
Parallel Processing Lettersfc World Scientific Publishing Company

SAC — FROM HIGH-LEVEL PROGRAMMING WITH ARRAYS
TO EFFICIENT PARALLEL EXECUTION

CLEMENS GRELCK

Institute of Software Technology and Programming Languages, University of Lübeck

Ratzeburger Allee 160, 23538 Lübeck, Germany

and

SVEN-BODO SCHOLZ

Institute of Computer Science and Applied Mathematics, University of Kiel

Olshausenstraße 40, 24098 Kiel, Germany

Received (received date)
Revised (revised date)

Communicated by (Name of Editor)

ABSTRACT
SaC is a purely functional array processing language designed with numerical ap-

plications in mind. It supports generic, high-level program specifications in the style
of Apl. However, rather than providing a fixed set of built-in array operations, SaC

provides means to specify such operations in the language itself in a way that still al-
lows their application to arrays of any rank and size. This paper illustrates the major
steps in compiling generic, rank- and shape-invariant SaC specifications into efficiently

executable multithreaded code for parallel execution on shared memory multiprocessors.
The effectiveness of the compilation techniques is demonstrated by means of a small case
study on the PDE1 benchmark, which implements 3-dimensional red/black successive
over-relaxation. Comparisons with Hpf and Zpl show that despite the genericity of code,
SaC achieves highly competitive runtime performance characteristics.

1. Introduction

Programming language design essentially is about finding a suitable tradeoff
between support for high-level program specifications and efficient runtime behavior.
In the context of array programming, the data parallel approach seems to be well
suited to meet this goal: using functions that operate on entire arrays rather than
loop nestings and explicit indexing does not only improve program specification,
but also provides opportunities for compilers to generate parallel code.

For example, intrinsic array operations in Fortran-90/Hpf allow for very con-
cise specifications of algorithms that manipulate entire arrays in a homogeneous
way. However, if operations depend on the structure of argument arrays, things
become more difficult. One remedy to this problem, other than using conventional
loop nestings, is the triple notation [1]. Unfortunately, it has some drawbacks as

Parallel Processing Letters

well: program specifications become less readable, more error-prone, and triple-
annotated assignments restrict the arrays involved to particular ranks.

The programming language Zpl [8] offers a more elegant solution for this prob-
lem by introducing regions [9]. Regions are either statically or dynamically defined
sets of array indices. They can be used to map any scalar operation to all the
elements referred to by a region. In order to enable more sophisticated mappings,
e.g. stencil computations, Zpl provides prepositions. They specify mappings of the
indices, e.g. linear projections or permutations. Owing to the dynamic scoping of
regions, in Zpl entire procedures can be applied to arrays of varying ranks. Unfor-
tunately, this concept precludes applications where the functionality of a procedure
also depends on the shape of its argument arrays rather than solely on their element
values because regions and prepositions are not first-class objects in Zpl.

The functional array language SaC (Single Assignment C, pronounced “sack”)
[23] takes the idea of high-level generic array programming considerably further than
Hpf or Zpl. SaC introduces arrays as abstract data objects with certain algebraic
properties rather than merely as mappings into memory; in particular, all memory
management for arrays is done implicitly by the runtime system. In contrast to
Fortran-90/Hpf, SaC does not provide compound array operations as intrinsics.
Instead, so-called with-loops can be used to define such array operations in SaC

itself. Still, they may be applied to arrays of any rank and size, a property which
in other languages is usually restricted to built-in primitives.

Similar to the region concept of Zpl, with-loops can be used to map scalar
operations to subsets of the elements of argument arrays. However, there are two
main differences between with-loops and regions. First, with-loops are legitimate
right-hand-side expressions that evaluate to complete arrays, and second, the set
of array indices to which a scalar operation is to be applied as well as mappings of
index vectors are specified by ordinary (first-class) expressions. The latter property
allows for much more generic program specifications in the style of Apl.

