
Radboud University Nijmegen

On Mapping N-Dimensional Data-Parallelism Efficiently into GPU-Thread-Spaces
Extended version

Niek Janssen
niek.janssen@student.ru.nl

Sven-Bodo Scholz
SvenBodo.Scholz@ru.nl

December 5, 2021

Contents

1 Context 2
1.1 SAC . 2
1.2 CUDA and SAC . 3
1.3 CUDA limits and solutions . 4
1.4 Mental model . 6

2 Formalization of mappings 7
2.1 Preliminary definitions . 7
2.2 Index spaces and mappings . 8
2.3 Proving mapping equivalence . 9
2.4 ShiftLB . 11
2.5 CompressGrid . 12
2.6 PruneGrid . 15
2.7 SplitLast . 17
2.8 FoldLast2 . 18
2.9 Permute . 20
2.10 Padlast . 21

3 Implementation 24
3.1 The SAC compiler . 24
3.2 Mapping execution . 26
3.3 Mapping generation using strategies . 26

4 Listings 28

1

Chapter 1

Context

1.1 SAC

SAC (Single assignment C) [1] is a functional program-
ming language build around multidimensional arrays.
Each such an array consists of the array data and the4

shape of the array. The ‘data’ part contains the array
elements, while the ‘shape’ part contains information
about the dimensionality and the lengths of those di-
mensions. The ‘shape’ can be accessed through the8

built-in shape function, and is a one-dimensional array
itself.

Some examples and facts about SAC arrays:

1 // Declare array x
2 x = [[1, 2, 3], [4, 5, 6]];
3

4 // The shape of x can be requested
5 // with the shape function
6 print(shape(x));
7 // [2, 3]
8

9 // Note that the dimensionality of x
10 // is equal to the length of shape(x)
11 print(length(shape(x)));
12 // 2
13

14 // A new array can also be generated
15 // using the built-in function genarray.
16 // genarray takes a shape and a default
17 // element
18 print(genarray([2, 3], 42);
19 // [[42, 42, 42], [42, 42, 42]]
20

21 // Array elements can be accessed using
22 // the index vector:
23 iv = [1,1];
24 print(x[iv]);
25 // 5

The with-loop
At the heart of the SAC programming language is
the with-loop. A with-loop can be compared with the
‘map’ function in the map-reduce computation model, 4

although the with-loop is a bit more advanced. A
with-loop creates a new array using a given shape, and
fills it with data in the manner defined in it’s body. A
with loop consists of roughly three parts: 8

• A default array x. The shape of this array will
be taken as the shape of the result. If an index
vector iv exists for which the with-loop body does
not define a value, the value x[iv] will be used 12

instead.
• An index space S, defining which indexes in array

x have to be replaced with new values.
• A body, containing an expression which is used 16

to compute the new value at index vector iv.

A pair of an index space and a body is called a “parti-
tion.” A with loop can have multiple partitions:

1 a = with {
2 (index space) : { body expression };
3 (index space) : { body expression };
4 } : default array;

An index space is defined using a tuple of four shape 20

vectors (L, U, T, W), and a variable identifier. In
the body expression, this variable contains the current
index vector. The four shape vectors constrain what
indexes are mapped in a partition. Using iv as variable 24

identifier, we can define the constraints on the index
space:

• Lowerbound L (optional): L <= iv, restrict to
indexes greater or equal to L 28

• Upperbound U: iv < U, restrict to indexes strictly
smaller then U

• Step T and Width W (optional): iv % T < W,
Every T elements, take W elements. If W is omitted, 32

W = 1.

Combining this all together, we may create a with-loop

2

like this:

1 a = with {
2 ([0, 1] <= iv < [9, 8]
3 step [2, 3] width [1, 2])
4 : 3;
5 ([1, 0] <= iv < [8, 9]
6 step [3, 2] width [2, 1])
7 : 7;
8 } : genarray ([9, 9], 0);

Which creates a 2-dimensional array with the following
output:

0 3 3 0 3 3 0 3 04

2 0 2 0 2 0 2 0 2
2 3 2 0 2 3 2 3 2
0 0 0 0 0 0 0 0 0
2 3 2 0 2 3 2 3 28

2 0 2 0 2 0 2 0 2
0 3 3 0 3 3 0 3 0
2 0 2 0 2 0 2 0 2
0 3 3 0 3 3 0 3 012

With-loop execution
We can conceptualize the execution of a partition in
a with-loop in a few consequent steps. Firstly, we
have an index space descriptor as a tuple of the four16

shape vectors L, U, T, W as defined above. Secondly,
we have an index generator that computes all index
vectors inside this index space descriptor. We call this
set of index vectors an index space. Thirdly, we have20

the partition body, which transforms each index into
a value. These values are then put in the resulting
array on the correct positions. Of course, this is only
an abstract way of describing a with loop. SAC will24

optimize the execution of the with-loop to use the least
amount of CPU-cycles and memory.

Index space descriptor
(lb, ub, step, width)28

|
| SAC Index generator
V32

Index space
({[10, 10], [10, 11], ...})

36

|
| Partition body expression:
| 37
V40

Values

1.2 CUDA and SAC
The CUDA programming model is very similar to the
programming model of a with-loop. Similarly to a
with-loop, CUDA performs operations on elements of 4

an index space. Where a with-loop uses a body with
an expression, CUDA uses a function with arguments
and a return value, but in effect a CUDA and a SAC
operation uses the same concept: they execute a piece 8

of code for each element of a certain index space.

In principle, because the programming models are so
similar, it should be easy to utilize CUDA to execute
with-loops on the GPU. Because the GPU architecture 12

is in theory faster for these kinds of tasks then the CPU
architecture, we should see significant performance
improvements. We could just give the information
about the index space to a CUDA index generator, 16

wrap the expression body in a function, and let CUDA
execute this function for each index vector.

Index space
(lb, ub, step, width) 20

|
| CUDA Index generator
V 24

Index space
({[10, 10], [10, 11], ...})

28

|
| Partition body function:
| \iv -> 42
V 32

Values

The current implementation of the SAC compiler con-
tains a mechanism to generate CUDA code, created by 36

J. Guo [2]. This implementation follows the approach
described above. Currently, roughly the following steps
are impelemented to make this work:

• Identify with-loops eligible for cudarizing: Not 40

all with-loops can be impelemented using cuda.
CUDA cannot handle function calls to external
functions for example, so all with-loops containing
such function calls cannot be implemented using 44

CUDA.
• Insert memory transfer primitives: GPU memory

is separate from CPU memory, so necessary data
has to be transfered to and from the GPU before 48

and after the computations respectively.
• Create kernel functions: The creation of the func-

tions wrapping the partition body expressions.

3

• The CUDA Index generator is given the index
space information and it creates the kernel func-
tions are run for each index in the index space.

