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Abstract 
 

Text-based approaches to the analysis of software 

evolution are attractive because of the fine-grained, 

token-level comparisons they can generate. The use of 

such approaches has, however, been constrained by 

the lack of an efficient implementation. In this paper 

we demonstrate the ability of Ferret, which uses n-

grams of 3 tokens, to characterise the evolution of 

software code. Ferret’s implementation operates in 

almost linear time and is at least an order of 

magnitude faster than the diff tool. Ferret’s output can 

be analysed to reveal several characteristics of 

software evolution, such as: the lifecycle of a single 

file, the degree of change between two files, and 

possible regression. In addition, the similarity scores 

produced by Ferret can be aggregated to measure 

larger parts of the system being analysed. 

 

1. Introduction 
 

In simple terms, software evolution investigates the 

changes that occur to a software system’s source code 

over time. As software systems grow in size and as 

versions accumulate, there is a growing body of data 

(source code) that can be investigated. The growth in 

this body of data also brings computational challenges 

such as calculating complexity metrics for each source 

file in each version of the system, and doing so in a 

reasonable amount of time; or comparing the 

similarities across files to identify duplicate software 

code. As many software systems are developed using a 

variety of programming languages, there are then issues 

of aggregating and comparing measures across 

programs written in different languages. 

Software evolves for various reasons. One of the 

most important is its evolution to accommodate 

gradually more complex functions.  The evolutionary 

process is endorsed and supported by certain 

development methodologies, especially agile 

techniques [1], which rely on a continuous process of 

rewriting or refactoring [2], but also more generally in 

top-down development methodologies, e.g. [3]. We can 

identify two distinct approaches to reconstructing this 

evolutionary process: syntactic, where only the raw text 

is considered, and semantic, where run-time behaviours 

such as sequences of function calls are traced. 

In this paper we investigate a syntactic approach, 

with the application of n-grams to characterise 

evolution in software source code. An n-gram is a sub-

sequence of n items from a given sequence, e.g. a sub-

sequence of characters in a word, or a sub-sequence of 

words in a text. We use the Ferret copy detection 

technology to measure the similarity between program 

source files, using n-grams, and this measure gives us 

an indicator of the changes that have occurred between, 

for example, two consecutive versions of a file.  

The n-gram approach is an attractive method for 

analysing source code due to the fine-grained 

comparisons it allows. Where tools like diff work at the 

level of lines of code, n-gram approaches compare sub-

sequences of lexical tokens within a line. Previous 

authors have commented that diff-like implementations, 

when applied naïvely (e.g. to compare all pairs of files 

in a system), are too computationally demanding for 

large scale analysis. Ferret operates in near linear time 

and our comparisons show Ferret to be between one 

and two orders of magnitude faster than a naïve 

application of the diff tool. 

The remainder of this paper is organised as follows: 

section 2 briefly explains n-grams and reviews their 

previous application to software evolution; section 3 

provides a more detailed description of the method we 

have used to apply n-grams to characterising software 

evolution; section 4 explains the analysis we have 

conducted; sections 5 and 6 report on two software 

systems we analysed, the source code for the SAC 

compiler and the Ferret source code itself; section 7 

compares Ferret’s speed of computation with diff and 

wc, and provides further remarks on Ferret’s 

performance; finally, section 8 discusses our results. 
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2. N-grams and software evolution 
 

N-grams have a wide range of applications. For 

example, Tomović et al. [4] have used n-grams to 

classify and cluster genome sequences. McNamee and 

Mayfield [5] demonstrate that the retrieval accuracy of 

an n-gram based method for information retrieval of 

European languages rivals or exceeds methods that are 

language specific. Rieck and Laskov [6] have 

developed and evaluated an n-gram based method of 

detecting network intrusions. Google are reported to 

use n-gram models in a wide variety of research and 

development activities, and in 2006 contributed a large 

n-gram dataset to the Linguistic Data Consortium
1
. 

Other applications of n-grams include data 

compression, plagiarism detection, spelling correction, 

and de-duplication of large datasets. 

Despite the wide applicability of n-grams, we have 

been unable to identify (i.e., through bibliographic 

searches) any previous work in software evolution that 

has taken the approach described here. In previous 

research, the closest application of n-grams to 

characterising software evolution appears to have been 

the use of n-grams in pre-processing source code prior 

to subsequent analysis for software evolution (e.g. [7]). 