The functional side-effect free semantics in general and the with-loop construct
in particular are amenable to implicit parallelization. For the time being the SaC

compiler generates multithreaded code for parallel execution on shared memory
multiprocessors [14]. In conjunction with rigorous type specialization and optimiza-
tion schemes runtime performance characteristics have been achieved which despite
the high-level generic programming methodology have been found competitive with
low-level implementations [13].

This paper outlines the major steps in compiling rank- and shape-invariant high-
level SaC programs into efficiently executable multithreaded C code. For illustra-
tion purposes we refrain from giving exact transformation schemes and employ a
rather simple example instead: compilation of multi-axis array rotation is sketched
out in a step-by-step process. Advantages of the generic programming methodology
supported by SaC and the effectiveness of the compilation techniques described are
demonstrated by means of a small case study: red/black successive over-relaxation
is realized by only five lines of SaC code based on generic multi-axis rotation.

The paper is organized as follows. After a brief introduction to SaC in Section 2,
the compilation process is sketched out in Section 3 and the case study in Section 4.
Section 5 summarizes some more related work while Section 6 concludes.

SAC — From High-level Programming with Arrays to Efficient Parallel Execution

2. SAC — Single Assignment C

The core language of SaC is a functional subset of C, a design which aims
at simplifying adaptation for programmers with a background in imperative pro-
gramming languages. This kernel is extended by n-dimensional arrays as first class
objects. Array types include arrays of fixed shape, e.g. int[3,7], arrays of fixed
rank, e.g. int[.,.], arrays of any rank, e.g. int[+], and a most general type en-
compassing both arrays and scalars: int[*]. SaC provides a small set of built-in
array operations, basically primitives to retrieve data pertaining to the structure
and contents of arrays, e.g. an array’s rank (dim(array)), its shape (shape(array)),
or individual elements (array[index-vector]).

WithLoopExpr ⇒ with (Generator) Operation
Generator ⇒ Expr Relop Identifier Relop Expr
Relop ⇒ < | <=
Operation ⇒ genarray (Expr , Expr)

| modarray (Expr , Expr)

| fold (FoldOp , Expr , Expr)

Figure 1: Syntax of with-loop expressions.

Compound array operations are specified using with-loop expressions, whose
core syntax is outlined in Fig. 1. A with-loop basically consists of two parts: a
generator and an operation. The generator defines a set of index vectors along
with an index variable representing elements of this set. Two expressions, which
must evaluate to integer vectors of equal length, define lower and upper bounds of a
rectangular index vector range. Let a and b denote such vectors of length n, then a
generator of the form (a <= i vec < b) refers to the following set of index
vectors: {i vec | ∀j∈{0,...,n−1} : aj ≤ i vecj < bj}.

The operation specifies the computation to be performed for each element of
the index vector set defined by the generator. Let shp denote a SaC expression
that evaluates to an integer vector, let i vec denote the index variable defined by
the generator, let array denote a SaC expression that evaluates to an array, and
let expr denote any SaC expression. Moreover, let fold op be the name of a binary
commutative and associative function with neutral element neutral. Then

• genarray(shp, expr) creates an array of shape shp whose elements are the
values of expr for all index vectors from the specified set, and 0 otherwise;

• modarray(array, expr) defines an array of shape shape(array) whose el-
ements are the values of expr for all index vectors from the specified set, and
the values of array[i vec] at all other index positions;

• fold(fold op, neutral, expr) specifies a reduction operation; starting out
with neutral, the value of expr is computed for each index vector from the
specified set and these are subsequently folded using fold op.

The usage of vectors in with-loop generators as well as in the selection of array
elements along with the ability to define functions which are applicable to arrays of

Parallel Processing Letters

any rank and size allows for implementing Apl-like compound array operations in
SaC itself. This feature is exploited by the SaC standard library, which provides,
among others, element-wise extensions of arithmetic and relational operators, typi-
cal reduction operations like sum and product, various subarray selection facilities,
as well as shift, rotate, and transpose operations. More information on SaC is
available at http://www.sac-home.org/ .