CUDA index spaces4

A big problem with this approach is the limitations
of the CUDA index spaces. The SAC with-loop index
spaces have no constraints on dimensionality or dimen-
sion lengths other that they have to be finite. SAC8

index spaces also support a step and a width. CUDA
index spaces for a GTX 1060 for example, can handle
at most 6 dimensions, with the product of the lengths
of the innermost 3 dimensions at most containing 102412

elements. Furthermore, these constraints can be dif-
ferent across the generations of hardware, and they do
not support a step and width at all.

The current implementation deals with some of these16

issues, but not all of them. Furthermore, the current
solution is very pragmatic and will have to be replaced
with a more sophisticated mechanism with the flexi-
bility to deal with index spaces of all shapes and sizes.20

In this thesis, we are going to design, implement and
test this more sophisticated solution.

The general idea is that we are going to create transfor-
mations that transform the original SAC index space24

into an index space that fits into the CUDA archi-
tecture. Before we give the index space descriptor
(the tuple of L, U, T, W) to the index generator, we
will have to transform it to only an upperbound U28

that fits the CUDA index space requirements. Then,
in the partition body function, we have to map the
individual indexes of the transformed index space back
to indexes from the original index space. After both32

transformations have been completed, exactly the same
indexes should be generated as in the original CPU
implementation of the index generator.

Because we have to accommodate for the broad spec-36

trum of with-loops we have to support, it is nearly
impossible to implement one single transformation to
handle all cases. Instead, we are going to break the
problem down into smaller pieces, and provide trans-40

formations for all of them. These transformations can
then be combined together to fit each partition’s needs.

transform
SAC Index ---> CUDA Index44

space desc space desc
(L, U, T, W) (U)

|48

CUDA index generator |
|
V

transform
SAC Index space <--- CUDA Index space
({iv0, iv1, ...}) {iv0, iv1, ...})

4

|
| Partition body function
| (\iv -> 42)
V 8

Values
({42, 42, ...})

Because with-loops come in many different shapes, 12

sizes, steps and widths, we will need to have a very
flexible way of defining these transformations. The
easiest way to do that, is to create multiple mappings
that can be combined together. In the next chapter, 16

we will formalize the with-loop index generation and
the mappings we can use to transform it.

1.3 CUDA limits and solutions
In this section, we will discuss the limitations and the 20

mappings to handle these limitations.

CUDA index spaces do not support
lowerbounds.
To handle this, we introduce the ShiftLB mapping. 24

This mapping shifts the index space so that the lower-
bound is a vector of 0’s. In the partition body function,
the lowerbound is added to each individual index again.
The cost of this mapping is expected to be very low. 28

Example index space transformation with
L = [1, 1]:

00 01 02 03 04 05 11 12 13 14 15
10 11 12 13 14 15 21 22 23 24 25 32

20 21 22 23 24 25 31 32 33 34 35
30 31 32 33 34 35 ---> 41 42 43 44 45
40 41 42 43 44 45 51 52 53 54 55
50 51 52 53 54 55 36

CUDA index spaces do not support
step/width.
To handle this, we introduce two alternative mappings:
PruneGrid and CompressGrid. These mappings can 40

only be executed on index spaces without a lowerbound.

PruneGrid leaves the upperbound intact, but checks
in each partition body function call whether the current
index vector is inside the grid. If it is, the function can 44

continue it’s execution, but if it’s not it is returned.
This can potentially result in a lot of unnecessary GPU

4

threads, but other then that the overhead is expected
to be low.

Example index space transformation with
T = [3, 2], W = [2, 1]:4

(.. means the function for this index vector will be
returned)

00 01 02 03 04 05 00 01 .. 03 04 ..
10 11 12 13 14 158

20 21 22 23 24 25 20 21 .. 23 24 ..
30 31 32 33 34 35 --->
40 41 42 43 44 45 40 41 .. 43 44 ..
50 51 52 53 54 5512

The step/width mechanism creates regularly spaced
n-dimensional blocks with indexes for which the body
has to be executed, separated by indexes for which
the body is not executed. CompressGrid compresses16

the index space by placing all n-dimensional blocks
of threads to be executed directly beside each other.
As a result, no unnecessary GPU threads are created,
but the overhead of shifting those blocks may be a bit20

higher. Note that no actual data is moved, just the
indexes are modified. Additionally, CompressGrid
gets an extra argument C specifying which dimensions
should be compressed. This way, it is possible to24

compress some dimensions while pruning the others.

Example index space transformation with
T = [3, 2], W = [2, 1], C = [1, 1]:

00 01 02 03 04 05 00 01 03 0428

10 11 12 13 14 15 20 21 23 24
20 21 22 23 24 25 40 41 43 44
30 31 32 33 34 35 --->
40 41 42 43 44 4532

50 51 52 53 54 55

In general, PruneGrid should be used on high density
index space dimensions, meaning the majority of func-
tion calls should be executed. On low density index36

space dimensions, CompressGrid should be executed.

CUDA index spaces support only a lim-
ited number of dimensions, with a lim-
ited length.40

To handle this, we introduce two inverse mappings:
the SplitLast and FoldLast2. These two mappings
can best be used in combination with the Permute
mapping introduced a bit further below. These map-44

pings can only be executed on index spaces without a
lowerbound, step or width.

SplitLast splits the last (innermost) dimension into
two, increasing the dimensionality by one. The map-48

ping takes the length of the innermost dimension as an

argument l. Note that the length of the original dimen-
sion may be increased to make sure the upperbound
is a multiple of the given length. All function execu-
tions for those extra index vectors will be returned, 4

so they will not be executed, so some overhead is ex-
pected. In the partition body function, the original
index is recomputed from the indexes on the two new
dimensions. The index vectors are placed in the two 8

new dimensions using the second to last dimension as
mayor and the last dimension as minor dimensions.

Example index space transformation with
l = 6: 12

(.. means the function for this index vector will be
returned)

00 01 02 03 04 05 06 07 08 09
| 16

V
00 01 02 03 04 05
06 07 08 09

FoldLast2 folds the last (innermost) two dimensions 20

into one, decreasing the dimensionaligy by one. It
is the inverse mapping to SplitLast. In the partition
body function, the original two indexes are recomputed
from the index on the new dimension. The index 24

vectors are placed in the new dimension using the
original second to last dimension as mayor and the
original last dimension as minor dimensions.