There are, however, a number of related avenues of 

research. For example: 

Code clones and duplicated code. Code clones – 

fragments of code that are syntactically or semantically 

similar – are often considered to be indicators of poor 

software quality. N-grams can be very effective at 

identifying duplicated code, and code clones that are 

syntactically similar [8]. We are applying n-grams not 

to identify clones as such, but to measure the degree of 

similarity or difference between source files as an 

indicator of change. Phrased another way, code cloning 

tends to look at copies of code within a version of the 

system. By contrast, we are looking at changes between 

versions of a system. 

Similarity metrics. Similarity metrics provide, 

ideally, quantifiable and objective measures of the 

degree of similarity of the source code of two (or more) 

software systems, versions of software systems, or sub-

parts of software systems. Yamamato et al. [7], for 

example, have sought to quantitatively measure the 

similarity of the many versions of the BSD Unix 

operating system to reveal evolutionary characteristics 

of that system. For their investigation, they developed a 

metric, Sline, defined as the ratio of shared source code 

lines to the total source code lines of the software 
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system(s) being evaluated. In some respects, this is 

similar to our approach in that we use a ratio of shared 

tokens to total number of tokens. By analysing at the 

level of lines of code, Yamamoto et al.’s approach is 

coarser than ours in the kinds of similarity it will 

identify. 

Yamamato et al. recognised the impractical 

demands that would be placed on computing resources 

by using a naïve application of diff to compare all pairs 

of files in the large system they analysed. 

Consequently, they first applied a fast code clone 

detection algorithm, CCFinder, and then applied diff to 

the resulting file pairs where code clones were found. 

They estimated the worst-case time complexity of their 

tool to be O(m
2
n

2
 log n) for m files of n lines. 

Of particular relevance to our research is their 

discussion of Broder’s work [9], which uses the exact 

similarity metric we apply in the current analysis. 

Broder concentrated on detecting similar documents 

whereas we seek to characterise evolution using a 

measure of similarity. Yamamoto et al. made the 

following conclusions about the approach taken by 

Broder: 

 

“... choosing token sequences greatly affects the 

resulting values. Tokens with minor modification 

would not be detected. Therefore, this is probably 

an inappropriate approach for computing subjective 

similarity metric for source code files.” ([7], p. 541) 

 

Based on our previous research, we have concluded 

that a three-token sequence is robust against many 

minor modifications of sequences of tokens. In 

addition, the nature of programming languages means 

that many of the possible minor modifications are 

illegal as far as the compiler is concerned. Also, as we 

discuss in the next section and demonstrate later in the 

paper, our implementation of n-gram analysis is very 

efficient in terms of demands on computing resources. 

 

3. Characterising software evolution using 

n-grams 
 

We have previously used n-grams for two 

applications [10, 11]: to identify copying between 

students’ written essays, and to identify copying 

between students’ program source code. There are two 

common properties across these applications. First, the 

documents being compared are sequences of characters 

that can be aggregated into words or, more generally, 

into tokens. Second, it was important to know whether 

a given document has any or all of its content in 

common with another document. 
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When applying n-gram analysis to identify software 

evolution, the tokens used for source code are the 

lexical tokens defined by the programming language. 

For example, the following piece of C++ code: 

 
for (int i=0, n=MAX; i<=n; ++i) 

obj->Incr(); 

 

would be divided into the following list of tokens, 

where each token is separated by a space: 

 
for ( int i = 0 , n = MAX ; i <= n 

; ++ i ) obj -> Incr ( ) ; 

 

Notice how symbols and case are preserved, and 

that special tokens such as ‘->’ are identified. From 

this list of tokens we would then extract trigrams 

(trigrams are n-grams of size 3), the first four trigrams 

from the above example being: 

 

for ( int int i =  

( int i i = 0 

 

Having extracted a list of trigrams, we then compute 

the similarity between each pair of documents. 

