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Chapter 1. Introduction 
 

SINGLE ASSIGNMENT C — in the following referred to as SAC — is a purely functional 

array processing language which is especially designed for computationally intensive 

applications in fields such as scientific computing, image processing, simulation, or 

modeling. Its design aims at achieving excellent runtime performance and offering a 

high level of abstraction at the same time. And the functional property of SAC reveals 

the fact that SAC is based on the principle of context-free substitution instead of a 

stepwise modification of state.  

    SAC has the array as the first class object. This means that array is an entity that can 

be passed as a parameter, returned from a subroutine, or assigned into a variable. And 

every variable in SAC is regarded as an array. For the simplicity of the array operation, 

SAC provides a few built-in functions to manipulate on the shape of the array. And more 

complex array operations can be defined by so-called WITH-loop which is a versatile 

construct to define aggregate operations on arrays. The WITH-loop allows denoting 

operations which completely abstract from the concrete shapes and even ranks of the 

arrays involved. Due to its expressiveness, almost all array operations are implemented 

through WITH-loop. 

Considering its functional semantics, SAC is well-suited for parallel execution. 

Previous work [1, 3, 4, 5, 10] has been done to use PTHREAD [22] to generate the 

multithread code and the performance for this parallelization strategy has been proven 

to be good. For nearly all typical computationally intensive applications, a considerable 

portion of execution time is spent on array operations. Thus the PTHRED parallel 

strategy to generate executable concurrent code is directed to the WITH-loop construct. 

OpenMP [14] is a shared-memory application programming interface (API) to specify 

shared-memory parallelization in FORTRAN and C/C++ programs. Since its advent in 

1990s, OpenMP has become the de-facto standard in writing shared-memory parallel 

programs and mainstream software and hardware vendors have been actively involved 

in the development of OpenMP.  

OpenMP is comprised of a set of compiler directives, runtime library routines and 

environment variables. The principle of OpenMP is summarized as follows:  OpenMP 

expects the application developer to give a high-level specification of the parallelization 
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in the program and the method for exploiting that parallelization by means of inserting 

compiler directives at appropriate places of the program and setting environment 

variables if necessary.  And the responsibilities of the OpenMP runtime library routines 

are to sort out the low-level details of the parallel execution, such as creating a team of 

threads to execute the code in parallel, dividing the work between the threads according 

to a certain mechanism, synchronizing the threads at the end of the parallel execution. 

OpenMP 2.5 ―is somewhat tailored for large array-based applications‖ [23]. Thus 

OpenMP 2.5 is ill equipped to exploit the concurrency available in irregular and dynamic 

structures such as while loops and recursive routines. But with the advent of OpenMP 

3.0 [15, 16, 17], a task model is put forward to efficiently exploit less structured 

concurrency. 

This thesis is about designing, implementing and evaluating an alternative OpenMP-

based parallelization strategy for SAC. The idea is to create a new backend utilizing 

OpenMP to generate the multithread program for SAC on all the architectures that 

support OpenMP. After inserting correct OpenMP directives and clauses in the 

appropriate places of the intermediate C code, it is up to OpenMP to generate the 

correct and efficient multithread code. The performance from the experiments which will 

be explained in Chapter 5 demonstrates the suitability of this parallelization strategy in 

principle. 

    Considering the presence of PTHREAD parallelization strategy and the fact that 

PTHREAD strategy already provides good performance, the motivation of OpenMP 

parallelization strategy is the combination of the following factors: 

 PTHREAD is restricted to the shared memory architecture. For the new rising 

architectures such as ASMP which stands for Asymmetric multiprocessing, the code 

generated from SAC program through PTHERAD parallel solution may not run on 

these architectures. But OpenMP is a widely used API for parallel programming. It is 

attractive to support OpenMP because programmers can continue using their 

familiar programming model, and existing code can be re-used [18]. Thus it is likely 

that OpenMP is adapted to the new rising architectures by the experts in the 

industry the moment the new architecture arises. Then SAC can rely on OpenMP to 

run in parallel on these architectures. For instance, Cell [19] is an ASMP 

architecture designed by IBM which does not support PTHREAD, thus it is not 

possible to run PTHREAD parallel solution code on it. But with the work presented 

in [18], the OpenMP parallel solution code can run on Cell since additional work to 

support OpenMP on Cell architecture is already done. Another example is that 

OpenMP can be adapted to GPGPU [20] architecture which is designed by NVIDIA. 

Interested reader can find more information in [21]. 

. 
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 SAC will support task parallelization in the near future, but how to integrate task 

parallelization with the current data parallelization elegantly and efficiently is still an 

open topic of research. As illustrated before, OpenMP 3.0 now supports task 

parallelization. So if we have an OpenMP backend, we can again rely on OpenMP 

to solve this tough problem for us. 

 

 As an open research topic, it is interesting to figure out the efficiency discrepancy 

between OpenMP solution and the PTHREAD solution.  Since OpenMP has more 

versatile scheduling techniques (such as static, dynamic and guided) and it has 

already been proven a success in the industry, we are curious to know whether 

OpenMP solution can outperform PTHREAD solution in efficiency or not. 

 

The remainder of this thesis is organized as follows: An introduction to SAC is given 

in Chapter 2. Thereafter, Chapter 3 illustrates the essential ideas of OpenMP and 

introduces the syntax and semantics of the OpenMP constructs relevant to the 

generation of OpenMP multithread backend. The design issues for OpenMP multithread 

strategy is presented in detail in Chapter 4. Afterwards, in Chapter 5, the runtime 

performance achieved is investigated.  Chapter 6 presents the potential optimization 

opportunities and outlines the directions of future work. Finally Chapter 7 concludes the 

work. 
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Chapter 2. SAC  
 

SAC is short for Single Assignment C which is a functional array processing language 

designed for computationally extensive applications. The aims of SAC are to achieve 

FORTRAN-rivaling runtime performance while at the same time offer a high level of 

abstraction. And being an array language, SAC supports true multidimensional arrays 

as first class citizens.  

This chapter serves as the background knowledge of SAC. It only illustrates the 

knowledge of SAC which is relevant to the OpenMP parallelization strategy. Section 2.1 

explains a functional subset of C that forms the SAC kernel. In section 2.2 the array 

subsystem is presented. And since all aggregate array operations in SAC are defined in 

terms of WITH-loops, Section 2.3 provides detailed description of this versatile construct. 

Finally, brief introductions to the PTHREAD parallelization strategy, the memory 

management system of SAC and the compilation steps of SAC are given in Section 2.4, 

Section 2.5 and Section 2.6, respectively.  

 

2.1 A functional subset of C  
 

As illustrated by its name, the syntax of SAC has great similarity to ANSI-C [8]. In order 

to allow for purely functional interpretation, SAC eliminates all elements of C which can 

cause side-effects, such as pointers and global variables. Besides this, only the control 

flow instructions break, goto and continue must be left out. The semantics of the 

remaining language constructs is then given by a straightforward mapping to an applied 

aLbmaL-calculus [2]. And the meaning of programs is given by this mapping and by 

context-free substitutions, as defined by the applied aLbmaL-calculus. The detailed 

syntax description of SAC can be found on the SAC webpage [9]. 

Besides the similarity to C, SAC also provides some renovations, such as support for 

functions with multiple return values. 
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2.2 Arrays in SAC  
 

In SAC, every variable is regarded as an array which is represented by two vectors: a 

data vector containing all array elements in row major order and a shape vector 

specifying its structures. But the data and shape vectors could be chosen with a 

restriction: Assume A is a n-dimensional array with a shape vector sv consisting of 

integer scalars sv = [sv0, ..., svn−1] and a data vector dv consisting of scalars of arbitrary 

type dv = [dv0, ..., dvl−1], then the length l of the data vector must be      

                                               n-1 

                                          l = ∏ svj 
                                                   j=0 

 

Figure 2.1 shows several examples of this array representation.  

 

 

 

 

 

 

 

 

Figure 2.1: SAC array representation: the data vector and the shape vector. In SAC, 

an array is represented by a shape vector and a data vector. 

 

    SAC provides compound homogeneous array operations which are applicable to all 

array elements or to the elements of coherent subarrays. All these operations are 

defined shape invariantly, i.e., they can be applied to arrays of arbitrary shape and thus 

to arrays of arbitrary dimensionality [3].  

For the simplicity of manipulations on the arrays, SAC also provides some primitive 

functions to retrieve the array‘s shape and content. For instance, let A denote an array, 

dim(A) retrieves the dimensionality of array A and shape(A) yields the shape vector of 

A0 = 1                      Shape Vector: [ ]        Data Vector: [1] 

 

A1 = (   )        Shape Vector: [3]       Data Vector: [1, 2, 3] 

 

A2 = (
   
   

)       Shape Vector: [2, 3]    Data Vector: [1, 2, 3, 4, 5, 6] 
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array A. Additionally the more powerful construct to manipulate the arrays in SAC is 

WITH loop construct, which is the topic of Section 2.3.    

 

2.3 The WITH loop 
 

The WITH-loop is a versatile construct in SAC. It can be used to aggregate operations 

on arrays of given shape along with a specification of how to initialize each element 

depending on its index position. And the WITH-loop can also be used to define a 

reduction operation over a range of elements in the WITH-loop together with a 

specification of how to compute the set of fold operands. One of the biggest advantages 

of the WITH-loop is that it can define the specification of arbitrary, truly shape invariant 

and even rank invariant array operations. The syntax of the WITH-loop is outlined in 

Figure 2.2.  

    Essentially, a WITH-loop consists of an operation part and a generator part. The 

generator part defines the lower and upper bounds for a set of index vectors and an 

index variable, which represents an element of this set. The index variable makes it 

possible to reference a single element in the WITH-loop operation. 

And the operator part is to define an operation to be applied to the elements of the 

index vector set. At present, there are three different kinds of operation parts whose 

functionalities are defined as follows. Let shp denotes an expression that evaluates to 

an integer vector; expr denotes the expression directly after the generator part; and let 

fold_op be the name of a binary commutative and associative function with neutral 

element neutral. 

 genarray(shp) generates an array with the shape shp. All elements whose index 

positions are covered by the generator will get the value expr. Other elements 

get the default value 0. 

 

 modarray(shp) defines an array which has the same shape as shp. All elements 

whose index positions are covered by the generator will get the value expr. 

Other elements get the value of the corresponding element in shp. 

 

 fold(fold_op, neutral) specifies a reduction operations, setting out with the 

neutral, the value is computed for each position from the specified set expr and 

subsequently folded using fold_op.  
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Figure 2.2: Syntax of WITH-loops. The WITH-loop has two parts: the operation part 

and the generator part. 

 

Figure 2.3 is an example which shows the use of these three different kinds of WITH-

loops in SAC. 

In Figure 2.3, the genarray WITH-loop will generate the array A which is a 6 × 6 array. 

All the elements from the position [1, 1] to position [4, 4] will be initialized to the value 3. 

And the other elements will have the default value 0. 