3. The compilation process

This section sketches out the major steps in compiling rank- and shape-invariant
high-level SaC specifications into efficiently executable multithreaded code. As
pointed out before, we focus on multi-axis array rotation as an example rather than
providing complete compilation schemes. The function

int[*] rotate (int[.] offsets, int[*] A)
from the SaC standard library rotates the given integer array A in each dimension by
as many elements as specified by the corresponding element of the vector offsets.
Note that the function rotate is applicable to arrays of any rank (int[*]) and,
hence, the first argument offsets may be a vector of varying length (int[.]).

int[*] rotate (int[.] offsets, int[*] A)
{

for (i=0; i < min(shape(offsets)[[0]], dim(A)); i+=1)
{

max_rotate = shape(A)[[i]];
offset = offsets[[i]] % max_rotate;
if (offset < 0) offset += max_rotate;

lower_bound = modarray(0 * shape(A), [i], offset);
upper_bound = modarray(shape(A), [i], offset);

B = with (. <= iv < upper_bound)
genarray(shape(A), A[iv + shape(A) - upper_bound]);

C = with (lower_bound <= iv <= .)
modarray(B, A[iv - lower_bound]);

A = C;
}

return(A);
}

Figure 2: SaC implementation of multi-axis array rotation.

The implementation of rotate is shown in Fig. 2. Rotation along multiple
axes is realized as a sequence of rotations along individual axes. If the length of
the vector of offsets does not match the rank of the given array, either the array
remains unrotated along rightmost axes or surplus rotation offsets are ignored.
Rotation along a single axis starts with extracting the respective offset from the
vector offsets and its normalization to the range between 0 and the extent of A
along this axis.

Rotation itself is realized by dividing the set of legitimate index vectors of A
into two partitions a and b, as illustrated in Fig. 3 for the 2-dimensional case. The
genarray-with-loop defines an intermediate array B of the same shape as A, which
contains all elements belonging to partition b of array A being correctly rotated to
their new locations. According to the semantics of the with-loop, the remaining

SAC — From High-level Programming with Arrays to Efficient Parallel Execution

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

lower_bound upper_bound

a

A=
b

B=

a

b
C=

b

Figure 3: Illustration of rotation along a single axis.

elements of B (the white box in Fig. 3) are set to zero. The modarray-with-loop
defines the result array C with partition a from array A being rotated to its new loca-
tion and with the remaining elements being implicitly taken from the corresponding
index positions of the array B. The boundary vectors of the With-loop generators
are defined using the SaC function modarray(array,index,value), which yields
a new array identical to array except for position index which is set to value .
Dots in boundary positions form a convenient syntactic shortcut: they represent the
least or the greatest legal index vector, respectively. Eventually, C is re-assigned to
A for the next for-loop iteration. This seeming contradiction in a single assignment
language is resolved by the semantics of SaC, which introduces conventional loops
as syntactic sugar for recursive functions.

Note that we have intentionally defined rotate on the most general type int[*],
which includes zero-dimensional arrays aka scalars. In this case, the for-loop is
executed zero times, and rotate degenerates to the identity function.

The first major step in the compilation of SaC programs is a rigorous type
inference and specialization scheme. Type specifications are assigned to each ex-
pression, and type declarations for local variables are inserted where missing. As
for the hierarchy of array types, the inference scheme aims at identifying types as
specific as possible, preferably ones with complete shape information. Step by step,
rank- and shape-invariant program specifications are transformed into collections
of functions tailor-made for specific problem sizes.

After type inference, various conventional optimization techniques [2] such as
function inlining, constant folding, constant propagation, loop unrolling, and dead
code removal are repeatedly applied to the type- and shape-annotated code. Fig. 4
shows a code fragment of an application of the given rotate function to a constant
offset vector [-1,2] and a 2-dimensional array A with 50 rows and 80 columns
(int[50,80]) as it looks like after conventional optimizations. To maintain some
resemblance to the function definition, dead code is displayed in the shaded grey
areas rather than being removed. The for-loop in the original definition is unrolled,
and boundary vectors are replaced by constants computed at compile time. The
sequence of four with-loops is all that remains after dead code removal.