Similarity is computed using a resemblance metric [9] 

known as the Jaccard coefficient ([12], p. 299): the 

ratio of common trigrams between the two documents 

to the total number of trigrams across those two 

documents. If A is the set of trigrams from document 1, 

and B is the set of trigrams from document 2, then: 

 

BA

BA
S

∪

∩

=)2,1(  Eq.1 

 

The equation produces similarity scores in the range 

0 to 1, where 0 indicates that there are no trigrams 

common to the two documents, and 1 indicates that all 

and only the trigrams in each document are present in 

the other document. The measure is of course 

symmetric, i.e. S(1,2) = S(2,1). 

The similarity score should not be interpreted as a 

percentage score, e.g. S(1,2) = 0.3 does not mean that 

document 1 contains 30% of the content of document 

2. This is because the trigram analysis does not 

consider the frequency of occurrence of a trigram, only 

whether a trigram occurs at least once. Where two 

documents have a similarity score of 1, they may have 

a different frequency of occurrence of the trigrams. In 

practice, however, two documents with similarity 

scores of 1 are very likely to be identical copies. 

 

 
Figure 1 Trigram frequency for the first 10,000 

trigrams of the SAC dataset 
 

The importance of trigrams as an indicator of 

similarity is illustrated by the graph shown in Figure 1. 

The graph plots the number of times each trigram 

appears, sorted in order of the most frequent trigram, 

for the first 10,000 trigrams of the 722,425 trigrams 

present in the SAC dataset (see section 5 for further 

details). As is readily apparent, a few trigrams are 

present in nearly all the files (7819 files make up the 

dataset), but the number of files in which any trigram 

occurs rapidly decreases. This exponentially decaying 

distribution is similar, but not identical, to the Zipfian 

distribution identified for English words [13] and used 

in our previous research. The fact that most trigrams 

occur rarely means that two files with a significant 

number of trigrams in common are likely to be similar 

in their syntactic structure, a fact we take advantage of 

in our analysis of the evolution of source code. 

Similarity scores based on n-grams in general, and 

specifically trigrams in this analysis, can be used to 

indicate various characteristics of software evolution. 

For example, at a file level the distribution of similarity 

scores for a series of versions of a given file can 

indicate types of change for that file. At a system level, 

the distribution of similarity scores could indicate the 

‘growth’ occurring over time. Similarity scores directly 

apply at the file level which is typically the class or 

module level. In principle, similarity scores can be 

aggregated for all classes in a package, or for all 

modules in a sub-folder to provide a higher level of 

abstraction of software evolution. 

Our implementation, Ferret
2
, makes it easy to 

compare large collections of documents for signs of 

copying. It is also very fast: the algorithm it uses is 

almost linear in performance, both in memory space 

required and in time taken, as the total number of 

words in the input documents grow. Comparisons of 

the Ferret algorithm with other approaches [14, 15] 
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show that Ferret’s performance is excellent. The reason 

that Ferret is so fast is that we build an index of 

trigrams as the documents are read, and then only 

process the index, so if there are n input files, checking 

all (n.n-1)/2 pairs of documents is done in almost linear 

time. 

 

4. Analysis of software evolution 
 

The basis of our analysis is the comparison of files 

in different versions of an evolving software system. 

The comparison is performed using Ferret, as described 

above, and the similarity scores are obtained using 

Eq. 1. We consider three types of analysis: changes in 

an individual file over time, patterns of change in each 

release, and splitting and merging files.  The first two 

types of analysis are to examine the overall history of a 

software project or individual files; these analyses help 

to identify trends and typical behaviour, as well as 

characterise kinds of evolutionary sequences for files 

or projects.  The third type of analysis is a way of 

examining a particular kind of discontinuity in a file's 

lifetime, which may arise from a refactoring such as 

splitting a class into smaller subclasses ([2], p.149). 

These analyses were performed by processing the 

output table of similarities from Ferret with Ruby 

scripts. 

 

4.1. Changes in file over time 
 

We look at each file, and how it changed over time.  

Where the same named file exists in consecutive 

versions, we compute the similarity score between 

these two versions. We look for two effects: the 

characteristics of the file’s lifetime, and whether the 

file has undergone significant regression, returning to a 

previous form. 

For the analysis of the characteristics of a file’s 

lifetime, we investigate whether the file is stable, 

revised, or continuously changing. We deduce these 

states by looking at how the similarity score for that file 

varies across the versions of that file. For example, a 

file which remains unchanged will maintain a high 

average similarity score across its lifetime. Conversely, 

a file which changes a lot will have a low average 

similarity score.  