 

 

 

 

 

Expr              … 
                   | WithExpr 
 
 

WithExpr    with  {  ( Generator ) : Expr ;  [Assign]
*
 }:         

                      Operation; 
 
 

Generator      Expr Relop Id Relop Expr  
 
 

Relop              < | <= 
 
 

Operation         genarray ( Expr ) 
                    |      modarray ( Expr ) 
                    |      fold ( Foldfun , Expr )  

 

Foldfun              Id | Foldprf 
 

Foldprf                + | * | && | || | max | min 
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Figure 2.3: Example of the three kinds of WITH-loops in SAC. 

 

A = 

(

 
 
 
 
 
 

0 0 0 0 0 0

0 3 3 3 3 0

0 3 3 3 3 0

0 3 3 3 3 0

0 3 3 3 3 0

0 0 0 0 0 0)

 
 
 
 
 
 

 

 

    And the modarray WITH-loop will generate the array B, which has the same shape as 

the array A. Each element in B has the same values as the element of the same 

position in A; except the elements from position [1, 1] to positions [2, 2] which are set to 

13. 

int main() 

{ 

    A =  with { 

      ([1,1] <=iv<= [4,4]) : 3; 

    }: genarray( [6,6]); 

    print(A); 

 

    B =  with { 

      ([1,1] <=iv<= [2,2]) : 13; 

    }: modarray(A); 

    print(B); 

     

    C = with { ([0,0] <= iv <= [2,2]): B[iv];} : fold(+,0); 

    print(C); 

 

    return (0); 

} 
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B =  

(

 
 
 
 
 
 

0 0 0 0 0 0

0 13 13 3 3 0

0 13 13 3 3 0

0 3 3 3 3 0

0 3 3 3 3 0

0 0 0 0 0 0)

 
 
 
 
 
 

 

 

    And for the array C, the fold WITH-loop computes the sum of all elements from 

position [0, 0] to position [2, 2] in array B.  

C = 52 

 

2.4 Current multithreaded model in SAC  
 

The current parallelization strategy in the framework of SAC is to generate multi-

threaded target code based on POSIX-THREADS [22], which provides operations to 

dynamically create new threads and to synchronize them upon termination.  

At present, there are two models of multi-threaded execution based on PTHREAD. 

The first one is to execute each WITH-loop in parallel separately using a fork/join 

pattern, and an enhanced fork/join model is also provided in this model [4, 26]. The 

second one is a hybrid execution model that combines elements of traditional fork-join 

and single-program-multiple-data approaches [5]. 

But the second model is currently not fully implemented yet. In Chapter 5, the 

performance of the first model is used to compare with the performance of OpenMP 

parallelization strategy. 

 

2.5 Memory management in SAC 
 

SAC also provides implicit memory management in the form of reference counting [6]. 

With this advanced feature, the programmers are not bothered with the details of 

memory allocation and de-allocation, but can concentrate on the implementation of the 

program.  
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    Reference counting is used to keep track of the number of conceptual copies of the 

data. In SAC, every data is regarded as an array, thus each array has a reference 

counter. And when an array is passed as a parameter to the functions, its reference 

counter is incremented and decremented implicitly.  If its reference counter drops to 

zero, it indicates that this array is no longer needed, and its memory will be 

automatically reclaimed by the memory management system. 

    In the implementation of SAC memory management system [27], there is an 

important data structure named descriptor which is used to store all relevant information 

of the array, such as reference counter, dimension and shape vector.  

    And in order to support the multithreaded execution, memory management in SAC 

also provides the heap manager in the multithread environment [28]. To the best 

convenience of the programmers, SAC memory management system will automatically 

generate the different heap manager facility for single thread environment and 

multithread environment. 

 

2.6 Compilation steps of SAC 
 

Compiling high-level abstract SAC programs into efficiently executable low-level code 

requires complicated analysis techniques and various transformation steps. In the whole 

process of the compilation, numerous intermediate representations are introduced to 

accommodate knowledge about program properties. This section sketches only the 

major compilation steps which are relevant to OpenMP multithread solution. Figure 2.4 

presents the major compilation steps.  

 

 Scanner / Parser: Generates the syntax tree whose structure reflects the original 

program. 

 

 Code Simplification: Reduces both the variety as well as the complexity of the 

language constructs to simplify the compilation in the subsequent phases. In this 

phase for-loops, do-while loops, and while-loops are transformed into equivalent 

tail-end recursive functions. And also it is in this phase that the code is 

transformed into the representation of Single Assignment Form. 

 

 Type Inference: Extracts the type information of the variables as concrete as 

possible because specific knowledge of the array is very essential in generating 

the efficient code. For instance, if an array whose dimension is 0 is known at 
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compile time, the memory management will store this array as a variable in the 

stack instead of allocating and deallocating memory for it on the heap. The type 

information includes the dimensionality of the array and also the exact shape of 

the array such as int [10, 10].  

 

 High-level Optimization: Various optimization techniques are provided to optimize 

the code. For instance, function inline, loop invariant removal, common sub-

expression elimination, dead code removal and loop unrolling. 

 

 Automatic Parallelization: Automatic generates the PTHREAD strategy 

parallelization code. In order to reuse the common multithreaded facilities which 

are currently only used in PTHREAD parallelization strategy as much as possible, 

two sub phases in this phase are reused by OpenMP parallelization solution. The 

first one is the cost model which is used to determine whether the WITH-loop is 

worthwhile to be executed in parallel or not based on the size of the iteration 

space of the WITH-loop. The second one is the create ST/MT function which is 

used to tag the function either as ST (single thread) if the function is called in a 

sequential context or as MT (multiple thread) if the function is called in a parallel 

context. 

 

 Precompilation: Converts tail-end recursive functions back into loops, which is 

crucial for the runtime performance of the compiled code. 

 

 Code Generation: Generates the C code as the intermediate code. 

 
Scanner / Parser

Code 

Simiplification

Type Inference

High-level 

Optimization

Memory 

Management

Automatic 

Parallelization

Precompilation

Code Generation

Cost Model

Create ST / MT 

Function

Create SPMD 

Function

……...

 
Figure 2.4: Major phases of the compilation process of SAC program.
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Chapter 3. OpenMP 

 

OpenMP [14] is a shared-memory application programming interface (API) which is 

used to write parallel program in FORTRAN and C/C++. Since it was developed in 

1990s, OpenMP has become a de facto standard in the industry and is supported by 

various architectures and compilers. 

    This chapter introduces the background knowledge of OpenMP. And it only presents 

the knowledge of OpenMP constructs which are used in the OpenMP parallelization 

strategy. Section 3.1 explains the background which OpenMP was developed. In 

Section 3.2 the data parallelization of OpenMP is introduced. Section 3.3 introduces 

briefly the task parallelization of OpenMP. 

 

3.1 Background of OpenMP 
 

Since the first day of the appearance of the computer, our appetite for the more 

powerful hardware has always been insatiable. With the advent of the new generation 

hardware which comprises the faster CPU and more memory storage spaces, the new 

application software will always quickly exhaust the enhanced hardware resources and 

in turn will incur the requirement of a much more powerful computer. In order to satisfy 

the growing eagerness of the software, many researches have been done in the field of 

computer architecture to design a faster computer.   

    Among them, superscalar architecture [11] has been successfully designed and 

deployed in the industry. The principle of the superscalar architecture is that it is made 

up of multiple functional units with different and specific purposes which can operate 

simultaneously. For instance, in the superscalar architecture, there is one component 

especially for adding two integer numbers, one component especially for determining 

whether a value is greater than zero or not, and one component especially for fetching a 

data from the memory. This low level of parallelism is often referred to as ―instruction-

level parallelism‖.  
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    Through some optimizations in the compiler [12] to reorder the instructions in one 

application to best utilize the superscalar architecture and keep all the components in 

the system busy as much as possible, a certain degree of speed up can be achieved in 

the superscalar architecture. But unfortunately some studies [13] showed that typical 

applications are not likely to contain more than three or four different instructions that 

can be fed to the computer at a time in the superscalar architecture.  

    Then researchers have come up with an alternative strategy. From the 1980s, the 

shared memory architecture has been developed and dominated the market. In the 

remainder of this paper, we will refer to shared-memory parallel computers as SMPs. 

The idea of SMPs is that multiple processors which share the same memory space are 

configured in a single machine and, increasingly, on a single chip. Thus several jobs 

could be dispatched to different processors and executed simultaneously. And in order 

to make all the computing power exploited by the applications in the SMPs, the 

appropriate support from the software to describe the concurrency must also be 

provided. And this is the background that OpenMP was created.  

OpenMP is a shared-memory application programming interface (API) to specify 

shared-memory parallelization in FORTRAN and C/C++ programs [14]. It was jointly 

defined by a group of major computer hardware and software vendors. Because 

OpenMP is comparatively easy to use in writing parallel programs and it is strongly 

supported by nearly all the mainstream hardware and software vendors, it is a now de 

facto standard in the industry.  

 

3.2 Data parallelism in OpenMP 
 

3.2.1 Introduction 
 

The principle of OpenMP is that OpenMP expects the application developer to give a 

high-level specification of the potential parallelization in the program and the method for 

exploiting that parallelization by means of inserting compiler directives in certain places 

and setting environment variables.  And OpenMP runtime library routines sorts out the 

low-level details of actually creating independent threads to execute the code and to 

assign work to them according to the strategy specified by the programmer.  

Since in the process of compiling SAC program, C is used as the intermediate 

language in order to achieve the portability on different architectures and reuse the 

current compiler technology, in the remainder of this chapter we will only focus on the 

syntax and semantics of C in OpenMP. For C programs, pragmas which are called 
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directives in OpenMP are provided by the OpenMP API to express the parallelism.  

These directives always start with #pragma omp, followed by a specific keyword that 

identifies the directive, with possibly one or more so-called clauses, each separated by 

a comma. These clauses are used to express the detailed information of the parallelism. 

The formal syntax description is described in Figure 3.1. 

 

 

 

Figure 3.1: General form of an OpenMP directive for C program. Directive name is a 

keyword that defines the behavior. For instance, parallel directive is used to define a 

region that is executed by multiple threads in parallel. Clause is used to express the 

detailed behavior. 

One of the most powerful features in OpenMP is that programmers can write a 

parallel program, and at the same time preserve the original sequential version. This is 

the case because OpenMP multithreading version is triggered by using an OpenMP flag 

in the compiler. If the programmer does not compile using the OpenMP option or uses a 

compiler that does not support OpenMP, the OpenMP directives will be simply ignored, 

and sequential code will be generated. 

 

3.2.2 The parallel construct 
 

Before we dive into the details of other characteristics of OpenMP, we will first see 

the most essential directive:  the parallel construct. The syntax of parallel is described 

in Figure 3.2: 

 

 

 

Figure 3.2: Syntax of parallel construct in C. The parallel construct is used to specify 

that the computation inside the parallel region should be executed in parallel. The 

parallel region implicitly ends at the end of the structured block. In most cases, it is a 

closing curly brace (}). 