Despite this substantial simplification the derived code is still rather inefficient.
A naive compilation would create three temporary arrays before eventually gener-
ating the function result. As a consequence, individual elements are copied up to
four times before reaching the final index position. This situation may be consid-
ered typical for intermediate code derived from Apl-like specifications. To address
this issue, a SaC-specific optimization technique called with-loop-folding [22]
aims at eliminating costly creation of temporary arrays by condensing subsequent

Parallel Processing Letters

...
max_rotate = 50;
offset = -1;
offset = 49;

lower_bound = [49, 0];
upper_bound = [49,80];

B = with ([0,0] <= iv < [49,80])
genarray([50,80], A[iv + [1,0]]);

C = with ([49,0] <= iv < [50,80])
modarray(B, A[iv - [49,0]]);

A = C;

max_rotate = 80;
offset = 2;

lower_bound = [0,2];
upper_bound = [50,2];

B = with ([0,0] <= iv < [50,2])
genarray([50,80], C[iv + [0,78]]);

C = with ([0,2] <= iv < [50,80])
modarray(B, C[iv - [0,2]]);

...

Figure 4: rotate([-1,2], int[50,80] A) after general optimizations.

with-loops into a single though more general variant. Fig. 5 illustrates the effect
of with-loop-folding on the running example.

with-loop-folding results in a compiler internal variant of with-loops called
multigenerator with-loop. They provide a complete partition of the target array
defined by a set of generators each associated with an explicit element specification.
In the running example, the four ordinary with-loops can be condensed into a
single multigenerator with-loop with four generators, as shown in Fig. 5. All four
operations attached to these index ranges are selections into the original array A.
They differ only by the offsets added to the running index iv.

...
C = with (iv)

[0, 0] <= iv < [49, 2] : A[iv + [1, 78]];
[0, 2] <= iv < [49,80] : A[iv + [1, -2]];
[49, 0] <= iv < [50, 2] : A[iv + [-49, 78]];
[49, 2] <= iv < [50,80] : A[iv + [-49, -2]];

genarray([50,80]);
...

Figure 5: rotate([-1,2], int[50,80] A) after with-loop-folding.

As the compiler ensures that all index sets are mutually disjoint, in the final
code generation phase arbitrary traversal orders through the array elements can
be chosen. Fig. 6 sketches out the nestings of for-loops that are generated for
the running example. A closer examination of the loops shows that the generators
are not compiled individually. Instead, loop nestings are generated that linearly
traverse the associated memory for improved locality of array references.

As pointed out before, the SaC compiler supports generation of multithreaded
code for parallel execution on shared memory systems. The code derived for the

SAC — From High-level Programming with Arrays to Efficient Parallel Execution

...
C = ALLOCATE_ARRAY([50,80], int);

for(iv0=0; iv0<49; iv0++) {
for(iv1=0; iv1< 2; iv1++) C[iv0,iv1] = A[iv0+1, iv1+78];
for(iv1=2; iv1<80; iv1++) C[iv0,iv1] = A[iv0+1, iv1- 2];

}

for(iv0=49; iv0<50; iv0++) {
for(iv1=0; iv1< 2; iv1++) C[iv0,iv1] = A[iv0-49, iv1+78];
for(iv1=2; iv1<80; iv1++) C[iv0,iv1] = A[iv0-49, iv1- 2];

}
...

Figure 6: rotate([-1,2], int[50,80] A) after code generation.

rotate example is outlined in Fig. 7. Whereas the initial allocation of memory for
the result array may be adopted from the sequential code generation scheme, the
iteration space traversed by the following loop nestings needs to be partitioned into
several disjoint subspaces, one for each thread. The pseudo statement MT EXECUTION
specifies that the following code block may be executed by multiple threads. Their
exact number is given by the runtime constant #THREADS; individual threads are
identified by the variable tid.