Scripts were written to analyse how the similarity 

scores varied over time. We computed the overall mean 

and standard deviation of the complete set of similarity 

scores. We then used these figures to define ‘high’ and 

‘low’ values for individual files. A ‘low’ standard 

deviation is one which is less than the average, and a 

‘high’ standard deviation is more than the average. Our 

basic categorisation was between those files that are 

relatively stable over time and those that change 

frequently. The first group is further separated into 

those that change very little (i.e. are stable) and those 

that occasionally change significantly. 

Together, Ferret and the scripts highlight three types 

of file: 

 

1. Stable files, defined by a high mean similarity score 

and a low standard deviation in that score. and all 

changes remain within one standard deviation of the 

mean. 

2. Revised files, defined by a high mean similarity 

score and a low standard deviation and one or more 

changes are more than one standard deviation 

below the mean. 

3. Changeable files: If there is a low mean similarity 

or a high standard deviation less than the average 

mean, then the file has experienced a large amount 

of change over its lifetime. 

 

We can also explore the rate at which files change 

from their original state, by considering the similarity 

of each version of a file with its original form.  This 

gives us a picture of how much files change over time, 

or their average rate of evolution. 

Finally, we check for regression of a file, by which 

we mean whether a file has returned to its previous 

form, by looking for a high similarity of a file with a 

later version where it is dissimilar to previous versions. 

 

4.2. Patterns of change in each release 
 

By plotting the mean similarity measure between 

versions we can characterise the nature and scope of 

the changes in each new version e.g., releases where 

very few changes have occurred compared to releases 

where almost every file has changed extensively. This 

can be related to other information collected on the 

system, such as changes in the number of files for the 

overall system. 

 

4.3. Splitting/merging of files 
 

For this analysis, we attempt to automatically 

identify where files have been split into smaller blocks 

(the treatment of merged files is similar, with a time 

reversal on the versions). The idea is to set a threshold 

of similarity based on the overall average similarity, 

and locate those files which have a higher than average 

similarity to a potential source document; those 

identified files are then potentially the results of a split 

in the file. This technique enables us to automatically 
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identify a popular form of refactoring, where a complex 

class or file is subdivided into a set of simpler classes 

or files. Counting the number of such changes may 

enable us to quantify the way in which complexity is 

managed by the development team. 

 

4.4. A summary of the systems analysed 
 

We test the Ferret tool on two sets of source code, 

SAC
3
 (Single Assignment C) compiler, and Ferret 

itself. Table 1 provides simple characteristics of the 

two sets of source code. We briefly describe the source 

code and the related executable systems here, and then 

report our analysis in the next two sections. 

 

Table 1 Systems analysed in this study 

System Versions Files LOC Avg. LOC/file 

Ferret 20 190 76K 400 

SAC 39 7819 6.7M 860 

 

SAC is a strict purely functional programming 

language whose design is focused on the needs of 

numerical applications. It is under development at the 

University of Hertfordshire, in collaboration with 

several other Universities world-wide. The C 

programming language is used as an intermediate 

language for SAC, in order to achieve portability 

among different target architectures and to reuse 

existing compiler technology for the generation of 

machine specific code. A large compiler project for the 

compilation of SAC programs into C programs 

constitutes part of the research being undertaken in the 

context of SAC. The SAC compiler has been under 

development since 1995 and has grown from 

approximately 15 files to approximately 320 files of C 

code. It is the compiler that is the target of our analysis 

here. Version control for the compiler is managed 

using the Subversion (SVN) revision control system. 

For the current analyses we ‘cut’ 39 versions of the 

compiler, from the approximately 15,000 revisions in 

Subversion, between the 1
st
 January 1995 and 1

st
 

January 2007. Due to the relatively small size of the 

compiler in the earlier years, we ‘cut’ only two versions 

per year from the years 1995 through 1999, and then 

for the years 2000 through 2007 we cut four versions 

per year.  