Example index space transformation with 28

l = 6:

00 01 02 03 04 05
10 11 12 13 14 15

| 32

V
00 01 02 03 04 05 10 11 12 13 14 15

CUDA index spaces spawn threads in
warps of 32. 36

Having the total number of index vectors something
else then a multiple of 32 will slow down the hardware
thread creation process significantly. Because of this,
we want to pad the number of threads to a multiple of 40

32. The PadLast mapping handles this for us. Note
that the number 32 may differ per GPU device.

PadLast takes one parameter p. It adds indexes to the
end of the last (innermost) dimension until it its length 44

is a multiple of p. In the partition body function, all
threads added here are returned again. Unless this
mapping is used to generate loads of extra indexes,
the overhead should be reasonably small. 48

Example index space transformation with

5

p = 7:
(.. means the function for this index vector will be
returned)

00 01 02 03 04 05 00 01 02 03 04 05 ..4

10 11 12 13 14 15 10 11 12 13 14 15 ..
20 21 22 23 24 25 20 21 22 23 24 25 ..
30 31 32 33 34 35 ---> 30 31 32 33 34 35 ..
40 41 42 43 44 45 40 41 42 43 44 45 ..8

50 51 52 53 54 55 50 51 52 53 54 55 ..

CUDA performs caching.
The GPU will be fastest when the indexes are ordered
in a way that neighboring data is accessed by neigh-12

boring threads. Because SAC is a functional language,
it may replace some operations on mappings with ac-
cessor functions. This means that the order of the
dimensions in the data may be different to the or-16

der of the dimensions in the index space. Permute
can be used to rectify that. Additionally, Permute
can be used to setup the index space for a SplitLast,
FoldLast2 or PadLast.20

Permute takes the permutation as argument P. It
changes the order of dimensions by permuting L, U, T
and W. In the partition body function, it changes the
order of the dimensions of the iv back to the original24

permutation. The overhead of this mapping is exactly
0, as this can be fully handled in the compiler. No
code is generated for this mapping.

Example index space transformation with28

p = 7:

00 01 02 03 04 05 00 10 20 30 40 50
10 11 12 13 14 15 01 11 21 31 41 51
20 21 22 23 24 25 02 12 22 32 42 5232

30 31 32 33 34 35 ---> 03 13 23 33 43 53
40 41 42 43 44 45 04 14 24 34 44 54
50 51 52 53 54 55 05 15 25 35 45 55

1.4 Mental model36

TODO: change or delete?

To help understanding what’s going on, we will create a
simple mental model of the steps we need to implement
this. The mental model follows the structure of the40

figure above.

• On the left hand side, we have the SAC index-
space and indexes

• On the right hand side, we have the CUDA thread-44

space and indexes
• When executing a mapped partition, we perform

the following steps:

– Firstly, we map the index space itself, moving
right in our mental model

– Secondly, we have CUDA generate the
threads and indexes, moving down in our 4

mental model
– Thirdly, we have to map the generated in-

dexes back to their SAC counterparts, mov-
ing left in our mental model 8

– Lastly, we execute the with-loop body. We
will not discuss this in further detail, so it is
not included in our mental model.

6

Chapter 2

Formalization of mappings

2.1 Preliminary definitions
Before we jump into the definitions of index spaces and
their mappings, we will first create some preliminary
definitions and notations.4

Definition 2.1 (Preliminary assumptions). (prelimi-
naries)

• B = {>,⊥} is the set of boolean values.

• N is the set of natural numbers, including 08

• An denotes a vector of type A of length n ∈ N.

• Usually, we distinguish capital variables from low-
ercase variables:

– If we talk about capital U , L, . . . , they de-12

note the vectors
– If we talk about Ui, Li, . . . , they denote the

value of a vector in dimension i.
– If we talk about lower u, f , . . . , they denote16

either a normal value not being a vector, or
the variable is used as a shorthand for a vec-
tor variable when the dimension is apparent
from context.20

• If f : A → B is a function, then for any n we
can apply that function on vectors An → Bn by
applying it to each dimension of the vector:

f(I) = I ′, with ∀d ∈ [0..n− 1], I ′d = f(Id)24

• If f : A → B is a function, then for any n, f↓ :
An → B we will apply that same operation to
each dimension of the vector. The result is then
> iff all results are >:28

f↓(N) =
{
> | f(A) = >n

⊥ | otherwise

We will mostly work with vectors of natural or whole
numbers. In line with the preliminary assumptions,
these types are denoted as Nn and Zn, for some n ∈ N.

Definition 2.2 (Posets using product order). (poset)

We define two partial orderings (posets) on the set of
all vectors of type Zn.

The first poset we define is the product order [3]. In 4

our context, the product order for two vectors I, I ′ ∈
Nn will be defined as the poset (Zn,≤) with for all
I, I ′ ∈ Zn:

I ≤ I ′ ⇐⇒ ∀d ∈ [0..n− 1], Id ≤ I ′d 8

The required proofs, such as transitivity, reflexivity
and antisymmetry are given in [3].

The second poset we define is the poset (Zn,≤↓) us-
ing the definition of <↓ as described in definition 2.1. 12

We still have to prove (Zn,≤↓) is a valid poset, by
showing the properties reflexivity, antisymmetry and
transitivity on it.

Proof. reflexivity: I ≤↓ I. By definition 2.1, this is 16

equal to ∀d ∈ [0..n− 1], Id ≤ Id. This is always true,
as for every x ∈ Z holds x ≤ x.

antisymmetry: if I ≤↓ I ′ and I ′ ≤↓ I, then I = I ′. We
prove this by contradiction. Let’s state that I 6= I ′ 20

and I ≤ I ′. Note that for I 6= I ′ to hold, we need
n ≥ 1. This means that ∀d ∈ [0..n− 1], Id < I ′d. This
contradicts the assumption that I ′ ≤↓ I. E

transitivity: if I ≤↓ I ′′ and I ′′ ≤↓ I ′ then I ≤↓ I ′. We 24

know that ∀d ∈ [0..n− 1], Id ≤ I ′′d ≤ I ′d → Id ≤ I ′d, as
it is the case for all x, y, z ∈ Z. From these assumptions
combined, we can conclude that I ≤↓ I ′. �

Note. There is a difference between I < I ′ and I <↓ I ′. 28

[0, 1] < [1, 1], but [0, 1] ≮↓ [1, 1]. The same difference
exists between I ≤ I ′ 6⇐⇒ I ≤↓ I ′.

Note. Nn ⊂ Zn, so this partial order works on natural
numbers too. 32

7

2.2 Index spaces and mappings
Let us start with some definitions. Note that some
definitions are further specified in definition 2.4.

Definition 2.3 (Index space transformations). (index-4

space-transform)

• Let S ∈ S be an index space. The exact definition
of S and S will be discussed in definition 2.4.

• Let ∗S ∈ ∗S be an index space descriptor. An8

index space descriptor is a tuple of values describ-
ing what values should be in the index space. The
exact definition of ∗S and ∗S will be discussed in
definition 2.4.12

• Let I ∈ S be an index in index space S respec-
tively.

• Let gen : ∗S → S be the index space generator
function. It maps the index space descriptor to16

an index space.

• Let tfs
→ : ∗S → ∗S be an index space mapping.