...
C = ALLOCATE_ARRAY([50,80], int);

MT_EXECUTION(0 <= tid < #THREADS) {
do {

sb0, se0, sb1, se1, cont
= SCHEDULE(tid, #THREADS, shape(C), STRATEGY);

for(iv0=max(0,sb0); iv0<min(49,se0); iv0++) {
for(iv1=max(0,sb1); iv1<min(2,se1); iv1++)

C[iv0,iv1] = A[iv0+1, iv1+78];
for(iv1=max(2,sb1); iv1<min(80,se1); iv1++)

C[iv0,iv1] = A[iv0+1, iv1-2];
}

for(iv0=max(49,sb0); iv0<min(50,se0); iv0++) {
for(iv1=max(0,sb1); iv1<min(2,se1); iv1++)

C[iv0,iv1] = A[iv0-49, iv1+78];
for(iv1=max(2,sb1); iv1<min(80,se1); iv1++)

C[iv0,iv1] = A[iv0-49, iv1-2];
}

} while (cont);
}
...

Figure 7: rotate([-1,2], int[50,80] A) after multithreading.

Since parallelization of code and transformation of multigenerator with-loops
into potentially complex nestings of for-loops are to some extent orthogonal issues,
we aim at reusing existing sequential compilation technology as far as possible.
This is achieved by introducing a separate loop scheduler SCHEDULE, which based
on the total number of threads and individual thread identifiers computes disjoint
rectangular subranges of the iteration space. The original loop nesting is modified
only insofar as each loop is restricted to the intersection between its original range
and the current iteration subspace defined by the scheduler. As indicated by the

Parallel Processing Letters

additional scheduler argument STRATEGY, this design offers the opportunity to plug-
in different scheduling techniques including dynamic load balancing schemes.

4. Case study: PDE1 benchmark

This section illustrates the highly generic programming style encouraged by
SaC and quantifies the effectiveness of the compilation techniques introduced in the
previous section. The PDE1 benchmark approximates solutions to 3-dimensional
discrete Poisson equations by means of red/black successive over-relaxation. It has
previously been studied in compiler performance comparisons in the context of Hpf

and Zpl [20,3]; reference implementations are available for various languages.

double[+] RelaxKernel(double[+] u, double[+] weights)
{

res = with (0*shape(weights) <= iv < shape(weights))
fold(+, weights[iv] * rotate(1-iv, u));

return(res);
}

double[+] PDE1(int iter, double hsq, double[+] f, double[+] u,
bool[+] red, bool[+] black, double[+] weights)

{
for (nrel=1; nrel<=iter; nrel+=1) {

u = where(red, hsq * f + RelaxKernel(u, weights), u);
u = where(black, hsq * f + RelaxKernel(u, weights), u);

}

return(u);
}

Figure 8: SaC implementation of PDE1 benchmark.

Fig. 8 shows a highly generic SaC implementation of PDE1, built in two layers
on top of multi-axis rotation, as discussed in the previous section. On the first
layer a completely benchmark-independent auxiliary function RelaxKernel realizes
a single relaxation step on the argument array u, which may be of any rank and size.
Relaxation is parameterized over a stencil description given by an array of weights.
The key idea is to sum up entire arrays that are derived from the argument array
u by rotation into as many directions as given by the rank of the array of weights
and multiplication with the corresponding weight coefficient.

In the case of PDE1, relaxation is actually performed on 3-dimensional arrays
using a 6-point stencil with identical weights for all six direct neighbors. Therefore,
the (constant) array of weights is chosen as follows:

[[[0d, 0d, 0d], [0d, 1d/6d, 0d], [0d, 0d, 0d]],

[[0d, 1d/6d, 0d], [1d/6d, 0d, 1d/6d], [0d, 1d/6d, 0d]],

[[0d, 0d, 0d], [0d, 1d/6d, 0d], [0d, 0d, 0d]]] .

Governed by the shape of this array, i.e. [3,3,3], the argument array is rotated into
all 27 possible directions and multiplied by the corresponding elements. However, as
most of the weights turn out to be zero, only six multiplications and five additions
are actually performed after optimization.