Ferret has grown from an initial set of 6 files to 26 

files. The initial version of Ferret analysed here was 

already release 2.0, the earlier history is no longer 

available. Due to space restrictions for this paper, we 

only summarise our results for Ferret in section 6. 
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5. Analysis of the SAC source files 
 

5.1. Changes in file over time 
 

There were 435 different files which appeared in 

subsequent releases of the SAC system. The average 

similarity across all the version changes for the 

complete system was 0.93 with a standard deviation of 

0.098. This suggests that most of the source code 

remains constant between releases, at least at the 

granularity at which the SAC versions were cut. 

Of the 435 files, 84 were considered stable, 155 

revised, and 196 changeable. Figure 2 shows a sample 

of change history over time for each of the three types 

of change defined in section 4.1. The file 

LoopInvariantRemoval.c shows the effects of 

revisions in initial versions, interspersed by a few 

versions of constancy. This observation is supported by 

a developer’s comment that the compiler optimization 

implemented in this file has undergone some redesigns 

in order to improve its applicability. The file 

Modulemanager.c has been rewritten several times 

as its functionality needed to be extended substantially 

whenever language extensions were made. This file is a 

good example of the changeable type of file. The 

Boundcheck.c file is found to be a stable file. In 

fact, it served the code generation for out-of-bound 

checks which constitute a rather straight-forward piece 

of code.  

We also analysed the degree of evolution of a file by 

comparing the similarity of the same named files across 

larger numbers of versions. For instance, a file which 

went through five versions would have its similarity 

compared between versions 1 and 2, versions 1 and 3, 

versions 2 and 4, etc.  

Figure 3 shows the average similarity, and error bars 

to one standard deviation, of the initial 13 files across 

the entire lifetime of SAC (1 file was removed after 4 

versions, but 8 files were retained throughout the 

complete lifecycle). The figure clearly shows how files 

rapidly evolve, retaining few, if any, features in 

common with their initial release. 
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Figure 2 Examples of the three types of change, for the SAC dataset 

 

1018 out of the total set of 7819 files showed signs 

of ‘regression’, by which we mean that a later file is 

more similar to an earlier file than an intermediate 

version. However, although easy to check, the kind of 

changes in these files was rather small. We did not 

detect any major reversions of a file back to an earlier 

version. 

 

5.2. Patterns of change in each release 
 

Figure 4 presents the average similarity between 

releases of the same file for all files across all versions.  

The clear drop in average similarity at versions 7, 30 

and 34 suggests that substantial changes occurred in 

these releases. Notice the larger standard deviations 

also for releases 7, 30 and 34. There was an almost 

constant period between releases 22 and 28 as 

indicated by the constant average and the low standard 

deviations. Notice also the sharp climb in average 

similarity for versions 1 through 4 as the system was 

being initially developed. 

Figure 4 can be compared with the accumulated 

number of .c files for the SAC compiler, presented in 

Figure 5. In Figure 5, the ‘bump’ from versions 29 to 

34 occurs at the same time as the increased deviations 

in Figure 4 for that period. Figure 5 provides a measure 

of external change to the number of files in the system, 

and Figure 4 provides a measure of internal changes to 

a file. Therefore these are quite different measures that 

complement each other, and are consistent in that both 

metrics suggest increased code change activity. The 

dates associated with the ‘bump’ correlate precisely 

with the major refactorings that have been executed 

during the lifetime of the project so far. The relative 

plateau in the accumulated number of files for versions 

22 through 29 in Figure 5 are, again, consistent with 

the stable mean and low deviations in Figure 4. 

 

5.3 Splitting files 
 

The splitting and merging of files has already 

received considerable attention. For example, Godfrey 

et al. (e.g. [16]; [17]) have reported a number of 

investigations based on their concept of origin analysis, 

and Antoniol et al. [18] have investigated class 

evolution discontinuities using an approach inspired by 

vector space information retrieval. We acknowledge
4
 

that our investigation of file splitting and merging 

reported here is therefore immature. The purpose of 

investigating the merging and splitting of files is to 

explore the limits of Ferret’s usefulness to investigating 

software evolution. 

A script was developed to locate candidate files 

which had been split.  The motivation here was to look 

for files which had grown in complexity and then had 

been subdivided into smaller blocks.   