It maps an index space descriptor from the SAC
side (left) more towards the CUDA side (right).20

• Let tf i
← : S′ → S be an index mapping. It

maps an index from the CUDA side (right) more
towards the SAC side (left). The domain and
codomain of tf i

← are dependent on the index24

space descriptor of the codomain and the gen
and tfs

→ functions: ∗S′ = tfs
→(∗S), S = gen(∗S)

and S′ = gen(∗S′).

• A partition mapping is a pair of (tfs
→, tf i

←). In28

normal with-loop execution, we will first call tfs
→

on the index space descriptor, then generate the
index space using gen and finally transform all
indexes back to the initial index space. The result32

of these function calls should be equal to calling
gen directly:

gen(∗S) = {tf i
←(I)|I ∈ gen(tfs

→(∗S))}

Before we can formalize the definition of an index36

space further, we have to discuss the requirements.
We already know that an index space descriptor is a
set of integer vectors with the same length, defining the
lowerbound, upperbound, step and width values. tfs

→40

can change these parameters when transforming an
index space descriptor, as long as tf i

← can transform
the resulting index space back into the original index
space.44

Because we need to recompute the original left-hand
indexes from the mapped right-hand indexes, the
mapped index space can never be smaller then the
original index space on the left. However, some map-48

pings may introduce extra elements in an in index

space. An example of such a mapping is PadLast.
PadLasts

→ will purposefully increase the size of the
index space by increasing the upperbound. However,
the extra partition body function calls for these index 4

vectors should not actually be executed. We introduce
the ⊥ element as a way to remove an index vector from
an index space: a tf i

← can discard a partition body
function call by mapping it’s index to ⊥. Because no 8

indexes can be created out of thin air, we can assume
that tf i

←(⊥) is always equal to ⊥ as well.

We can now formally define our index spaces. We
will differentiate between three types of index spaces. 12

Grid index spaces, normalized index spaces, and dense
index spaces. Grid index spaces are index spaces de-
fined by the lowerbound, upperbound, step and width.
Normalized index spaces are a subset of grid index 16

spaces without a lowerbound, or where the lowerbound
is zero. Dense index spaces are a subset of normalized
index spaces without a step and width, or where the
step equals the width. 20

Definition 2.4 (Index spaces). (index-space)

• Index space Sn ∈ Sn := P(Nn∪{⊥}), with n ∈ N
and P the power set.

• Grid index space ∗Sn
g := (L, U, T, W) ∈ ∗Sn

g ⊂ Sn
24

– L, U, T, W ∈ N, L ≤ U and W ≤ T

– gen(∗Sn
g) = {I|I ∈ Sn∧

(I = ⊥∨(L ≤ I <↓ U∧(I−L)
−→
% T <↓ W))}

• Normalized index sp. Sn
n := (U, T, W) ∈ Sn

n ⊂ Sn
g 28

– gen(∗Sn
n) = gen((0, U, T, W))

• Dense index space Sn
d := (U) ∈ Sn

d ⊂ Sn
n

– gen(∗Sn
n) = gen((0, U, 1, 1))

• For all tf i
←: tf i

←(⊥) = ⊥ 32

Lemma 2.5 (gen of normalized and dense index
spaces). (gen-norm-dense)

Because gen of normalized en dense index spaces are
just specialized versions of the gen of grid index spaces, 36

we can simplify their formula’s a bit.

• gen(∗Sn
n) = {I|I ∈ Sn∧

(I = ⊥ ∨ (0 ≤ I <↓ U ∧ (I − 0)
−→
% T <↓ W))}

⇐⇒ 40

gen(∗Sn
n) = {I|I ∈ Sn∧

(I = ⊥ ∨ (I <↓ U ∧ I
−→
% T <↓ W))}

• gen(∗Sn
d) = {I|I ∈ Sn∧

(I = ⊥ ∨ (0 ≤ I <↓ U ∧ (I − 0)
−→
% 1 <↓ 1))} 44

⇐⇒

8

gen(∗Sn
n) = {I|I ∈ Sn∧

(I = ⊥ ∨ I <↓ U)}

Mapping correctness
As stated before, transforming the index space right4

and transforming the generated indexes back left
should be equivalent to generating the indexes on
the original index space:

∀Sn ∈ Sn : gen(Sn) = {tf i
←(I)|I ∈ gen(tfs

→(Sn))}8

However, this predicate is not entirely accurate. Be-
cause sets cannot contain duplicate elements, there
may be more then one element I’ in Sn′ with tf i

←(I ′) =
I with I ∈ Sn. When executing a with-loop partition,12

we do not want two partition body function calls with
the same index. The one exception to this statement is
⊥. Index invokations with index ⊥ won’t be executed
anyway, so there may be as many as we like.16

To formalize this difference, we will distinguish between
the operative subset and the excess subset of an index
space.

Definition 2.6 (Operative and excess subsets).20

(operative-subset)

• The operative subset of an index space O(Sn) is
the index space without ⊥.

O(Sn) = Sn\{⊥}24

• The excess subset of an index space E(Sn) is {⊥}.

E(Sn) = {⊥}

• The operative subset of an index space Sn after a
partition mapping (Otf (Sn)) is the subset of Sn′

28

that gets mapped to the operative subset of Sn

by tf i
←.

Otf (Sn) = {i|tf i
←(i) ∈ O(Sn) ∧ i ∈ S′}

• The excess subset of an index space S after a32

partition mapping (Etf (Sn)) is the subset of Sn′

that tf i
← maps to the excess subset of Sn, e.g. that

tf i
← maps to ⊥.

Etf (Sn) = {i|tf i
←(i) = ⊥ ∧ i ∈ Sn′}36

Note that, by definition, for any well-defined tf and
S:

• O(Sn) ∪ E(Sn) = Sn

• Otf (Sn) ∪ Otf (Sn) = Sn′
40

• O(Sn) ∩ E(Sn) = ∅
• Otf (Sn) ∩ Otf (Sn) = ∅

We can now fully formalize the requirements of a parti-
tion mapping. We will call these requirements mapping44

equivalence.

Definition 2.7 (Mapping equivalence). (mapping-
equivalence)

A partition mapping tf is mapping equivalent iff:

• tfs
→ is well-defined 4

• tf i
← is well-defined

• tf i
← is operational bijective:

tf i
← : Otf (Sn)→ O(Sn) is a bijection

2.3 Proving mapping equiva- 8

lence
In proving mapping equivalence for the different map-
pings, we will oftentimes use similar very similar tech-
niques or lemma’s. In this section we will specify a 12

few of those in lemma’s and definitions. We also talks
about general approaches for some situations.

Notation of domains and codomains
Whenever we are discussing a mapping, either as a 16

single transformation or as a pair of transformations,
we define the following properties over the domains
and codomains:

• The right hand side of the mapping (the codomain 20

of a tfs
→ and the domain of a tf i

←) will have
the same variables as the left hand side of the
mapping, with a prime (’) added. These can be S
and S and variations, I, L, U, T, W and lowercase 24

variants, and any other helper variables we define
in the process.