The alert reader may observe that using rotate as basis for RelaxKernel implic-
itly implements periodic boundary conditions. As PDE1 requires fixed boundary
conditions, the application of RelaxKernel must be restricted to the inner elements

SAC — From High-level Programming with Arrays to Efficient Parallel Execution

of the array. This is achieved by embedding the relaxation step into the where func-
tion from the SaC standard library. It takes a boolean mask and two arrays of equal
shapes as arguments and yields an identically-shaped array as result. Depending on
individual mask elements it either selects the corresponding element of the second
argument array (true) or that of the third one (false). This flexibility allows the
restriction to inner elements to be combined with the benchmark requirement to
restrict relaxation alternatingly to two different sets of elements, the red set and
the black set. These two applications of where are finally embedded into a simple
for-loop realizing the desired number of iterations, which makes up the entire body
of the function PDE1.

Experiments with respect to the runtime performance of this SaC implemen-
tation of PDE1 have been made on a 12-processor SUN Ultra Enterprise 4000.
They are compared with the outcomes of similar experiments involving an Hpf

implementation compiled by the Adaptor Hpf-compiler v7.0 [6] using Pvm as
communication layer and a Zpl implementation using zc v1.15.7 and Mpich. Both
the Hpf as well as the Zpl implementation of the PDE1 benchmark are taken from
the demo codes that come with the corresponding compiler distributions. In order
to compare all three codes on a reasonably fair basis startup overhead is eliminated
by statistical measures.

m
ul

tip
le

 o
f

SA
C

 r
un

tim
es

m
ul

tip
le

 o
f

SA
C

 r
un

tim
es

65
 m

s

5.
5

s

15
.5

 s

36
.4

 s

Z
PL

H
PF

SA
C

SA
C

Z
PL

28
3

m
s

43
.5

 s

22
.2

 s
H

PF

SA
C

4.

9
s

Z
PL

H
PF

SA
C

54
3

m
s

60
 m

s

1.0
2.0

4.0

6.0

8.0

256 , 1 iteration364 , 1 iteration3

1.0
2.0

4.0

6.0

8.0

3 368 , 1 iteration 260 , 1 iteration

21
5

m
s

55
1

m
s

Z
PL

H
PF

Figure 9: Single processor runtime performance.

Fig. 9 (left) shows sequential runtimes for two different problem sizes: 643 and
2563 grid elements. It turns out that despite the high-level generic approach char-
acterizing the SaC implementation it clearly outperforms both the Hpf and the
Zpl implementation. Multiprocessor performance achieved by all three candidates
is shown in Fig. 10 (top) relative to sequential execution of SaC code. While SaC

achieves a maximum speedup of about eight using ten processors for both problem
sizes, Hpf and Zpl also achieve substantial gains by parallel execution, but suffer
from their inferior single processor performance.

Being powers of two, both benchmarking problem sizes may produce cache ef-
fects which could render the findings unrepresentative in general. To eliminate the
potential for such effects we have repeated all experiments with two slightly differ-
ent problem sizes which are unlikely to be subject to cache thrashing. Sequential
and parallel performance figures for grid sizes of 683 and 2603 elements are given in
Fig. 9 (right) and in Fig. 10 (bottom), respectively.

Parallel Processing Letters

0
1
2
3
4
5
6
7
8
9

10

1 2 4 6 8 10

S
pe

ed
up

.

Number of processors involved.

64 x 64 x 64
SAC
HPF
ZPL

0
1
2
3
4
5
6
7
8
9

10

1 2 4 6 8 10

S
pe

ed
up

.

Number of processors involved.

256 x 256 x 256
SAC
HPF
ZPL

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 4 6 8 10

S
pe

ed
up

.

Number of processors involved.

68 x 68 x 68
SAC
HPF
ZPL

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 4 6 8 10

S
pe

ed
up

.

Number of processors involved.

260 x 260 x 260
SAC
HPF
ZPL

Figure 10: Multiprocessor runtime performance.