#pragma omp directive-name [clause[[,] clause]. . . ] 

new-line 

#pragma omp parallel [clause[[,] clause]. . . ] 

structured block 
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    The parallel construct has the characteristics of ―fork-join‖ model, which is illustrated 

in Figure 3.3. In this programming model, the program will start up with a single thread 

which executes sequentially until it encounters the parallel construct. Then this single 

thread, which is named as ―master thread‖ will create a group of threads (this is called 

―fork‖) and collaborate with them to execute the code inside the structured parallel block 

in parallel. At the end of the parallel region, there is an implicit barrier which forces all 

threads to wait until the work inside the region has been completed. Afterwards only the 

master thread continues to execute sequentially while the rest of threads will be 

terminated (this is called ―join‖). 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.3: The fork-join programming model supported by OpenMP. The program 

starts as a single thread of execution, the master thread. A team of threads is forked at 

the beginning of a parallel region and joined at the end. 

 

Although the parallel construct ensures that computations are performed in parallel, it 

does not distribute units of the work to the threads in a team. This means that the work 

inside the parallel construct will be replicated by all threads. Thus we need some 

Fork

Fork

Join

Join

Master Thread

Team of Threads

Team of Threads

Master Thread

Master Thread
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appropriate directives, such as the for construct, to dispatch the different work to 

different threads in the team. 

 

3.2.3 The for construct 
 

The responsibility of the for construct is to divide the iteration space of the for loop 

immediately following it. At run time, the loop iterations are distributed across the 

threads. Each iteration is assigned to a specific thread in the team and is executed by 

the same thread from the start to the end. The syntax of for construct is illustrated by 

Figure 3.4. 

 

 

 

Figure 3.4: Syntax of for construct in C. The for construct is to distribute the iteration 

space of the for loop into different threads. 

 

In C programming language, there is a restriction in the for construct to be used in 

OpenMP. That is the number of the iterations of the for loop can be counted at runtime. 

Thus the loop must have an integer whose value is incremented by a fixed number at 

each step until some specified upper bound is reached. Thus the for construct in 

OpenMP can be only applied to the for loop with the format presented in Figure 3.5 . 

 

 

 

 

 

 

Figure 3.5: Format of C loop. The OpenMP for construct is only applied to this kind of 

for loop in C. The init is the initialization of the loop counter variable via an integer 

expression, var is the loop counter variable, b is also an integer expression, and relop is 

one of the following: <, <=, >, >=. The increment is a statement that increments or 

decrements the loop counter variable var by an integer amount using a standard 

operator (++, –, +=, -=). Alternatively, it may take a form such as var = var + incr. 

 

 

                  for ( init ; var relop b ; increment ) 
                  { 
                  } 

 
 
 

#pragma omp for [clause[[,] clause]. . . ] 

                                  for-loop 
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    With the example in Figure 3.6 the use of the for construct in OpenMP can be 

illustrated clearly. As explained in Section 3.2.2, the parallel construct is to instruct the 

compiler to implicitly generate a group of threads and the for construct is to distribute 

the work of each iteration to different threads in the team according to a certain 

mechanism which will be illustrated in Section 3.2.5. The function 

omp_get_thread_num() is a OpenMP standard library function to get the ID of the 

thread. And we will postpone the explanation of clause ―private‖ to Section 3.2.4.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6: Example of a work-sharing loop. Each thread executes a subset of the 
total iteration space i = 0, . . . , 9. 
 
 

Figure 3.7 shows one possible output produced when we executed the code of Figure 
3.6 using four threads. The output is non-deterministic and may change from run to run. 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
Figure 3.7: Output from the example shown in Figure 3.6. The example in Figure 3.6 
is executed with four threads and the iteration space of the for loop is distributed to four 
threads according to a certain mechanism.  
 
 

#pragma omp parallel private(i) 
{ 
     #pragma omp for 
      for (i=0; i <9; i++) 
      { 
          printf("Thread %d executes loop iteration %d\n", omp_get_thread_num(), i);                                         
      } 
 }  
 

Thread 0 executes loop iteration 0 
Thread 0 executes loop iteration 1 
Thread 0 executes loop iteration 2 
Thread 3 executes loop iteration 7 
Thread 3 executes loop iteration 8 
Thread 2 executes loop iteration 5 
Thread 2 executes loop iteration 6 
Thread 1 executes loop iteration 3 
Thread 1 executes loop iteration 4 
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3.2.4 The private clause and the shared clause 
 

In the previous example in Figure 3.6, we have seen the clause private. In fact, clause 

shared and private are the two most indispensable clauses in OpenMP to specify 

whether one variable is shared by all the threads in the team or each thread has a 

private copy of this variable during the process of the parallel execution.   

The syntax of the shared clause is:  shared(variable_list ). All the variables in the list 

in the bracket are the variables shared among the threads during the parallel execution. 

Simply stated, there is one unique instance of the shared variable in the memory and 

each thread can freely read or modify its values. The example in figure 3.8 

demonstrates the use of shared clause.  

 

 

 

 
 
Figure 3.8: Example of the shared and private clause. All threads are able to read 

and write elements of b which is declared as a shared variable. And each thread has its 

own copy of i which is declared as a private variable. The modification of its private i by 

each thread is invisible to the other threads in the team. 

 

    And in the example of Figure 3.8, we can notice the loop iteration variable i is 

declared as private. The clause private means that each thread has its own copy of 

this variable and the modification made by one thread to its private variable will not be 

visible to the other threads. Similar to clause shared, the syntax for clause private is: 

private(variable_list). 

And in OpenMP, there are also two more clauses to express the attribute of the 

variable. One is firstprivate and the other is lastprivate. Since neither clause is 

necessary in the OpenMP parallelization strategy for SAC, we will not introduce them 

here. Interested readers can find more information in [14]. 

 

 

 

     #pragma omp parallel for shared(b) private(i) 
        for (i=0; i<n; i++) 
        { 
                b[i] += i; 
        }  
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3.2.5 The schedule clause  
 

The schedule clause in OpenMP is used to control the manner that the iteration spaces 

of the for loop is to be distributed over the threads. And the appropriate selection of the 

schedule technique can have a crucial impact on the performance of the program. One 

of the biggest advantages of OpenMP is that the programmers can experiment with 

these numerous scheduling techniques provided by OpenMP to win the utmost 

performance. 

    The syntax of schedule is: schedule ( kind [,chunk_size] ). 

The kind specifies how the iterations of the loop are assigned to the threads in the 

team. And the chunk_size is the granularity of this workload distribution, which means 

a contiguous and nonempty subset of the iteration space. There are four schedule kinds 

supported now in schedule clause: static, dynamic, guided and runtime. We will not 

present the detailed descriptions of these scheduling techniques here. Interested 

readers can find in depth explanations in [14]. 

 

3.2.6 The critical construct 
 

As we point out in Section 3.2.4, each thread has access to the variable if it is declared 

as shared. This has an important implication that multiple threads might attempt to 

update the same memory location simultaneously or that one thread might try to read 

from a location on which another thread is updating at the same time.  Thus OpenMP 

provides critical construct to ensure that multiple threads do not attempt to update the 

same shared data simultaneously [14]. The syntax of critical in C is given in Figure 3.9. 

 

 

Figure 3.9: Syntax of the critical construct in C. The structured block is executed by 

all threads, but only one at a time executes the block. 

 

The principle of critical construct is that when one thread encounters a critical 

construct, it waits until no other thread is executing the critical region with the same 

name. In other words, it is impossible that multiple threads execute the code in the 

#pragma omp critical [(name)] 

          structured block 
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critical region simultaneously. The example in Figure 3.10 shows the usage of the 

critical construct 

In the example shown in Figure 3.10, if without the critical region, one thread may 

read the value of sum while the other thread is still updating it. This race condition will 

definitely lead to chaos and nondeterministic result from run to run. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Example of critical construct. The critical construct guarantees that one 

thread at a time enters the critical regions and avoids the race condition which will 

definitely lead to chaos and nondeterministic result. 

 

3.2.7 The reduction clause 
 

In the previous example, we have seen that with critical construct in OpenMP, the 

summation operation can be executed in parallel. But for some recurrence calculations 

which involve associative and commutative mathematical operations, OpenMP provides 

a much easier and more efficient clause to parallelize the operation. This operation is 

named reduction.  

sum = 0; 
 

#pragma omp parallel shared(n, b, sum) private(THREAD_ID, sumLocal) 
{ 
    THREAD_ID = omp_get_thread_num(); 

sumLocal = 0; 
 

    #pragma omp for 
         for (i=0; i<n; i++) 
             sumLocal += b[i]; 
 
    #pragma omp critical (update_sum) 
     { 
        sum += sumLocal; 
        printf("THREAD_ID=%d: sumLocal=%d sum = %d\n", THREAD_ID,   sumLocal,sum); 
     } 
}  
 

printf("Value of sum after parallel region: %d\n", sum); 
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The syntax of the reduction clause in C is: reduction(operator :list ). The 

programmers need to specify the type of the operation and the variable that stores the 

value after the calculation. And the compiler will implement the parallel execution in an 

efficient way, such as binary tree.  The example in Figure 3.11 demonstrates how to use 

reduction clause to implement the example in Figure 3.10. 

 

 

 

 

 

Figure 3.11: Example of the reduction clause. Using reduction clause is more efficient 

than using critical region. 

The only disadvantage for reduction clause is that it only supports simple mathematic 

operations such as add, multiplication, and, or. So in some cases it is unavoidable that 

we have to use critical construct.  

 

3.2.8 Active nest level 
 

OpenMP 3.0 also provides an advanced feature named nested parallelism to improve 

the performance for some recursive algorithms. Simply speaking, nested parallelization 

means that if one thread in a team which is executing a parallel region encounters 

another parallel construct, it creates a new team of threads and becomes the master of 

that new team. Figure 3.12 is one example of an OpenMP program utilizing nested 

parallel feature. 

And due to the fact that creating the parallel region incurs additional overhead, 

sometimes it is unknown that  creating the nested parallel region is worthwhile or not. 

Thus OpenMP provides a flexible way to control the active nest level. The library 

function omp_set_max_active_levels()  can specify the levels of the active parallel 

regions. 

 

 

#pragma omp parallel for default(none) shared(n, a) reduction(+:sum) 
{ 
         for (i=0; i<n; i++) 
              sum += a[i]; 
} 
 
printf("Value of sum after parallel region: %d\n", sum); 
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Figure 3.12: Example of the nested parallelism. The num_threads()  is used to 

configure the number of threads in the parallel region. 

 

For instance, in the example above, if the active nested level is set to one, the inner 

parallel directive will be ignored by the compiler and the output is show in Figure 3.13; 

and if the active nested level is set to two, both parallel directives will take effect and the 

output is shown in Figure 3.14. 

 

 

 

 

 

 

Figure 3.13: Output of the nested parallelism program with active level set to one. 