                                                           
4
 We also thank the reviewers for their comments here. 
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Figure 3 Similarity of subsequent versions of a file to its initial release 

 

We first extracted all comparisons between files of 

different names, but consecutive versions, to produce a 

set of 177850 comparisons. The mean similarity 

between these files was 0.035, with a standard 

deviation of 0.031.  We then extracted all comparisons 

between files of different names in consecutive 

versions with a similarity greater than 0.066 (the mean 

+ one standard deviation) yielding 411 candidate split 

files from the 7819. 

Figure 6 shows a sample of the code reused in a 

different file. The underlined code is the duplicate in 

the reused file. Notice that the n-gram comparison has 

been sensitive to small changes in the code (e.g. the 

names of functions), but identified a sizable block 

which has been reproduced in the candidate child file. 

 

6. Analysis of the Ferret source files 
 

There were 42 different files which appeared in 

subsequent releases. The average similarity across all 

the version changes for the complete system was 0.91 

with a standard deviation of 0.16. Of the 42 files, 22 

were considered stable, 5 revised, and 15 changeable. 

There were 22 files identified as candidate split 

files. Some of these were clearly caused by renaming of 

files, which occurred at version 4.0 of Ferret, and are 

identified by high levels of similarity, around 0.8/0.9. 

At version 4.4, several files had become large, 

triggering Fowler's code smell of a 'large class'. 

Conscious use of the 'Extract class' refactoring practice 

resulted in several smaller files, present in version 4.5. 

What is interesting here is that our n-gram approach 

identifies these files as they have a similarity around 

0.2 – 0.4, much higher than the average similarity of 

0.034, but clearly not representing exact copies of the 

files. 

 

7. Evaluation of Ferret performance 
 

Table 2 provides simple metrics on the performance 

of the Ferret copy detection technology. The duration 

includes reading in all of the source code, similarity 

calculations, and writing out the results to file (e.g. for 

SAC, the output file is 2.7GB). For both systems, the 

Ferret analysis was performed using a 2.8GHz PC with 

1.25GB RAM running Linux. The data structure for the 

analysis is entirely held in RAM. 

 

Table 2 Performance of Ferret 

System Duration 

(seconds) 

Files Document 

pairs 

Pairs 

per 

second 

Ferret 10 190 17955 1795 

SAC 2160 7819 30564471 14150 

 

We used diff to compare all pairs of files for all 

versions of Ferret and, separately, of SAC. The diff 

analysis of the Ferret source code files takes 7 min. 18 

sec. so Ferret is approximately 43 times faster than diff. 

We also ran the wc (word count) program against the 

same set of files. wc is slower than diff and this 

corroborates our conjecture that the major cost in 

performing the comparisons is simply the time that it 

takes to process all the files. Because Ferret only 

processes each file once, it is much faster. We 

estimated that the diff analysis of SAC source code 

takes approximately 50 times longer than the diff 

analysis of the Ferret source code. In terms of lines of 
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code processed per second, the estimated performance 

of the Ferret, diff and wc analysis of the Ferret source 

code is, respectively: 7600 LOC/sec., 16397 LOC/sec. 

and 15025/sec. Based on these estimates, Ferret takes 

twice as long as diff and wc to initially process each 

line of code.  

Formally, the diff tool requires O(n
2
 log n) time to 

process one pair of files ([19] cited in [7]) where n is 

the length of the input. By contrast, Ferret requires an 

estimated O(n) time. 

As a further contrast, Neamtiu et al. ([20]) 

developed a tool to quickly compare the source code of 

different versions of a C program. Their tool analyses 

the Abstract Syntax Trees (ASTs) of the source code, 

these ASTs being generated by the use of CIL [21]. 

Running on a PC approximately twice as fast as ours, 

their tool processed 400K LOC in about 70 seconds. 