• The left hand side of the mapping (the domain of
a tfs

→ and the codomain of a tf i
←) will have the 28

non-prime version of variables.
• For every ∗S, we assume there to be an S with

S = gen(∗S). Likewise, for every S we assume
there to be a ∗S. 32

Well-definedness of tf s
→

Lemma 2.8 (Well-definedness of tfs
→). (tf-wds)

For any tfs
→ : ∗S → ∗S′ we will have to prove

well-definedness by proving that for any ∗S ∈ ∗S : 36

tfs
→(∗S) ∈ ∗S′. To see exactly what this entails, we

have to expand the definition and constraints of S ∈ S.
For ∗Sn

g
′ ∈ ∗Sn

g , we have to prove that:

• L′, U ′, T ′, W ′ ∈ Nn
40

• L′ ≤ U ′

• T ′ ≤W ′

9

By definition of ∗Sn
n and ∗Sn

d , we have to substitute
L = 0 and T = 1, W = 1 respectively. This means
we can simplify the proofs for any ∗Sn

n ∈ ∗Sn
n and

∗Sn
d ∈ ∗Sn

d .4

• For ∗Sn
n ∈ ∗Sn

n it is sufficient to prove:

– U ′, T ′, W ′ ∈ Nn

– T ′ ≤W ′

We can omit 0 ≤ U ′, as this holds for any U ′ ∈8

Nn.

• For ∗Sn
d ∈ ∗Sn

d it is sufficient to prove:

– U ′ ∈ Nn

Well-definedness of tf i
←12

Lemma 2.9 (Well-definedness of tf i
←). (tf-wdi)

For any tf i
← : S′ → S we will have to prove well-

definedness by proving that for any I ′ ∈ S′ : tf i
←(I ′) ∈

S. To see what exactly this means, we have to expand16

the definition of gen for that particular index space.
For any tf i

←, we have to prove:

Given I ′ with I ′ = ⊥ ∨ (L′ ≤ I ′ <↓ U ′ ∧ (I ′ −
L′)
−→
% T ′ <↓ W ′),20

Then I = ⊥∨ (L ≤ I <↓ U ∧ (I−L)
−→
% T <↓ W), with

I = tf i
←(I ′) should hold.

Note that this automatically holds for I ′ = ⊥, because
by definition, tf i

←(⊥) = ⊥ for any tf i
←. Additionally,24

we can use the simplifications from lemma 2.5 to make
simpler proofs for codomains in Sn

n and Sn
d :

• For tf i
← : Sn

g
′ → Sn

g :

Given I ′ with L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′)
−→
% T ′ <↓28

W ′,
Then I = ⊥∨ (L ≤ I <↓ U ∧ (I −L)

−→
% T <↓ W),

with I = tf i
←(I ′) should hold.

• For tf i
← : Sn

g
′ → Sn

n :32

Given I ′ with L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′)
−→
% T ′ <↓

W ′,
Then I = ⊥∨ (I <↓ U ∧ (I−L)

−→
% T <↓ W), with

I = tf i
←(I ′) should hold.36

• For tf i
← : Sn

g
′ → Sn

n :

Given I ′ with L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′)
−→
% T ′ <↓

W ′,
Then I = ⊥ ∨ I <↓ U , with I = tf i

←(I ′) should40

hold.

Operational bijectivity of tf i
←

Lemma 2.10 (Operational bijectivity of tf i
←). (tfi-

opbi)

For any well-defined tf i
← : S′ → S we need prove that 4

tf i
← : Otf (S) → O(S) is a bijection. We do this by

showing A surjectivity and B injectivity.

A For surjectivity, we need to prove that for each
element I in O(S), there is an element I ′ in Otf (S) 8

with tf i
←(I ′) = I:

Given an I ∈ O(S):
∃I ′ ∈ Otf (S), tf i

←(I ′) = I

However, by definition, we know that Otf (S) is exactly 12

the subset of S′ with tf i
←(I ′) ∈ S. Because of this, it

is equivalent to prove$:

Given an I ∈ O(S):
∃I ′ ∈ S′, tf i

←(I ′) = I 16

B For injectivity, we need to prove that if two indexes
I ′, I ′′ ∈ Otf (S) both map to the same element I in S,
then they are the same element:

Given an I ′, I ′′ ∈ Otf (S): 20

tf i
←(I ′) = tf i

←(I ′′)→ I ′ = I ′′

Again, we can make use of the definition of Otf (S)
and rewrite the proposition as:

Given an I ∈ O(S) and I ′, I ′′ ∈ S′: 24

tf i
←(I ′) = I ∧ tf i

←(I ′′) = I → I ′ = I ′′

Separating dimensions
In many cases, it is easier to talk about or prove
something for one single dimension instead of for all 28

dimensions at once. This is possible when the dimen-
sions are independent from eachother in the current
context. To enable us to easily talk about those indi-
vidual dimensions, we may separate dimensions. 32

Definition 2.11 (Separating dimensions). (sep-dim)

When separating dimensions, we prove or show a prop-
erty on a single abstract dimension. If we can prove it
for any dimension, we know it has to be true for all 36

dimensions.

Whenever we separate dimensions, we will implicitly
introduce the following variables:

• The variable d contains the current abstract di- 40

mension we are talking about
• The variables i, l, u, t, w, i′, l′, u′, t′, w′ are the val-

ues of their captital counterparts in dimension
d 44

• tf i
←d(I) are the values of tf i

←(I) in dimension d,

10

• tf i
←d(i) are the values of tf i

←(I) in dimension d,
iff this function is only dependent on the values
on dimension d,

Definition 2.12 (Dimension dependency). (dim-dep)4

In the context of a certain mapping, two dimensions
d and d′ with d 6= d′ of their index spaces can be
either dependent or independent. Which one of them
is applicable can be derived from the definitions of8

tfs
→ and tf i

←.

For some dimension d holds:

• If the definition of tfs
→ or tf i

← for dimension d
possibly refers to some Ld′ , Ud′ , Td′ , Wd′ , Id′ with12

d 6= d′, then dimensions d and d′ are dependent.
• The opposite is automatically also true: if the

defiition of tfs
→ or tf i

← for some dimension d′

possibly refers to Ld, Ud, Td, Wd, Id with d 6= d′,16

dimensions d and d′ are dependent.
• If dimensions d and d′ are not dependent, they

are dependent.
• If there is no d′ so that d and d′ are dependent,20

we speak of d as being independent.

Lemma 2.13 (Proofs with separated dimensions).
(sep-dim-prf)

In the proofs outlined by lemma’s 2.8, 2.9 and ??, it is24

always possible to separate dimensions as in definition
2.11. The properties in question are:

• Well definedness of tfs
→

• Well definedness of tf i
←28

• Operational injectivity of tf i
←

• Operational surjectivity of tf i
←

Proof. For the well definedness of tfs
→ and tf i

←, this
is trivial. Both the definition of Sn

g and I ∈ Sn
g are32

defined so that the dimensions are completely inde-
pendent of eachother.