The inner parallel region is ignored by the compiler since there no more threads 

generated from the inner parallel region. But the omp_get_thread_num() still yields the 

thread ID in the current inner –most team. That is why there are three ―Thread 0 

executes inner parallel region‖ in the output. 

 

 

 

 

Thread 0 executes the outer parallel region 

    Thread 0 executes inner parallel region 

Thread 1 executes the outer parallel region 

    Thread 0 executes inner parallel region 

Thread 2 executes the outer parallel region 

    Thread 0 executes inner parallel region 

#pragma omp parallel num_threads(3) 

{ 

       printf("Thread %d executes the outer parallel region\n",omp_get_thread_num()); 

 

#pragma omp parallel num_threads(2) 

       { 

             printf(" Thread %d executes inner parallel region\n",omp_get_thread_num()); 

       } /*-- End of inner parallel region --*/ 

} /*-- End of outer parallel region --*/ 
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Figure 3.14: Output of the nested parallelism program with active level set to two. 

The inner parallel region is active and for each thread in the outer parallel region, two 

more threads are generated in the inner parallel region.  

 

3.3 Task parallelism in OpenMP 
 

In 2008, OpenMP v3.0 was released. The biggest advance from OpenMP 2.5 to 

OpenMP 3.0 is that OpenMP 3.0 supports task parallelism. The reason that task 

parallelism is essential is that although OpenMP 2.5 is very successful in exploiting 

structured parallelism like for loops, it is very difficult  to parallelize the unstructured 

applications such as while loop, link list traversal and tree traversal.  In [15], the authors 

have listed a few examples which are difficult and inefficient to parallelize using the 

OpenMP 2.5 construct such as critical, section and single.  

    The basic ideas of OpenMP task parallelism can be summarized as follows. In 

OpenMP 2.5, there are implicit tasks generated in the parallel region and each task is 

assigned to one thread. And in OpenMP 3.0, the explicit task is introduced. If one 

segment of code is encapsulated in the task directive region, this part of code will be 

used to initialize a task together with the data environment assigned by the OpenMP 

data attribute directive. Then OpenMP has its own implementation about when to 

schedule the task to a specific thread, whether the task can be suspended by one 

thread and later on resumed by another thread or not and when to synchronize  the task. 

The advantage of task parallelism is that it can be helpful to the parallelization of 

irregular data structures.  

 

 

Thread 0 executes the outer parallel region 

Thread 1 executes the outer parallel region 

Thread 2 executes the outer parallel region 

    Thread 0 executes inner parallel region 

    Thread 1 executes inner parallel region 

    Thread 0 executes inner parallel region 

    Thread 1 executes inner parallel region 

    Thread 1 executes inner parallel region 

    Thread 0 executes inner parallel region 
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Chapter 4. Implementation of OpenMP 

parallelization strategy 
 

This chapter introduces the detailed implementation aspects of the OpenMP 

parallelization strategy. Section 4.1 introduces the compilation phases added or 

modified in order to generate the OpenMP parallelization strategy code. Since almost all 

array operations in SAC are transformed into WITH-loops which exhibit a large degree 

of fine grained concurrency, Section 4.2 to 4.4 focus on the compilation scheme of the 

genarray and modarray WITH-loop and also two variants of fold WITH-loop. But rather 

than giving abstract compilation schemes, they are illustrated by some tiny examples. 

Section 4.5 discusses how to incorporate the feature of OpenMP nesting parallel 

regions. And in Section 4.6, the false sharing problem is addressed and also the 

solution is presented. Finally the design issues of how to make OpenMP parallelization 

strategy and PTHREAD parallelization strategy co-exist concisely is described in 

Section 4.7. 

 

4.1 Compilation steps  
 

Unlike PTHREAD multithread implementation whose code differ substantially                                 

from its sequential code, one of the biggest advantages of OpenMP is that it is easy to 

maintain the sequential version and the multithread version of program simultaneously 

since the multithread version of code is quite similar to the sequential version, with only 

some OpenMP directives and pragmas inserted at appropriate places of sequential 

version of source code. This fact means that for the OpenMP multithread strategy, we 

only need to do a few changes to adapt to the code generation of sequential C code 

with OpenMP directives. These changes include the following four steps below: 

 

Step 1: Add the necessary operation to get the operator of the fold WITH-loop in the 

early compilation phase. 
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As already discussed in Chapter 3, OpenMP reduction clause only supports limited 

simple mathematical operators such as add and multiplication. If the operator of the fold 

WITH-loop is one of these simple operators, OpenMP reduction clause can be used in 

the generation of the OpenMP code for fold WITH-loop without any problem. But for the 

operators in the fold-WITH loop, it could be more versatile constructs such as user- 

defined functions.  In the context of SAC, these user-defined functions are often 

declared as inline functions and the function call will be replaced by the code inside the 

function body. Figure 4.1 illustrates this transformation. Please note that in the 

remainder of the thesis, the C code generated from SAC code in the examples is not 

exactly the same as the real C code generated from the compiler. The real C code 

generated is much more complicated, containing many redundant brackets and being a 

bit ugly in the layout of the program. Thus simplified C code is used in the example to 

make the explanations more easily and clearly. 

Then in this situation, the reduction clause is difficult to use since the knowledge of 

the operation inside the body of the user-defined function has to be retrieved. Take the 

program in Figure 4.1 as an example, if we want to use the reduction clause in this 

case, we have to step into the body of the function add_add, analyze each operation  

inside and finally know that the operator is ‗+‘. This is a bit difficult especially if there are 

more operations inside the user-defined function.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Sequential code transformed from the fold WITH-loop with user- 

defined function. The body of the user-defined function which is used as the operator 

of the WITH-loop will be inlined. 

Thus OpenMP critical construct has to be used under these circumstances. In order 

to make a distinction between these two different compilation schemes in the code 

inline int add_add( int a, int b)
{     
  sum = a + b;
  return (sum);
}

int test_fold()
{
   c = with 
   { ([1,1] <= [i, j] <   [10,10]): i + j; } : 
    fold(add_add, 0);
    
   return (c);
}

void test_fold( int * ret)
{
    int sum;
    int c=0;

    for (int i = 1; i < 10; i = i + 1) 
    {    
        for (int j = 1; j < 10; j = j + 1) 
        {
            sum = (i) + (j);
            sum = (c) + (sum); 
            c = sum; 
      } 
    }

    *ret = c; 
    return;
}
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generation phase, the information of the fold operators has to be inferred. This can be 

more easily done in the earlier compilation phase since in later phase even the simple 

operator such as ‗+‘ will be transformed into more complicated wrapper functions. 

 

Step 2: Reuse two sub phases in the current automatic parallelization phase. 

    As already briefly discussed in Section 2.6, in the compilation process from SAC 

code into C code, there is a phase in which PTHREAD parallelization strategy is 

implemented. This phase is only triggered when the PTHREAD strategy is activated 

from the command line at the compile time of the program. The functionalities of the first 

sub phase and the second sub phase, however, are not only restricted to the PTHREAD 

implementation, but could be utilized in all multithread strategies as well. Thus it is a 

good idea to reuse these two sub phases to make the implementation of OpenMP 

strategy more concise. 

In SAC program, the WITH-loop will consume most of the execution time, thus the 

parallelization strategy focuses on the WITH-loop. In the first sub phase, based on the 

cost model which checks whether the size of the iteration space of the WITH-loop 

exceeds the threshold or not, the compiler will categorize the WITH-loop into three 

different kinds: the ones which will be executed in parallel; the ones which will be 

executed sequentially; and the ones which may either run in parallel or sequentially 

because the size of the iteration space is unknown at compile time and the decision has 

to be postponed until the run time. Then OpenMP parallelization strategy could reuse 

this sub phase without any modification.  

In the second sub phase, the compiler needs to decide the execution mode of each 

function. There are two different modes: ST mode and MT mode. ST mode means the 

function is called in the sequential context. But the function itself may contain part of 

code which could be executed in parallel. For instance, the function may has a 

parallelized WITH-loop. On the contrary, MT mode means the function is called in 

parallel context and thus does not aim at exploiting further concurrency. For example, 

the function which is called inside a parallelized WITH-loop is a MT mode function. Thus 

it is also obvious that OpenMP parallelization strategy could reuse this sub phase as 

well. 

 

Step 3: Add one sub phase to find all OpenMP private variables in pre-compile phase. 

    The most important issue for OpenMP parallelization strategy is to determine which 

variable is the OpenMP private variable. Before inserting the OpenMP directives in the 
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code generation phase, we need a separate phase to find all the OpenMP private 

variables and store them somewhere so that this information could be retrieved in the 

later phase. 

    The first question is where to store this information. Since the information of other 

attributes of the variables is not needed in OpenMP, we only need to know the names of 

these variables in the code generation phase. Then we decide to add an ―string‖ 

attribute into the syntax tree. This attribute is connected to the WITH-loop. And all 

OpenMP private variables inside the WITH-loop are then constructed into this single 

string.  

The second question is which variable should be private. From the observation of the 

sequential version of C code generated, we find that there are two categories of 

variables that should be declared as OpenMP private. Figure 4.2 illustrates both 

categories. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Sequential code transformed from genarray WITH-loop. The array of any 

dimension in SAC will be transformed to one dimension array in C.  

 

The first category of variables is the variables which are updated inside WITH-loop 

body. For those variables which appear on the left hand side of the assignments, each 

thread could update this variable independently. Thus it is obvious that these variables 

    A =  with {
      ( . <=iv< . ) : 3;
    }: genarray( [100,100]);

      int index_val = 0;
      int array[10000];

      for (int i = 0; i < 100; i = i + 1) 
      {
          index_val = ( 100 * i  ) * 1;

          for (int j = 0; j < 100; j = j + 1) 
          {
             array[index_val] = 3; 
             index_val = index_val + 1;
         } 
      }
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should be declared as private variables. For instance, the variable ‗index_val‘ in Figure 

4.2 falls into this category of OpenMP private variables. Inferring this category of 

OpenMP private variables is trivial since it is easy to justify the assignment operation 

inside the WITH-loop and the variable on the left hand side of the assignment operation. 

And from the introduction in Section 3.2.4, we know that the loop variables should be 

regarded as OpenMP private variables since each thread will have its own iteration 

space which will not overlap with each other. Thus the variable ‗i‘ and ‗j‘ in Figure 4.2 

are OpenMP private variables. And during the transformation from the WITH-loop in 

SAC to the for loop in C, there is an internal data structure in the syntax tree which 

stores the names of all loop variables from the dimension 0 to the highest dimension. 

For instance the WITH-loop in Figure 4.2 has the internal data structure as follows. 

iv = [ i, j ] 

 Thus if we do a simple traversal on this data structure, we will get all the loop 

variables which should be declared as OpenMP private. And after combining the both 

categories of OpenMP private variables, the OpenMP private list could be constructed 

now. 

 

Step 4: Generate OpenMP code. 

Before this phase, all the sufficient information has been inferred and the OpenMP 

solution code is generated in this phase. Considering the characteristics of OpenMP 

programming, the code resembles the sequential C code a lot. From Section 4.2 to 4.4, 

we will present the different detailed OpenMP code transformed under different 

situations. 