5. Related work

Although throughout this paper comparisons with Fortran-90/Hpf and Zpl

served both as a motivation for the design of SaC and as a baseline for performance
evaluation, there is more related work to mention than this. For example, inter-
preted array languages, notably Apl and J, also provide a very generic approach to
array programming. However, their runtime performance characteristics are usu-
ally considered prohibitive as soon as performance really matters. Although their
suitability for parallelization has been discussed in principle [4], parallel implemen-
tations have not evolved.

In the field of functional programming Sisal [7] used to be the most prominent
array language. It offers high-level array handling free of side-effects as well as
implicit memory management. Aggregate array operations are defined by means of
Sisal-specific array comprehensions. However, Sisal supports only vectors, while
higher-dimensional arrays must be represented as nested vectors of equal length.
Moreover, Sisal neither provides built-in high-level aggregate operations nor means
to define such general abstractions in the language, as SaC does. The design of
Sisal90 [12] promises improvements, but has not been implemented.

Another approach to high-level array programming is FISh [17]. Characteristic
for FISh is the distinction between two categories of expressions: shapely expres-
sions which define shapes of arrays and regular expressions that define element
values. While the latter are evaluated at runtime, shapely expressions must be
evaluated at compile time to ensure static knowledge of all array shapes. This dis-
tinction restricts FISh to uniform functions [16], i.e. functions whose result shapes

SAC — From High-level Programming with Arrays to Efficient Parallel Execution

can entirely be derived from the shapes of their arguments. This restriction rules
out definition of many basic array operations, e.g. take or drop. Moreover, to the
best knowledge of the authors no parallel version of FISh has been realized yet.

A popular approach to high-level parallel programming can be found in algo-
rithmic skeletons [10]. They aim at encapsulating common patterns of parallel exe-
cution in a fixed set of abstractions, usually higher-order functions. Many different
flavors of this approach have been proposed, reaching from tailor-made (imperative)
languages like P3L[11] or Skil [5] to libraries both for functional [15] as well as for
imperative host languages [18,21,19]. Although with-loops in SaC share some
similarities with data-parallel skeletons, their intention is quite different. Skeletons
provide abstract means to specify the parallel aspects of program execution; they
do not increase the level of abstraction in array processing in general. In contrast,
with-loops are abstractions that provide the basis for high-level array processing
regardless of whether program execution is sequential or parallel.

6. Conclusion

The major design goal of SaC is to combine highly generic specifications of array
operations with compilation techniques for generating efficiently executable multi-
threaded code. This paper illustrates the major steps in the compilation process
by means of a basic SaC-implemented array operation from the standard library:
a rank- and shape-invariant specification of multi-axis rotation. The effectiveness
of the measures described is investigated by means of a highly generic SaC imple-
mentation of the PDE1 benchmark based on multi-axis rotation. Despite its high
level of abstraction the SaC implementation substantially outperforms benchmark
implementations in the data parallel languages Hpf and Zpl both in sequential and
in parallel execution. This shows that high-level generic program specifications and
good runtime performance — even relative to conventional low-level approaches —
not necessarily exclude each other.

References

[1] J.C. Adams, W.S. Brainerd, et al. Fortran-95 Handbook — Complete ANSI/ISO
Reference. Scientific and Engineering Computation. MIT Press, 1997.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, 2001.

[3] Applied Parallel Research, Inc. xHPF Benchmark Results. Technical report, 1995.
[4] R. Bernecky. The Role of APL and J in High-Performance Computation. APL Quote

Quad, vol. 24(1), pp. 17–32, 1993.
[5] G.H. Botorog and H. Kuchen. Efficient High-Level Parallel Programming. Theoretical

Computer Science, vol. 196(1-2), pp. 71–107, 1998.
[6] T. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF Pro-

grams. In Programming Environments for Massively Parallel Distributed Systems,
pp. 91–96. Birkhäuser Verlag, 1994.

[7] D.C. Cann. Retire Fortran? A Debate Rekindled. Communications of the ACM,
vol. 35(8), pp. 81–89, 1992.