For the operational injectivity and surjectivity of tf i
←,

this follows from how I ∈ Sn
g is defined. It is defined36

as ∀d ∈ [0..n−1] : Id ∈ Sn
g d ⇐⇒ I ∈ Sn

g . This means
that if you can prove for all dimensions that they are
surjective and injective, you can prove that tf i

← is
surjective and injective. Of course, some extra steps40

may be required if the dimensions are not independent
of eachother in tf i

←. �

(Partially) Identity mappings
In some cases, mappings leave certain dimensions com-44

pletely intact, behaving like an identity mapping for
those dimensions. To avoid repeating the same proof
over and over again, we will prove mapping equivalence
for such an identity dimension.48

Lemma 2.14 (Mapping equivalence for identity di-
mensions). (tf-idd)

For any dimension d that is separated using definition
2.11 and tfs

→d((l, u, s, w)) = (l, u, s, w), tf i
←d(i) = i, 4

tf is mapping equivalent.

Proof. Using definition 2.7 we now have to prove A
tfs
→ is well defined, B tf i

← is well defined and C tf i
←

is operationally bijective. 8

A We know that l, u, s, w ∈ N. By definition,
tfs
→((l, u, s, w)) = (l, u, s, w). Using lemma $2.8, we

know that tfs
→ is well defined.

B We know that tfs
→(∗Sn

g) = ∗Sn
g . We also know 12

that tf i
←(i) = i. This makes tf i

← an identity function,
which is well defined.

C Using lemma 2.10, we have to prove C.1 ∃i′ ∈
Sn

g , tf i
←d(i′) = i for any i ∈ Sn

g indimensiond, and 16

C.2 tf i
←(i′) = i ∧ tf i

←(i′′) = i → i′ = i′′ for any
i, i′, i′′ ∈ Sn

g .

C.1 By definition, if i′ = i then tf i
←d(i′) = i.

C.2 By definition, tf i
←d(i′) = i ⇐⇒ i′ = i. This 20

also holds for i′′. Now we can prove i′ = i = i′′ =⇒
i′ = i′′. �

2.4 ShiftLB
ShiftLB removes the lowerbound of an index space 24

by shifting the index space so that the lowerbound
becomes 0. This means that the mapping transforms
any grid index space to a normalized index space.

Definition 2.15 (ShiftLB). (def-shiftlb) 28

• ShiftLBs
→ : ∗Sn

g → ∗Sn
n

ShiftLBs
→((L, U, T, W)) = (U ′, T ′, W ′) with:

– U ′ = U − L
– T ′ = T 32

– W ′ = W

• ShiftLBi
← : Sn

n
′ → Sn

g

ShiftLBi
←(I) = I + L

Lemma 2.16 (ShiftLBs
→ is well-defined). (shift-wds) 36

Given any ∗Sn
g ∈ ∗Sn

g . We now have to prove that
ShiftLBs

→(∗Sn
g) ∈ Sn

n.

Proof. Using lemma 2.8 for ∗Sn
n , we have to prove A

U ′, T ′, W ′ ∈ N, B W ′ ≤ T ′. 40

A As L ≤ U holds, we know that U − L is a vector
of natural numbers ≥ 0. This means that U ′ ∈ Nn.

11

T ′ ∈ Nn and W ′ ∈ Nn holds too, as T ∈ Nn and
W ∈ Nn.

B W ′ ≤ T ′ holds, as W ≤ T holds. �

Lemma 2.17 (ShiftLBi
← is well-defined). (shift-wdi)4

Given any I ′ ∈ Sn
n
′. We now have to prove that

ShiftLBi
←(I ′) ∈ Sn

g .

Proof. Using lemma 2.9 for codomain Sn
g , we can now

prove for any given I ′ and I = ShiftLBi
←(I ′):8

L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′) % T ′ <↓ W ′ →
I = ⊥ ∨ (L ≤ I <↓ U ∧ (I − L) % T <↓ W)

⇐⇒

0 ≤ I ′ <↓ U − L ∧ (I ′ − 0) % T <↓ W →12

L ≤ (I ′ + L) <↓ U ∧ (I ′ + L− L) % T <↓ W
Inserted definitions of shiftLB, pruned left or clause

⇐⇒

0 ≤ I ′ <↓ U − L ∧ I ′ % T <↓ W →16

L ≤ (I ′ + L) <↓ U ∧ I ′ % T <↓ W
Some simplifications of formulas

⇐⇒

0 ≤ I ′ <↓ U − L ∧ I ′ % T <↓ W →20

L ≤ (I ′ + L) <↓ U
Right ‘and’ clause is true from our assumption, sub-
stracted L from formula

⇐⇒24

0 ≤ I ′ <↓ U − L ∧ I ′ % T <↓ W →
0 ≤ I ′ <↓ U − L

�

Lemma 2.18 (ShiftLBi
← is operational bijective).28

(shift-opbi)

Take the operational parts of Sn
g : O(Sn

g) and
Sn

n
′ : OShiftLBi

←
(Sn

g)). We now have to prove that
ShiftLBi

← : OShiftLBi
←

(Sn
g)→ O(Sn

g) is bijective.32

Proof. Using lemma 2.10, we now have to prove A
surjectivity and B injectivity.

A Given I ∈ O(Sn
g). We now have to prove that there

is some I ′ ∈ Sn
n
′ with tfi(I ′) = I.36

We define this I ′ as I −L. We now have to prove that
1 tf i

←(I ′) = I and 2 I ′ ∈ Sn
n
′.

1 tf i
←(I ′)

= I ′ + L40

= I − L + L
= I

2 We know that I ∈ O(Sn
g). We can now prove:

L ≤ I <↓ U ∧ (I − L) % T <↓ W →
L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′) % T ′ <↓ W ′

⇐⇒ 4

L ≤ I <↓ U ∧ (I − L) % T <↓ W →
0 ≤ (I − L) <↓ (U − L) ∧ (I − L− 0) % T <↓ W
Inserted definitions of prime values

⇐⇒ 8

L ≤ I <↓ U ∧ (I − L) % T <↓ W →
L ≤ I <↓ U ∧ (I − L) % T <↓ W
Right ‘and’ clause is true from our assumtion, added
L to formula 12

B Given I ∈ O(Sn
g) and I ′, I ′′ ∈ Sn

n
′. We now have

to prove that if tf i
←(I ′) = I and tf i

←(I ′′) = I, then
I ′ = I ′′. We prove this by contradiction. Assume there
are two I ′ 6= I ′′ with tf i

