the effort of learning new logic with its theorem
prover.

Another related work was carried out by Herhut et al.[4], which
focuses on checking domain constraints for built-in functions. In
contrast our approach targets general user-defined functions and
thus more general constraints.

To resolve these constraints, we may adopt symbiotic expres-
sions [16] which is a method for algebraic simplification within
a compiler. Even though currently symbiotic expression in SAC is
compiler-generated expression, we may be able to reuse some tech-
nology to support our user-defined constraints.

9. Conclusion

This paper proposes a compiler technology called user-defined con-
straints that allows programmers to express shape constraints on
parameters (where) and return values (assert) explicitly in func-
tion level. It help compiler to generate more reliable executable
code by restrict function definition, improve performance through
better optimization and provide a means for software documenta-
tion, which helps programmers to better understand code. Using
this approach, programmers neither need to add redundant condi-
tional code in caller function, nor add constraints in callee function.
User-defined constraints will be transformed into primitive func-
tions in SAC, and then inserted into program properly according to
their type.

We mainly focus our presentation on introducing user-defined
constraints and its implicit constraints and code transformation in
this paper. It remains as future research to investigate how compiler
resolves more constraints statically and effectively, and whether
this technology brings the properties of our type system close to
strongly typed system based on dependent types.
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