 

4.2 Genarray and modarray 
 

In this section, we will present the detailed C code transformed for both genarray and 

modarray together since the code generated from these two operations is almost the 

same. As we already introduce in the previous sections, the OpenMP multithread code 

only differs slightly from the sequential code, then the most important thing is to insert 

the OpenMP directives and clauses into the appropriate places of the sequential C code.  

For the parallel directive which is used to inform the OpenMP compiler to generate 

multiple threads to execute the code in parallel, it will be inserted to encapsulate all C 
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for loops generated from the SAC WITH-loop which is worthwhile to be executed in 

parallel.   

And since the compiler has already constructed the OpenMP private variable list in 

the previous compilation phase, now what we need to do is just put this OpenMP private 

variable list in the OpenMP private clause which is right after the parallel directive.  

For the for directive which is used to control the manner to distribute the iteration 

space between the different threads, it is obvious that it has to be put right before each 

C for loop. And of course, the parameters for the OpenMP for directives, such as the 

scheduling technique and the chunk size can be retrieved from the global structure 

which is initialized explicitly at compile time. The default scheduling technique is static. 

For the chunk size, it will not be set in default and the OpenMP standard library will 

choose an appropriate number. 

After all these work, the generated C code can be executed in parallel by the multiple 

threads generated automatically by OpenMP standard library according to the 

parallelization strategy described by OpenMP directives and clauses. 

Figure 4.3 presents the OpenMP code transformed for the WITH-loop which is 

presented in Figure 4.2. 

 

 

 

 

 

 

 

 

Figure 4.3: OpenMP code transformed from the WITH-loop in Figure 4.2. The code 

in bold is the OpenMP directives and clauses inserted and the rest code is the code 

generated from sequential code.  

      int index_val = 0; 
      int array[10000]; 
 
#pragma omp parallel private (i, j, index_val) 
{ 
     #pragma omp for schedule (static) 
      for (int i = 0; i < 100; i = i + 1)  
      { 
          index_val = ( 100 * i  ) * 1; 
 
          for (int j = 0; j < 100; j = j + 1)  
          { 
             array[index_val] = 3;  
             index_val = index_val + 1; 
         }  
     } 
} 
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4.3 Fold WITH-loop with simple operator 
 

In this section, we will present the detailed OpenMP code transformed for fold WITH-

loop which has the simple mathematical operator supported by OpenMP reduction 

clause as the fold operator. Like the transformation for genarray WITH-loop, the 

transformation for fold WITH-loop with simple operator should also use the parallel 

construct to encapsulate all C for loops generated, insert OpenMP for directive before 

each for loop and use the private clause. The only difference is that for fold WITH-loop 

with simple operator, we have to find which variable should be regarded as the 

reduction variable. 

Figure 4.4 illustrates the sequential code transformed for the fold WITH-loop that 

uses the simple mathematical operator ‗+‘ which is supported by OpenMP reduction 

clause.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The sequential code transformed from the fold WITH-loop with simple 

operator.  ‗+‘ is a mathematically associative and commutative operator and is 

supported by OpenMP reduction clause. 

int main()
{
  c = with { ([1,1] <= idx < [50,50]): 2; } : fold(+, 1);
  
  print(c);

  return (0);
}

void main( int * ret)
{
  int tmp;
  int c = 1;

  for (int i = 1; i < 50; i = i + 1) 
  {
     for (int j = 1; j < 50; j = j + 1 ) 
     {
        tmp = (c) + (2); 
        c = tmp; 
     }
  }

  *ret = 0;
  return;
}
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From the Figure 4.4, we know that the variable c holds the result of recurrence 

calculations. Thus it is obvious that it should be the OpenMP reduction variable. But 

here comes the question that where is c stored in the syntax tree.  

In the intermediate representation of the SAC code, there is an internal 

representation of accu function. And in the code block there is an explicit reduction 

operation called.  The pseudo C code of the intermediate representation is illustrated in 

Figure 4.5. And we can find easily that the variable which holds the return value of 

accu() function is the OpenMP reduction variable. Then after copying the name of this 

variable into the () bracket of the reduction clause, the transformation for fold WITH-

loop with simple operators is complete. And last but not least, the variable ‗c‘ should be 

removed from the OpenMP private variable list even if ‗c‘ is updated inside the for loop 

since ‗c‘ is already a reduction variable. Figure 4.6 illustrates the complete OpenMP 

code transformed from the example in Figure 4.4. 

 

 

 

Figure 4.5: Internal representation of accu() function. The variable which holds the 

return value of accu() function is OpenMP reduction variable. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: OpenMP code transformed for the example in Figure 4.6.  

void main( int * ret) 

{ 

  int tmp; int c = 1; 

#pragma omp parallel reduction( + : c) private (i, j) 
{ 
   #pragma omp for schedule (static) 

    for (int i = 1; i < 50; i = i + 1)  

    { 

       for (int j = 1; j < 50; j = j + 1 )  

       { 

          tmp = (c) + (2);  

          c = tmp;  

       } 

    } 

} 

   *ret = 0; return; 

} 

 

          c = accu();  

          tmp = i+ j 

          tmp = c +  tmp;  

          c = tmp; 
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4.4 Fold WITH-loop with user-defined function  
 

Figure 4.7 illustrates a bit more complicated fold WITH-loop that uses a user-defined 

function as the fold operator. As already explained in Section 4.1, it should be 

transformed into C code with OpenMP critical construct. But the question is what code 

needs to be encapsulated within the critical region. 

 

 

 

 

 

 

 

 

Figure 4.7: The fold WITH-loop with a bit more complicated user-defined function. 

In SAC, the user-defined function in fold operator will be inlined. 

 

The most direct way is to encapsulate all the code inside the function body within the 

critical region. This will of course yields very bad performance since all the operations 

inside the function body could not be executed in parallel. But in fact only the attempt to 

update the shared data should be protected.  

Thus instructed by what we know from Section 3.2.6, we should find the variable 

which holds the final value of the fold WITH-loop. Then find the first assignment whose 

right hand side has this variable, before this read operation should be the place that 

OpenMP critical region starts. And finally find the assignment whose left hand side has 

this variable, after this write operation is the place that OpenMP critical region ends.  

Figure 4.8 show the complete OpenMP code transformed for the example in Figure 

4.7. The variable ‗c‘ holds the final value and the OpenMP critical region starts before 

the first read of ‗c‘ and end after the assignment of ‗c‘. Thus the operation ‗var = i + j‘ 

could still be executed in parallel. 

inline int add_add( int a, int b) 

{  

    sum = a + b - 2; 

    return (sum); 

} 

 

int main() 

{ 

    c = with { ([1,1] <= [i, j] < [500,500]): i + j; } : fold(add_add, 0); 

    return (0); 

} 
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Figure 4.8: The OpenMP code transformed for the example in Figure 4.7. The code 

in bold is the inserted OpenMP constructs.  

 

4.5 Using OpenMP nested parallelism 
 

One of the advanced features provided by OpenMP is the support of nested parallelism 

which means if a thread in a team executing a parallel region encounters another 

parallel construct; it creates a new team of threads and becomes the master of that new 

team. The nested parallelism could achieve good performance especially for recursive 

algorithms. Thus in OpenMP parallelization strategy, nested parallelism is supported. 

void main(int *ret) 

{ 

    int c = 0; 

 

    #pragma omp parallel private ( i,  j, sum ) 

    { 

       #pragma omp for schedule (static) 

         for (int i = 1; i < 500; i = i + 1)   

         { 

              for (int j = 1; j < 500; j = j + 1)   

              { 

                 sum = i + j; 

 

                 #pragma omp critical 

                 { 

                   sum = c + sum; 

                   sum= sum + (-2);  

                   c  = sum; 

                 } 

             }  

         } 

     } 

 

     *ret = c; 

     return; 

} 
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As discussed in Section 3.2.8, OpenMP has a way to configure the number of the 

active parallel regions. This parameter can be set on the command line when the SAC 

program is compiled and the default number is set to one. And if this parameter is larger 

than one, say N, and the dimension of the WITH-loop is M, the number of min(N, M) 

OpenMP parallel regions will be generated. 

But here comes the question whether the OpenMP private variable list of one parallel 

region is different from the private variable list of another parallel region or not. As it is 

illustrated in Section 4.1, the OpenMP private variables fall into two categories. The first 

category is the variable which is updated inside the WITH-loop; and the second one is 

the loop variable of the C for loop. 

The current transformation for sequential C code has the characteristics which makes 

it convenient for the code generation of OpenMP parallelization strategy. Let assume 

the dimension of the WITH-loop is D. On the first hand, before the (D - 1) th C for loop, 

there is an assignment operation which will calculate the index of the array. On the 

second hand, all other operations will be encapsulated into the innermost C for loop.  

Figure 4.9 illustrates this transformation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Transformation of sequential C code. An assignment operation is inserted 

before the innermost for loop and all other operations are encapsulated into the 

innermost loop. 

A = with {

  ( . <= [i, j, k, m]<= . ) : i+j+k+m;

}: genarray( [10, 10, 10, 10]);

      int index_val = 0;
      int array[10000];

      for (i = 0; i < 10; i = i + 1) 
      {
        for (j = 0; j < 10; j = j + 1) 
        {
           for (k = 0; k < 10; k = k + 1) 
           {
             index_val = ( 10 * ( 10 * ( 10 * i + j )+ k ) ) * 1;
             
             for (m = 0; m < 10; m = m + 1) 
             {
               sum = (i) + (j);
               sum = (sum) + (k); 
               sum = (sum) + (m);

               array[index_val] = sum; 
               index_val = index_val + 1;
             }
           } 
         }
       }
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Thus if we enable the number of active nested parallel regions to (D - 1), which in 

most cases will be sufficient to improve the efficiency, all OpenMP parallel regions will 

share the same private variables in the first category.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: The OpenMP code transformed from the WITH-loop in Figure 4.9 if the 

active parallel region is configured to 2. The OpenMP private list for the inner parallel 

region is the subset of the one for the outer parallel region. 

     int index_val = 0; 

     int array[10000]; 

 

#pragma omp parallel private ( index_val, sum, i, j, k, m ) 

{ 

     #pragma omp for schedule (static) 

       for (i = 0; i < 10; i = i + 1)  

       { 

     #pragma omp parallel private ( index_val, sum, j, k, m ) 

     { 

       #pragma omp for schedule (static) 

         for (j = 0; j < 10; j = j + 1)  

         { 

           for (k = 0; k < 10; k = k + 1)  

           { 

             index_val = ( 10 * ( 10 * ( 10 * i + j )+ k ) ) * 1; 

              

             for (m = 0; m < 10; m = m + 1)  

             { 

               sum = (i) + (j); 

               sum = (sum) + (k);  

               sum = (sum) + (m); 

 

               array[index_val] = sum;  

               index_val = index_val + 1; 

             } 

           }  

         } 

      } 

   } 

} 
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    But for the C loop variables, it is obvious that the private variables of the inner parallel 

region should be the subset of the ones of the outer parallel region. The principle is as 

the follows: For the outermost C for loop, all loop variables should be included in the 

OpenMP private list of its parallel region; for the second outermost for loop, the loop 

variable from the outermost for loop should be eliminated from the private list of the 

second parallel region, etc.  