←(I ′) = I and tf i
←(I ′′) = I: 16

I ′ 6= I ′′ ∧ tf i
←(I ′) = I ∧ tf i

←(I ′′) = I

⇐⇒

I ′ 6= I ′′ ∧ I ′ + L = I ∧ I ′′ + L = I

⇐⇒ 20

I ′ 6= I ′′ ∧ I ′ = I − L ∧ I ′′ = I − L

⇐⇒

I ′ 6= I ′′ ∧ I ′ = I ′′ E �

Theorem 2.19 (ShiftLB is mapping-equivalent). 24

(shift-me)

By definition 2.7, ShiftLB is mapping equivalent iff:

• A ShiftLBs
→ is well defined

• B ShiftLBi
← is well defined 28

• C ShiftLBi
← is operationally bijective

Proof. A is proven in lemma 2.16
B is proven in lemma 2.17
C is proven in lemma 2.18 � 32

2.5 CompressGrid
CompressGrid removes the step and width from a
normalized index space by removing the space between
the indexes in the index space. This means that the 36

mapping transforms any normalized index space into
a dense index space.

CompressGrid takes an extra argument C ∈ Bn,
defining which dimensions should be compressed. 40

Definition 2.20 (CompressGrid). (def-compress)

12

• CompressGrids
→ : Bn → ∗Sn

n → ∗Sn
n

CompressGrids
→(C)(U, T, W) = (U ′, T ′, W ′):

For definitions of U ′, T ′, W ′ we separate dimen-
sions as in definition 2.11.4

u′ =
{⌊u

t

⌋
∗ w + min(u % t, w) | c = >

u | c = ⊥

t′ =
{

1 | c = >
t | c = ⊥

w′ =
{

1 | c = >
w | c = ⊥

• CompressGridi
← : Sn

d
′ → Sn

n

CompressGridi
←(I ′) = I:

For the definition of I we separate dimensions as
in definition 2.11.8

i =

⌊

i′

w

⌋
∗ t + i′ % w | c = >

i′ | c = ⊥

Lemma 2.21 (CompressGrids
→ is well defined).

(compress-wds)

Given any ∗Sn
n ∈ ∗Sn

n. We now have to prove that
CompressGrids

→(∗Sn
n) ∈ ∗Sn

d .12

Proof. Using lemma 2.8 for ∗Sn
d , we now only have to

prove that U ′ ∈ Nn. We separate dimensions as in
definition 2.11. We also distinct two cases: c = > and
c = ⊥.16

• c = >:

u, t, w ∈ N→
⌊u

t

⌋
∗ w + min(u % t, w) ∈ N

⇐⇒

u, t, w ∈ N→
⌊u

t

⌋
, u, t, w ∈ N20

For u, t, w, this immediately holds from the as-
sumption. For

⌊u

t

⌋
this holds as well, as the floor

makes the result an integer again. As u and t are
at least zero, u

t
is at least zero as well.24

• c = ⊥:

We know u, t, w ∈ N. We also know u′ = u, t′ =
t, w′ = w. So, we can conclude that u′, t′, w′ ∈ N
as well. 4

�

Lemma 2.22 (CompressGridi
← is well defined).

(compress-wdi)

Given any I ′ ∈ Sn
d
′. We now have to prove that 8

CompressGridi
←(I ′) ∈ Sn

n .

Proof. Using lemma ?? for codomain Sn
n , we can now

prove for any given I ′ and I = CompressGridi
←(I ′):

I ′ ∈ Sn
n
′ → I ∈ Sn

n . We separate dimensions as in 12

definition 2.11.

i′ < u′ ∧ i′ % t′ < w′ →
i = ⊥ ∨ (i < u ∧ i % t < w)

⇐= 16

i′ < u′ ∧ i′ % t′ < w′ →
i < u ∧ i % t < w
Prune left hand side of the ‘or’

We now distinct two cases: c = > and c = ⊥. 20

• c = >:

i′ < u′ ∧ i′ % t′ < w′ →
i < u ∧ i % t < w

⇐⇒ 24

i′ < (
⌊u

t

⌋
∗ w + min(u % t, w)) ∧ i′ % 1 < 1→

(
⌊

i′

w

⌋
∗ t + i′ % w) < u∧

(
⌊

i′

w

⌋
∗ t + i′ % w) % t < w

We now split the proof into the left hand side and 28

the right hand side of the ‘and.’

– Left hand side:

i′ < (
⌊u

t

⌋
∗ w + min(u % t, w))→

(
⌊

i′

w

⌋
∗ t + i′ % w) < u 32

⇐⇒

i′ < (
⌊

u− u % t

t

⌋
∗ w + min(u % t, w))→⌊

i′

w

⌋
∗ t ≤ u− u % t ∧ i′ % w < u % t

Because
⌊u

t

⌋
=
⌊

u− u % t

t

⌋
and ab < c + 36

d← a ≤ c ∧ b < d

⇐⇒

13

i′ − i′ % w ≤
⌊

u− u % t

t

⌋
∗ w ∧ i′ % w <

min(u % t, w)→⌊
i′ − i′ % w

w

⌋
∗t ≤ u−u % t∧i′ % w < u % t

Similarly, because
⌊

i′

t

⌋
=
⌊

i′ − i′ % t

t

⌋
and4

ab < c + d← a ≤ c ∧ b < d

Now, we can split this proof in two:

∗ i′ − i′ % w ≤
⌊

u− u % t

t

⌋
∗ w →⌊

i′ − i′ % w

w

⌋
∗ t ≤ u− u % t8

⇐⇒

i′ − i′ % w ≤
⌊

u− u % t

t

⌋
∗ w →

i′ − i′ % w ≤ u− u % t

t
∗ w12

Divide by t, multiply by w

⇐⇒

i′ − i′ % w ≤
⌊

u− u % t

t

⌋
∗ w →⌊

i′ − i′ % w

w

⌋
≤ u− u % t

t
16

Divide by t

This holds, as u− u % t

t
=⌊

u− u % t

t

⌋
.

∗ i′ % w < min(u % t, w)→20

i′ % w < u % t

⇐⇒

i′ % w < u % t→24

i′ % w < u % t

– Right hand side:

i′ < (
⌊u

t

⌋
∗w+min(u % t, w))∧i′ % 1 < 1→28

(
⌊

i′

w

⌋
∗ t + i′ % w) % t < w

⇐=

i′ < (
⌊u

t

⌋
∗w+min(u % t, w))∧i′ % 1 < 1→

(
⌊

i′

w

⌋
∗ t) % t + (i′ % w) % t < w32

Because a % t+b % t < w → (a+b) % t < w

⇐⇒

i′ < (
⌊u

t

⌋
∗w+min(u % t, w))∧i′ % 1 < 1→

0 + (i′ % w) % t < w
Because (x ∗ t) % t = 0, if x ∈ N

This holds, by definition of % . 4

• c = ⊥:

i′ < u′ ∧ i′ % t′ < w′ →
i < u ∧ i % t < w

⇐⇒ 8

i′ < u ∧ i′ % t < w →
i′ < u ∧ i′ % t < w
Expand definitions of CompressGrids

→ for
u′, t′, w′ and CompressGridi

← for i 12

�

Lemma 2.23 (CompressGridi
← is operational bijec-

tive). (compress-opbi)

Take the operational parts of Sn
n : O(Sn

n) and Sn
n
′

16

: OCompressGridi
←

(Sn
n). We now have to prove that

CompressGridi
← : OCompressGridi

←
(Sn

n) → O(Sn
n) is

bijective.