[8] B.L. Chamberlain, S.-E. Choi, et al. ZPL: A Machine Independent Programming
Language for Parallel Computers. IEEE Transactions on Software Engineering,

Parallel Processing Letters

vol. 26(3), pp. 197–211, 2000.
[9] B.L. Chamberlain et al. Regions: An Abstraction for Expressing Array Computation. In

O. Levefre, ed., Proceedings of the International Conference on Array Processing
Languages (APL’99), APL Quote Quad, vol. 29(1), pp. 41–49, 1999.

[10] M.I. Cole. Algorithmic Skeletons. In K. Hammond and G. Michaelson, eds., Research
Directions in Parallel Functional Programming, pp. 289–303. Springer-Verlag, 1999.

[11] M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for Data Parallelism in P3L.
In C. Lengauer, M. Griebl, and S. Gorlatch, eds., Proceedings of the 3rd European
Conference on Parallel Processing (Euro-Par’97), LNCS, vol. 1300, pp. 619–628.
Springer-Verlag, 1997.

[12] J.T. Feo, P.J. Miller, et al. Sisal 90. In A.P.W. Böhm and J.T. Feo, eds., Proceedings
of the Conference on High Performance Functional Computing (HPFC’95), pp.
35–47. Lawrence Livermore National Laboratory, 1995.

[13] C. Grelck. Implementing the NAS Benchmark MG in SAC. In Proceedings of the
16th International Parallel and Distributed Processing Symposium (IPDPS’02).
IEEE Computer Society Press, 2002.

[14] C. Grelck. A Multithreaded Compiler Backend for High-Level Array Programming.
In M.H. Hamza, ed., Proceedings of the 21st International Multi-Conference on
Applied Informatics (AI’03), Part II: International Conference on Parallel and
Distributed Computing and Networks (PDCN’03), pp. 478–484. ACTA Press, 2003.

[15] K. Hammond and A.J. Rebón Portillo. HaskSkel: Algorithmic Skeletons in Haskell. In
C. Clack and P. Koopman, eds., Proceedings of the 11th International Workshop on
Implementation of Functional Languages (IFL’00), selected papers, LNCS, vol.
1868, pp. 181–198. Springer-Verlag, 2000.

[16] R.K.W. Hui. Rank and Uniformity. In Proceedings of the International Conference
on Array Processing Languages (APL’95), pp. 83–90. ACM Press, 1995.

[17] C.B. Jay and P.A. Steckler. The Functional Imperative: Shape! In C. Hankin, ed.,
Proceedings of the 7th European Symposium on Programming (ESOP’98), LNCS,
vol. 1381, pp. 139–53. Springer-Verlag, 1998.

[18] E. Johnson and D. Gannon. Programming with the HPC++ Parallel Standard Tem-
plate Library. In Proceedings of the 8th SIAM Conference on Parallel Processing
for Scientific Computing (PP’97), Minneapolis, Minnesota, USA, 1997.

[19] H. Kuchen. A Skeleton Library. In B. Monien and R. Feldmann, eds., Proceedings of
the 8th European Conference on Parallel Processing (Euro-Par’02), LNCS, vol.
2400, pp. 620–629. Springer-Verlag, 2002.

[20] C. Lin, L. Snyder, et al. ZPL vs. HPF: A Comparison of Performance and Programming
Style. Technical Report TR-95-11-05, Department of Computer Science and Engineer-
ing, University of Washington, 1995.

[21] L. Rauchwerger, F. Arzu, and K. Ouchi. Standard Templates Adaptive Library. In D.R.
O’Hallaron, ed., Proceedings of the 4th International Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers (LCR’98), selected
papers, LNCS, vol. 1511, pp. 402–410. Springer-Verlag, 1998.

[22] S.-B. Scholz. With-loop-folding in SAC — Condensing Consecutive Array Operations.
In C. Clack, T. Davie, and K. Hammond, eds., Proceedings of the 9th International
Workshop on Implementation of Functional Languages (IFL’97), selected papers,
LNCS, vol. 1467, pp. 72–92. Springer-Verlag, 1998.

[23] S.-B. Scholz. Single Assignment C — Efficient Support for High-Level Array Oper-
ations in a Functional Setting. Journal of Functional Programming, accepted for
publication.