Thus for the WITH-loop presented in Figure 4.9, the maximum active nested parallel 

region is limited to 3 and the OpenMP code transformed is illustrated in Figure 4.10, if 

the active OpenMP parallel region is two. 

 

4.6 Index vector problem 
 

As explained in the previous section, index vector is an array to store the offset in each 

dimension during the traversal of the array. After some optimization cycles in SAC, 

index vector could be removed. But there is one scenario in which index vector could 

not be removed: index vector used as a parameter of a function which is inside the 

WITH-loop. Under this situation, index vector is visited by a pointer. Therefor even if 

each thread generated by OpenMP standard library has a private copy of the pointer, 

every thread will still visit the same memory location, and concurrent update of the 

same memory location by different threads will lead to chaos during the execution. 

Figure 4.11presents the scenario in which the index vector could not be removed. 

 

 

 

Figure 4.11: Index vector could not be removed. The function Foo uses the index 

vector as the parameter, thus the index vector could not be removed. 

 

The similar problem also exists for the descriptor of the index vector, which is already 

explained in Section 2.5. 

One reasonable solution is to allocate additional memory in a continuous memory 

space for each thread to store its own private index vector. Usually the length of the 

index vector is very small. For instance, the index vector of three dimension WITH-loop 

is 12 bytes. But the length of the cache line is much larger than the length of the index 

    A = with  { 
          ( . <= iv < . ) : Foo(iv); 
       }: modarray(A); 
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vector. Thus it is quite likely that the index vectors for all threads which are allocated in 

a contiguous memory space happen to reside in the same cache line. This will lead to 

the false sharing problem [24] which will have extremely negative impact on the 

performance. 

In SMP architecture, the memory system guarantees cache coherence. And false 

sharing is the case in which simultaneous updates of individual elements in the same 

cache line coming from different processors invalidates entire cache lines, even though 

these updates are logically independent from each other. When one processor updates 

an individual element in a cache line, that cache line will be marked as invalid. 

Afterwards when the other processors access a different element in the same line 

marked as invalid, they are forced to fetch a fresh copy of the cache line from memory, 

even though the element they access has not been modified. Figure 4.12 illustrates the 

false sharing problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Identification of the false sharing problem. False sharing occurs when 

threads on different processors modify different elements that reside on the same cache 

line. This invalidates the whole cache line and forces a memory update to maintain 

cache coherency. 
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In order to improve the performance of OpenMP solution, some smart techniques 

must be implemented to avoid the false sharing problem. One of the most direct solution, 

and also the solution implemented in this thesis is to allocate a large chunk of memory 

for each thread to hold the values of the index vector for each thread.  The memory of 

private index vector is large enough to avoid the situation that they reside in the same 

cache line. So the false sharing is avoided and whenever one thread updates its own 

index vector, it will not invalidate the cache line which holds the index vector for other 

threads. The same solution applies to the index vector descriptor, the data structure in 

SAC implementation which we already discuss in Section 2.5. Figure 4.13 illustrates this 

technique.  

 

 

 

     

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Solution for the false sharing problem. The memory allocated for the 

index vector for each thread is large enough to avoid the situation that different index 

vector for different threads reside in the same cache line. 

 

Based on this technique, it is time now to present the detailed code generated to 

solve the false sharing problem. The first step is to show the necessary operations 
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needing to be done before the OpenMP parallel region. Let us assume that N is the 

number of threads; Len_cache is the length of a cache line of a certain architecture;  

Len_iv is the length of the index vector and Len_iv_desc is the length of the index 

vector descriptor. Figure 4.14 illustrates these operations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Allocation of a continuous memory to hold the index vector and its 

descriptor for each thread. This code should be inserted before the C for loop 

generated from WITH-loop. 

  

In Figure 4.14, the value of thread_len_iv is the size of the memory allocated for 

each thread to hold its private index vector. And the value of thread_len_iv_desc is the 

size of the memory allocated for each thread to hold its private index vector descriptor. 

In most cases, the value of Len_iv / Len_cache is 0 since the length of the cache line 

is much longer than the length of the index vector. Thus it is not difficult to understand 

the first ‗+ 1‘ operation. But why do we need the second ‗+ 1‘ operation?  

 

Let us think about the situation presented in Figure 4.15. If the memory allocated for 

one thread to hold the index vector is one cache line, the operation by this thread is still 

possible to invalidate the adjacent cache line which holds the index vector for another 

thread. So that is why the second ‗+ 1‘ operation is needed here. 

 

 

 

 

     
int  thread_len_iv = (Len_iv / Len_cache + 1 + 1 ) * Len_cache; 

    int  thread_len_iv_desc = (Len_iv_desc / Len_cache + 1 + 1 ) * Len_cache; 
       
    int* iv_ptr = (int*)malloc( N * thread_len_iv ); 
    int* iv_desc_ptr = (int*)malloc( N * thread_len_iv_desc );       
       
    for (int i = 0; i < N; i++) 
    { 
 *(iv_desc_ptr + thread_len_iv_desc * i) = 1; 
    } 
             

int *thread_prv_iv; 
int *thread_prv_iv_desc; 
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The value of iv_ptr and iv_desc_ptr is the start address of the memory space 

allocated for all threads‘ index vector and their descriptor respectively. Inside the 

OpenMP parallel region, each thread will first calculate its own offset to these two 

addresses so that they can access to their own private memory space. And the 

operation carried in the for loop is to initialize the reference counter of the index vector 

to one since it is the first time each private index vector is referenced. 

 

And the variable thread_prv_iv and thread_prv_iv_desc is used by each thread to 

point to its private index vector and descriptor. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Why the second ‘+ 1’ is needed. Without ‗+ 1‘, the false sharing problem 

still exists.  

 

Then the second step is to explain the operations inside the parallel region. Figure 

4.16 illustrates this work. The OpenMP private variables should include not only the 

loop variables but also the thread ID, the pointer to the index vector and also the pointer 

to the index vector descriptor. Inside the parallel region, every thread has to know its 

own ID in order to calculate the address of its private index vector and its descriptor. 

This is done by calling OpenMP library function omp_get_thread_num(). Then in the 

innermost for loop, each thread needs to write its private loop variable into its private 

memory space.   

 

 

  

main 

start address of the index 

vector of one thread

Cache line 1 Cache line 2

 



 Chapter 4．Implementation of OpenMP parallelization strategy 

42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Inserted C code inside the parallel region. Each thread will calculate the 

start address of its private memory space allocated. 

 

4.7 The OpenMP version of SAC runtime library 
 

One of the tough design issues in OpenMP parallelization strategy is how to make 

OpenMP parallelization strategy coexist with PTHREAD parallelization strategy more 

concisely and conform to the principle of software engineering. For the PTHREAD 

strategy, a run time library will be generated to do the job such as creating a Pthread. 

Similarly another run time library should be generated for OpenMP parallelization 

strategy. 

But in PTHREAD strategy, there exist the implementations especially for PTHREAD 

strategy, such as using pthread API pthread_create() to create a new thread; and at 

the same time there also exist some data structures and environment variables that 

 
#pragma omp parallel private (iv0, iv1, thread_prv_iv, thread_prv_iv_desc, 
thread_id, ... )  
{ 
           int  thread_id = omp_get_thread_num(); 
 thread_prv_iv = iv_ptr + thread_id * thread_len_iv; 
           thread_prv_iv_desc = iv_desc_ptr + thread_id * thread_len_iv_desc; 
       
          #pragma omp for schedule (static) 
           for (iv0 = 0; ; iv0 = iv0 + 1) { 
                  for (iv1 = 0; ; iv1 = iv1 + 1)  {     
                                 thread_prv_iv[0] = iv0; 
                                 thread_prv_iv[1] = iv1; 
    thread_prv_iv_desc[0] += 1; 
 
                       /*  
                                 *  other C code generated from the  
                                 *  SAC code inside WITH-loop  
                                 */ 
                  } 
          } 
} 
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should be regarded as the facilities for all multithread  execution solutions instead of 

exclusively for PTHREAD multithread strategy.  

For instance, when the program starts up, the number of threads will be configured to 

a global variable. This should not be the facility only for PTHREAD strategy. Another 

example is the SAC memory management system. In multithread execution 

environment, heap manager will provide the facility for allocating and de-allocating 

memory for multiple threads. This is also a facility that should not be restricted to 

PTHREAD strategy. 

    The problem now is that in the previous implementation, no-one could predict that in 

the near future another parallelism strategy would be implemented, so the PTHREAD 

specific implementation and the common multithread implementation are now coupled 

tightly in the same module. 

Now the most direct way for OpenMP parallelism strategy is to create the similar 

module from scratch. Besides the OpenMP specific multithread implementation is 

encapsulated in this module, the module will also include the common multithread 

facility which perform the same functionalities, but just have different names from those 

facilities in the PTHREAD module.   

The obvious disadvantage of this solution is that it is hard and tedious to maintain 

since if there is a new requirement for the common multithread environment, both 

PTHREAD module and OpenMP module have to be modified to adjust to the new 

requirement. The situation will become worse if in the future, there is the third 

multithread solution which is encapsulated in the third module. 

Thus we come up with the solution to split the current module for PTHREAD 

multithread strategy into two separate modules, one of which will be responsible for the 

common multithread facilities and the other one is especially for the PTHREAD 

implementation. The specific OpenMP multithread implementation will be encapsulated 

into the new module created.  Figure 4.17 illustrates this work. 

After the previous PTHREAD multithread module is decomposed into two distinct 

modules, here comes the question how to generate two different SAC run time libraries 

for PTHREAD strategy and OpenMP strategy. The solution is summarized as follows 

and presented in the Figure 4.18. 
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Figure 4.17: Split original PTHREAD multithread module into two modules. The 

common multithread facilities are encapsulated into a new module. 

 

We introduce three MACROS to tailor the specific code to generate two run time 

libraries. One is libsac.mt.pth for PTHREAD parallelization strategy and the other is 

libsac.mt.omp for OpenMP parallelization strategy: 

 

 SAC_DO_MT:  The value of this MACRO is determined only by the 

number of threads configured at run time or compile time. If the number of 

threads is more than one, this MACRO is set to true and the common 

multithread facilities will be tailored to either OpenMP run time library 

libsac.mt.omp or PTHREAD run time library libsac.mt.pth. 

 

 SAC_DO_MT_PTHREAD: The value of this MACRO is set to true if in the 

compile time the programmers choose the PTHREAD multithread strategy. 

With this MACRO set to true, the specific PTHREAD code will be tailored 

to PTHREAD run time library libsac.mt.pth.   
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 SAC_DO_MT_OMP: The value of this MACRO is set to true if in the 

compile time the programmers choose the OpenMP multithread strategy. 