 

 
Figure 4 Average similarity between consecutive versions of the same file 

 

 
Figure 5 Accumulated number of files per version 
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node *BlocksCons(node *arg_node, node *arg_info) 

{ 

  statustype old_attrib; 

  funtab *old_tab; 

  DBUG_ENTER( "BlocksCons"); 

  DBUG_PRINT( "BLKCO", ("begin")); 

  DBUG_ASSERT( (NODE_TYPE( arg_node) == N_fundef), 

               ("wrong type of arg_node")); 

  if ((FUNDEF_BODY( arg_node) != NULL) && 

      (FUNDEF_STATUS( arg_node) != ST_foldfun) && 

      (FUNDEF_ATTRIB( arg_node) != ST_call_rep)) { 

    old_tab = act_tab; 

    act_tab = blkco_tab; 

    old_attrib = INFO_BLKCO_CURRENTATTRIB( arg_info); 

} 

Figure 6 Fragment of reused C code (the underlined code has not been reused) 
 

For both Ferret and Neamtiu et al.’s tool, and in 

contrast to diff and wc, the high level of performance is 

due to the fact that representations of the source code 

are analysed and not the source code itself; and that the 

input source files are not needed once the 

representations have been generated. 

 

8. Discussion 
 

Our main findings are to demonstrate that the n-

gram approach is fast and produces meaningful results. 

Although some of our other findings may not be ‘new’ 

to the software evolution community, the fact that our 

approach is able to generate these standard kinds of 

metrics in evolution confirms that our approach 

produces meaningful results when analysing software 

evolution. Further work may be able to establish 

additional metrics that can be generated by Ferret. 

In terms of our more specific results, we found that: 

• For both systems studied, after their initial releases 

there was subsequently a small amount of 

incremental growth per release. 

• For both systems, there was a high average 

similarity in subsequent versions of the same file 

• Our n-gram analysis is able to differentiate 

between different types of ‘file histories’ e.g. 

stable, revised and changeable. There is however a 

wide range in the number of files in each type e.g. 

SAC had 19% of stable files whilst Ferret had 52% 

stable, and 35% vs. 12% for revised files. Possibly 

this reflects the fact that SAC is a larger system 

that has been worked on extensively by a team, 

whereas the Ferret source code has been under the 

custody of a single programmer. 

• Our n-gram analysis is capable of identifying 

regressed files and ‘reborn’ files’ i.e. where files 

‘reappear’ in later releases after having been 

removed from earlier releases. For the two systems 

we studied, we were not able find examples of the 

regression and ‘rebirth’ but we believe this is a 

characteristic of the systems studied rather than the 

n-gram approach we used. 

• Our n-gram analysis detected cases of split files. 

• The Ferret implementation of n-grams is extremely 

efficient e.g. for the larger system, SAC, this was 

effectively 14150 pairs of files compared per 

second. 

 

One of the advantages of the n-gram approach is 

that it provides a language-independent analysis, and 

one of the advantages of the implementation of trigram 

analysis in Ferret is that the analysis is very quick. 

Although not discussed in this paper, Ferret also 

provides a graphical user interface to allow the user to 

examine copying in the source code for any two files of 

interest. This functionality can easily be modified to 

output detailed comparisons between files. We are also 

conscious however that we have reported our analysis 

for only two relatively small systems. 

There are a number of directions in which we can 

extend this research. We are interested in applying n-

gram analysis to other programming languages, and to 

other types of programming language, such as 

functional languages. We also want to apply our n-

gram approach to larger software systems, such as the 

various BSD operating systems investigated by  

Yamamoto et al. [7]. Our research on the application of 

n-gram analysis to plagiarism detection has indicated 

that three-token sequences (trigrams) are sufficiently 

effective, but we note that McNamee and Mayfield [5] 

used 4-token sequences for their investigation of 

information retrieval, and Broder [9] used larger 

sequences again, so there may be benefits for 

characterising software evolution using longer 

sequences. Finally, we want to compare the 

performance and effectiveness of Ferret against other 

syntactic approaches, but also to consider how Ferret 

can complement semantic approaches. 
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9. Conclusion 
 

We have demonstrated the application of n-grams to 

characterise the evolution of software code by applying 

the Ferret copy detection tool, which computes 

similarity based on trigrams, to two software systems, 

SAC and Ferret. Our trigram analysis has been able to 

differentiate different types of changes to source files, 

characterise the history of changes to individual files, 

identify file splitting and, in principle, identify 

regressed and ‘reborn’ files. The Ferret implementation 

of n-grams is extremely efficient, operating at one to 

two orders of magnitude faster than diff. For the larger 

system SAC, this was effectively 14150 pairs of files 

compared per second. We believe our results are 

sufficiently encouraging to warrant further research and 

tool development in the study of software evolution. 
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