With this MACRO set to true, the specific OpenMP code will be tailored to 

OpenMP run time library libsac.mt.omp.   

Common MT facility:

Thread number 

Cache line size

Heap manager

…...

OpenMP specific facility:

omp_set_num_threads()

omp_set_max_active_levels

PTHRED specific facility:

pthread_create()

pthread_join()

…...

libsac.mt.pth

libsac.mt.omp

     
     

     
  SAC_DO_MT= 1

SAC_DO_MT = 1

SAC_DO_OMP = 1

SAC_DO_PTHREAD = 1

 

Figure 4.18: Construction two different run time library from the same source code. 

The combination of different MACROs will yield to different SAC runtime library. 
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Chapter 5. Performance evaluation 
 

This chapter serves as the experimental investigations of the runtime performance 

achieved by the OpenMP parallelization strategy described in Chapter 4. Firstly Section 

5.1 describes the performance of micro synthetic benchmarks to evaluate the 

performance achieved for genarray WITH-loop and two variants of fold WITH-loops. In 

Section 5.2 and Section 5.3, the performance for relax benchmark and the NAS MG 

benchmark are observed respectively.  

 

Experimental investigations of the runtime performance are made on a 4-processor 

machine. Each processor is Quad-Core AMD Opteron(tm) Processor 8356. The cache 

size is 512 KB and the CPU is 2.3 GHz. And the methodology of the experiment is to 

first run the sequential version of program; then run the OpenMP parallelization strategy 

and Pthread parallelization strategy respectively from 2 threads to 16 threads, 

incremented by 2 threads each time. The figure of the execution time is achieved by the 

average number of three independent runs. And the speedups are achieved by the 

division between the sequential execution time and the multithread execution time. 

 

5.1 Micro benchmarks 
 

5.1.1 genarray WITH-loop 
 

This micro benchmark serves as the benchmark to experiment on the performance of 

genarray WITH-loop. Figure 5.1 presents the code of the example. In this example, a 

1000*1000 array is initialized and then 3000 iterations of calculation are carried out. In 

every iteration, each element is calculated to a certain new value. Figure 5.2 shows the 

results of the experiment. 
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Figure 5.1: A micro benchmark to test the performance of genarray WITH-loop. 

 

 

Figure 5.2: Speedups of example in Figure 5.1. 

 

Figure 5.2 shows that the performance for both Pthread strategy and OpenMP 

strategy scale linearly. But the performance of Pthread strategy is a little better than the 

one of OpenMP strategy, especially when the number of threads scales above 8 
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int main() 

{ 

    A =  with { 

      (. <=iv<= .) : tod(iv); 

    }: genarray( [1000,1000]); 

 

for (i = 0; i < 3000; i++) 

{ 

       A = with { 

         (. <=iv<= .) : tod(iv+i) + A[iv]; 

       }: genarray( [1000,1000]); 

} 

    print(A[1,1]); 

 

    return (0); 

} 
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5.1.2 fold WITH-loop with simple operator 
 

This micro benchmark serves as the benchmark to experiment on the performance of 

fold WITH-loop which has the simple operator supported by OpenMP reduction clause. 

Figure 5.3 presents the code of the example. In this example, an array is first initialized 

and then 20000 iterations are carried out. In each iteration, fold WITH-loop is called 

once and the ‗+‘ operator is used to calculate the sum of all elements in the array. 

Figure 5.4 shows the results of the experiment. 

 

 

 

 

 
 

 

 
 

 

 

 

 

Figure 5.3: A micro benchmark to test the performance of fold WITH-loop with 

simple operator. 

int main() 

{ 

   A =  with { 

      (. <=iv<= .) : 1; 

   }: genarray( [1000,1000]); 

     

   c = 0;  

 

   for(i = 0; i < 20000; i++) 

   {  

          c += with  

          {  

            ([0,0] < iv < [1000,1000]): i + A[iv]; 

          } : fold(+, 1); 

   } 

 

   print(c); 

   return (0); 

} 
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Figure 5.4: Speedups of example in Figure 5.3. 

 

From Figure 5.4, we can observe that the performance here is similar to the 

performance we get in Section 5.1.1. Both Pthread strategy and OpenMP strategy 

achieve relatively good performance. But it is a bit hard to determine whether Pthread 

strategy outperforms OpenMP strategy or not. The performance of OpenMP strategy 

and Pthread strategy are very close from 2 threads to 8 threads; and OpenMP strategy 

performs a little better than Pthread strategy from 8 threads to 14 threads; but Pthread 

strategy achieves better performance when the number of threads involved is 16.  

According to the documentation of OpenMP, OpenMP provides a more efficient way 

to implement the reduction. For example, the final summation could be computed 

through a binary tree, which scales better than a naive summation. This is proved by the 

experiments in Section 5.1.1 and Section 5.1.2 since the OpenMP strategy always 

achieves worse performance than Pthread strategy for genarray WITH-loop; but for the 

fold WITH-loop which is transformed into the OpenMP code using OpenMP reduction 

clause, OpenMP strategy sometimes perform better performance. 

  

5.1.3 fold WITH-loop with user-defined function 
 

This micro benchmark serves as the benchmark to experiment on the performance of 

fold WITH-loop which uses the user-defined function in the operator. Thus the OpenMP 

critical construct has to be used in the code generation. Figure 5.5 presents the code of 

the example. In this example, a 1000 * 1000 array is first initialized and then 10000 
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iterations are carried out. In each iteration, fold WITH-loop is called once and the user- 

defined function add_add is used in the fold operator. Figure 5.6 shows the results of 

the experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: A micro benchmark to test the performance of fold WITH-loop which 

uses user-defined function in the operator. 

 

Figure 5.6 shows that the performance for Pthread strategy scales linearly and 

achieves good performance from 2 threads to 16 threads. But the performance of 

OpenMP strategy is extremely bad. Instead of achieving some speedups against the 

sequential version, the OpenMP strategy is much slower than the sequential one and 

the performance becomes even worse with the augmentation of the number of threads 

involved. The reason is that the critical construct in OpenMP is relatively expensive. 

inline int add_add( int a, int b) 
{  
  min = a + b - 2; 
  return(min); 
} 
 
 
int main() 
{ 
   A =  with { 
      (. <=iv<= .) : 1; 
   }: genarray( [1000,1000]); 
     
   c = 0;  
 
   for(i = 0; i < 10000; i++) 
   {  
     c += with  
          {  
            ([0,0] < iv < [1000,1000]): i + A[iv]; 
          } : fold(add_add, 0); 
   } 
 
   print(c); 
   return (0); 
} 
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Figure 5.6: Speedups of example in Figure 5.5. 

 

5.2 Relax benchmark 
 

Relax benchmark is a typical numerical application which relaxes a 2-dimension grid. 

Figure 5.7 shows the relevant numerical kernel of SAC program. The function relax 

calls the function onestep for a pre-specified number of times. The function onestep is 

the computation carried out in one iteration. To be more precisely, each element of 

array B is set to the arithmetic mean of its 4 adjacent elements in array A.  The 

specification of 0.25d is to characterize double precision floating point constants.  

 

The Relax benchmark can be applied to the 2-dimensional array with any shape. 

Thus it allows for systematic variations of the problem size. Similarly the number of 

iterations is another parameter in the experiment. Figure 5.8 presents the performance 

for the relaxation of a 4096 * 4096 array with 1000 iterations. Both strategies achieve 

relatively good performance and scale almost linearly. But Pthread strategy performs a 

little better performance after the number of processors scales up to 4.   
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Figure 5.7: Numerical kernel of Relax benchmark. 

 

Figure 5.8: Speedups of Relax benchmark. 
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double[+] onestep(double [+] B)  

{  

  A = with { 

        ( . < x < . ) :  0.25d *(B[x+[1,0]] 

                              + B[x-[1,0]] 

                              + B[x+[0,1]] 

                              + B[x-[0,1]]); 

      } : modarray( B ); 

 

  return(A); 

} 

 

double[+] relax(double [+] A, int steps) 

{ 

  for (k=0; k<steps; k++) { 

    A = onestep(A); 

  } 

   

  return(A); 

} 
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5.3 NAS MG benchmark 
 

The NAS benchmark suite [29] has been developed at NASA Ames Research Center 

as part of the Numerical Aerodynamic Simulation Program. It consists of 5 application 

kernels and 3 small application programs, which are considered representative for large 

scale applications in computational fluid and aerodynamics. For the details of the SAC 

implementation of NAS MG benchmark, please look at [10, 30].  

The problem size we use in this experiment is 256 * 256 * 256 and the number of 

iterations is 2. Figure 5.9 presents the comparison of the performance between 

OpenMP strategy and Pthread strategy. OpenMP strategy is slightly less efficient than 

Pthread strategy, which is consistent with the micro benchmarks and the Relax 

benchmark. But the scalability for both strategies is quite poor: Pthread strategy 

achieves utmost 2.75 times of speedup and OpenMP achieves 2.48 times of speedup. 

But in previous experiments [30], the scalability for Pthread strategy is proven to be 

good. For the problem size 256 * 256 * 256, 7.6 times of speedup has been achieved 

when the number of threads involved is 10. Thus we speculate that there are now some 

problems inside the compiler which cause the scalability problem for both OpenMP 

strategy and Pthread strategy. Since these problems are out of our control, we can only 

expect the similar improvement on scalability for OpenMP strategy as for the Pthread 

strategy when these problems are solved. 

 

 

Figure 5.9: Speedups of NAS MG benchmark. 
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Chapter 6. Future work   
 

6.1 OpenMP task parallelization in SAC 
 

One of the most important future jobs is the implementation of OpenMP task 

parallelization in SAC. Due to the time constraint although the idea how to implement it 

is designed, it is not yet fully implemented. 

 

    The idea can be summarized as follows:  

 

 In [25], the functional parallelization of SAC is researched and implemented. A 

new key word spawn is introduced into the syntax of SAC. The use of spawn is 

to be inserted before one function call in the SAC program to inform the compiler 

that this function call should be regarded as a task. It is the programmers‘ 

responsibility to decide which function call to be regarded as the task because for 

some small function calls, it is not worthwhile to treat them as tasks since the 

initialization cost of the tasks is not trivial. The job of the OpenMP parallelization 

solution is to map the spawn into the task directive in OpenMP, as presented in 

Figure 6.1. After the map, the OpenMP implementation will have a certain 

mechanism to attach the task to one thread in the team and the thread will 

execute the task at a certain time. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.1: Map from spawn in SAC into OpenMP task directive. 

 

 

    spawn Foo();

#pragma omp task
{
       Foo();
}
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 We need to determine whether a spawn task is inside the OpenMP parallel 

region or not. Consider the following two different situations presented 

respectively in Figure 6.2 and Figure 6.3. We know the fact that multiple threads 

in OpenMP are generated only if there is a parallel region. And the task 

directives are useless if it is not encapsulated within one parallel region. From 

previous examples, we know that the parallel directives are only used if there is a 

WITH-loop which is worthwhile to be executed in parallel. Thus for the SAC 

example  presented in the left hand of Figure 6.2, the only  thing we need to do is 

to map the spawn task into an OpenMP task directive, as presented in the right 

hand side of Figure 6.2. But for the SAC code presented in left hand side of 

Figure 6.3, we also need to create an additional OpenMP parallel region to 

encapsulate the two OpenMP task directives, as presented in the right hand side 

of Figure 6.3. Otherwise, both OpenMP task directives will be simply ignored by 

the compiler since there are no more threads generated by OpenMP parallel 

region to execute in the two tasks parallel. . 

 

 

 

 

 
 

 
 
 
 
 

 

 

 

 

 

Figure 6.2: spawn task inside a parallel region. The spawning of a function is called 

in the context of multithread environment. 

 

 

   

    A =  with {
      ( . <=iv< . ) : spawn Foo();
    }: genarray( [100,100]);

#pragma omp parallel private (i, j)
{
   #pragma omp for schedule (static)
      for (int i = 0; i < 100; i = i + 1) 
      {
          for (int j = 0; j < 100; j = j + 1) 
          {
            #pragma omp task
            {
                 Foo();
            }
         } 
      }
}
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Figure 6.3: spawn task not in parallel region. The spawning of a function is called in 

the context of sequential environment. An additional OpenMP parallel directive needs to 

be inserted.  

 

6.2 Optimization of OpenMP data parallelization in SAC 
 

Another optimization opportunity is to reduce the unnecessary synchronization 

overhead. For instance the current parallelization focuses on each WITH-loop 

individually. Whenever a WITH-loop is encountered, the inserted parallel directive will 

guarantee that multiple threads are generated. At the end of the parallel region, there is 

default synchronization. But for some cases, this might lead to unnecessary overhead.  

 

Take the situation illustrated in Figure 6.4 as an example, it might be possible to 

encapsulate the two adjacent WITH-loops into one OpenMP parallel region instead of 

two parallel regions and thus will reduce the unnecessary synchronization. Especially 

when the number of threads is large, the synchronization overhead could be very huge. 

This solution is presented in Figure 6.5. 

 

 

 

 

int main()
{
     A = spawn Foo1();
     B = spawn Foo2();

     return (0);
}

void main ()
{
      #pragma omp parallel 
      {

            #pragma omp task
            {
                 A = Foo1();
            }
            #pragma omp task
            {
                 B = Foo2();
            }
     }
    return ;
}

 

 



Chapter 6. Future work 
 

58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Unnecessary synchronization overhead. The first and the second 

OpenMP parallel region can be merged to only one. 

 

The experiment results from Section 5.1.3 also shows the poor performance in the 

OpenMP parallelization strategy regarding the fold WITH-loop which uses a user 

defined function in the operator. This is because that using OpenMP critical construct is 

quite expensive. Thus this reveals another optimization opportunity that it is reasonable 

not to use the OpenMP critical construct. If we can infer the OpenMP reduction variable 

and the operator from the context of the user-defined function, the OpenMP reduction 

clause can be used, which will greatly improve the performance, as it is illustrated in 

Section 5.1.2. 

 

 

    A =  with {
      ( . <=iv< . ) : 1;
    }: genarray( [100,100]);

    B =  with {
      ( . <=iv< . ) : 2;
    }: genarray( [50,50]);

      int index_val_A = 0;
      int array_A[10000];

#pragma omp parallel private (i, j, index_val_A)
{    
     #pragma omp for schedule (static )
      for (int i = 0; i < 100; i = i + 1) 
      {
          index_val_A = ( 100 * i  ) * 1;

          for (int j = 0; j < 100; j = j + 1) 
          {
             array_A[index_val_A] = 1; 
             index_val_A = index_val_A + 1;
         } 
      }
}
      int index_val_B = 0;
      int array_B[2500];

#pragma omp parallel (m, n, index_val_B)
{   
     #pragma omp for schedule (static)
      for (int m = 0; m < 50; m = m + 1) 
      {
          index_val_B = ( 50 * m  ) * 1;

          for (int n = 0; n  < 50; n = n + 1) 
          {
             array_B[index_val_B] = 2; 
             index_val_B = index_val_B  + 1;
         } 
      }
}
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Figure 6.5: Solution for reducing unnecessary synchronization. The OpenMP 

clause nowait is to suppress the barrier of the associated work sharing construct for. In 

other words, when threads reach the end of the for construct, they will immediately 

proceed to perform other work. 

 

Another trivial but also important optimization opportunity is to configure parameter of 

the OpenMP for construct at run time instead of compile time so that after an OpenMP 

code is generated, it is not necessary to recompile the code with another schedule 

technique or chunk size. 

 

Finally, more experiments need to be done. On the first hand, as explained in 

Chapter 1, one of the motivations of OpenMP parallelization strategy is to expose the 

possibility to run SAC program on more architectures, such as Cell and GPGPU, on 

which are currently impossible to run Pthread parallelization strategy code. Theoretically, 

OpenMP parallelization can run on these architectures. But it still needs the 

experiments on these architectures.  On the second hand, it is also interesting to see 

the performance of combining OpenMP task parallelization and data parallelization after 

OpenMP task parallelization is completely implemented.  

    A =  with {
      ( . <=iv<= . ) : 1;
    }: genarray( [100,100]);

    B =  with {
      ( . <=iv<= . ) : 2;
    }: genarray( [50,50]);

      int index_val_A = 0;
      int array_A[10000];
      int index_val_B = 0;
      int array_B[2500];

#pragma omp parallel private (i, j, index_val_A, m, n, index_val_B)
{    
     #pragma omp for schedule (static) nowait
      for (int i = 0; i < 100; i = i + 1) 
      {
          index_val_A = ( 100 * i  ) * 1;

          for (int j = 0; j < 100; j = j + 1) 
          {
             array_A[index_val_A] = 1; 
             index_val_A = index_val_A + 1;
         } 
      }
    #pragma omp for schedule (static) nowait
      for (int m = 0; m < 50; m = m + 1) 
      {
          index_val_B = ( 50 * m  ) * 1;

          for (int n = 0; n  < 50; n = n + 1) 
          {
             array_B[index_val_B] = 2; 
             index_val_B = index_val_B  + 1;
         } 
      }
} 
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Chapter 7. Conclusion  
 

Single assignment C is a functional array processing language that is especially 

targeted to facilitate the design and implementation of computationally intensive 

applications in fields such as scientific computing, image processing, simulation, or 

modeling. It provides a high level of abstraction and at the same time offers competitive 

execution performance compared with the low level imperative programs such as C. 

Because scientific programs always perform complex operations on large arrays, which 

pose a possibility to execute the program in parallel, we could divide the array and 

distribute different parts of the array to different threads. The existing PTHREAD 

multithread strategy is a solution which uses the PTHERAD API to create multiple 

threads to divide the iteration space of WITH-loop and make multiple threads work on 

the different parts of WITH-loop concurrently. 

OpenMP is a de-facto multithread standard in the industry which is widely supported 

by hardware and software vendors. It provides the C/C++ and FORTRAN programmers 

an easy way to write the multithread program and could maintain the sequential version 

of code and the parallel version of code simultaneously. The idea of OpenMP is that the 

programmers will describe the concurrency of the application with the syntax in 

OpenMP and the OpenMP compilers will sort out the details of the concurrency, such as 

generating multiple threads, dividing the iteration space between the threads and 

synchronizing them at the end of the parallel region. 

This thesis designs and implements the strategy to use OpenMP as an alternative 

parallelization strategy to parallel the SAC program. The OpenMP strategy would not 

only provide the programmers with another solution to parallel the SAC program, but 

more importantly would provide a possibility to execute the SAC program in parallel on 

the platform that does not support PTHREAD.  

To summarize, the work described in this thesis contributes the following to the state 

of the art: 

 It provides a concise and efficient solution to split the common multithread 

facilities from the existing PTHREAD module into a brand new module. And 

with a small trick, two different run time libraries could be generated. One is 
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 for PTHREAD solution and the other is for OpenMP solution. The work here 

also benefits other potential multithread solutions in the future. 

 

 It reuses the first two sub phases from the multithread compilation phase in 

the compiler framework. The first sub phase is to analyze whether it is 

worthwhile to execute the WITH-loop in parallel or not. And the second sub 

phase is to determine the environment of the function execution is in 

sequential environment or in concurrent environment.  

 

 It uses the OpenMP parallel region to specify the code to be executed by 

multiple threads which are generated by OpenMP compiler. One OpenMP 

parallel region corresponds to one WITH-loop in SAC. 

 

 It uses the private clause in OpenMP to specify the attributes of the variables 

so that the correctness of the OpenMP multithread program can be 

guaranteed. 

 

 It uses the for directive in OpenMP to provide the programmers with versatile 

methods to win the utmost speedup from OpenMP. 

 

 It uses the reduction clause in OpenMP to parallel the execution of fold 

WITH-loop which uses the simple mathematical operators supported by 

OpenMP reduction clause as the fold operator. 

 

 It uses the critical directive in OpenMP to parallel the execution of fold WITH-

loop which uses the user-defined function as the fold operator. 

 

 It inserts appropriate segment of code to avoid the false sharing problem 

which has extremely negative impact on the performance of the multithread 

program generated. 

 

 It uses the nest level to generate the nested OpenMP parallel region to 

accelerate the execution of the program. 

 

In the experiments, micro and synthetic benchmarks are first carried on to test the 

performance of genarray WITH-loop and two variants of fold WITH-loop. The figures in 

Section 5.1 show that for both genarray WITH-loop and fold WITH-loop which uses the 

simple operator, the OpenMP parallelization strategy achieves good performance. For 

genarray WITH-loop, the performance of OpenMP strategy is a little worse than Pthread 



Chapter 7. Conclusion 
 

63 
 

strategy; and for the fold WITH-loop using the simple operator, OpenMP strategy 

sometimes achieve better performance than Pthread strategy. But for the fold WITH-

loop which uses the user-defined function in the operator, the performance of OpenMP 

parallelization strategy is quite bad and is even worse than the sequential version 

especially when the problem size scales to a large

number. This is because the cost of using OpenMP critical construct is quite expensive.  

 

In the experiments of two typical numerical benchmarks, the Relax benchmark and 

the NAS MG benchmarks are also used to evaluate the performance of the OpenMP 

parallelization strategy. From the results the Relax benchmark, we know that the 

performance of OpenMP solution scales linearly, but still is a little worse than the 

Pthread solution. For the NAS MG benchmark, the scalability for both OpenMP and 

Pthread strategy is not good due to some problems inside the compiler. But we can 

expect the scalability for both strategies to be improved greatly after we fix the problems 

in the future. 

OpenMP parallelization strategy provides the possibility to run SAC code on some 

architecture which currently does not support Pthread. Due to time constraints, no 

experiment is done on these architectures. But theoretically, it is possible. 
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