Proof. We separate dimensions as in definition 2.11. 20

If c = ⊥, we have an identity mapping and we can
use lemma 2.14. For the rest of the proof, we can now
assume that c = >.

Using lemma 2.10, we now have to prove A surjectivity 24

and B injectivity.

A Given an i ∈ O(Sn
n)d and an i′ =

⌊
i

t

⌋
∗w+i % t. We

now have to prove that A.1 CompressGridi
←d(i′) = i

and A.2 i′ ∈ Sn
d
′
d. 28

A.1 CompressGridi
←d(i′)

=

⌊

i

t

⌋
∗ w + i % t

w

 ∗ t + i′ % w

Expanded definitions of CompressGridi
← and i′

=

⌊

i

t

⌋
∗ w

w

 ∗ t + i′ % w 32

bxc ∗w is a multiple of w, and by definition of i ∈ Sn
n ,

i % t < w, so we can remove the i % t.

=
⌊

i

t

⌋
∗ t + i′ % w

14

=
⌊

i

t

⌋
∗ t + (

⌊
i

t

⌋
∗ w + i % t) % w

Expanded definition of i′

=
⌊

i

t

⌋
∗ t + (i % t) % w

bxc ∗ w is a multiple of w4

=
⌊

i

t

⌋
∗ t + i % t

By definition of i ∈ Sn
n , i % t < w

= i

A.2 To prove:8

i < u ∧ i % t < w → i′ < u′ ∧ i′ % t′ < w′

We will now assume i < u∧ i % t < w to be true, and
prove the right hand side of the implication in two
parts: i′ < u′, and i′ % t′ < w′.12

• i′ < u′

⇐⇒⌊
i

t

⌋
∗ w + i % t <

⌊u

t

⌋
∗ w + min(u % t, w)

Expand defintions of i′ and u′16

⇐=

We will split into three cases:

–
⌊

i

t

⌋
∗ w >

⌊u

t

⌋
∗ w

This case is not possible, as by definition20

i < u.

–
⌊

i

t

⌋
∗ w =

⌊u

t

⌋
∗ w

Because of this equality and the fact that
i < u, we know that i % t < u % t. We also24

know that i % t < w. So we can conclude
that i % t < min(u % t, w), and thus that:⌊

i

t

⌋
∗ w + i % t <

⌊u

t

⌋
∗ w + min(u % t, w)

–
⌊

i

t

⌋
∗ w <

⌊u

t

⌋
∗ w28

Because of this equality, we know that the
difference between the two is at least w, so
it is sufficient to prove that:

i % t < min(u % t, w) + w32

This is trivially true, as by definition i % t <
w is true.

• i′ % t′ < w′

By definition, t′ = 1 and w′ = 1, so this true for36

any i′.

B Given I ∈ Sn
n . We now have to

prove that if CompressGridi
←d(i′) = i and

CompressGridi
←d(i′′) = i, then i = i′′. We

prove this by contradiction. Assume there are 4

two i′ 6= i′′ with CompressGridi
←d(i′) = i and

CompressGridi
←d(i′′) = i:

i′ 6= i′′ ∧ compressgridid(i′) = i ∧
CompressGridi

←d(i′′) = i 8

⇐⇒

i′ 6= i′′ ∧
⌊

i′

w

⌋
∗ t + i′ % w = i∧

⌊
i′′

w

⌋
∗ t + i′′ % w = i

Let’s try to take i′ = i′′, and try to add/substract to 12

i′ so that i′ 6= i′′:

• If you want the left hand side of the addi-
tion to stay the same, the maximum you can
add/substract to i′ is w − 1 16

• If you want the right hand side of the addition
to stay the same, you’d have to add/substract a
multiple of t. Remember that t ≥ w.

This means that it’s impossible to change the value 20

of i′ with either the left hand side or the right hand
side of the addition to change. Furthermore, it is also
impossible to change both sides and get them to even
out: 24

• The left hand side of the addition only changes
with multiples of w

• The right hand side of the addition changes with
a maximum of w − 1, as by definition i % t < w. 28

�

Theorem 2.24 (CompressGrid is mapping-equiva-
lent). (compress-me)

By definition 2.7, CompressGrid is mapping equivalent 32

iff:

• A CompressGrids
→ is well defined

• B CompressGridi
← is well defined

• C CompressGridi
← is operationally bijective 36

Proof. A is proven in lemma 2.21
B is proven in lemma 2.22
C is proven in lemma 2.23 �

2.6 PruneGrid 40

PruneGrid removes the step and width from a normal-
ized index space by mapping all indexes outside of the
grid to ⊥. This means that the mapping transforms
any normalized index space into a dense index space. 44

15

Definition 2.25 (PruneGrid). (def-prune)

• PruneGrids
→ : ∗Sn

n → ∗Sn
d

PruneGrids
→(U, T, W) = (U ′) with:

– U ′ = U4

• PruneGridi
← : Sn

d
′ → Sn

n

PruneGridi
←(I ′) =

{
I ′ | I ′ % T <↓ W
⊥ | I ′ % T ≮↓ W

Lemma 2.26 (PruneGrids
→ is well defined). (prune-

wds)

Given any ∗Sn
n ∈ ∗Sn

n. We now have to prove that8

PruneLBs
→(∗Sn

n) ∈ ∗Sn
d .

Proof. Using lemma 2.8, we just have to prove U ′ ∈ Nn.
We know U ∈ Nn. We also know U ′ = U . So, we can
conclude that U ′ ∈ Nn as well. �12

Lemma 2.27 (PruneGridi
← is well defined). (prune-

wdi)

Given any I ∈ Sn
d
′. We now have to prove that

PruneGridi
←(I ′) ∈ Sn

n .16

Proof. Using lemma 2.9, we can now prove for any
given I ′ and I = PruneGridi

←(I ′):

I ′ <↓ U ′ ∧ I ′
−→
% T ′ <↓ W ′ →

I = ⊥ ∨ (I <↓ U ∧ I
−→
% T <↓ W)20

We now distinct two cases:

• I ′ % T <↓ W :

I ′ <↓ U ∧ I ′
−→
% T <↓ W →

I ′ = ⊥ ∨ (I ′ <↓ U ∧ I ′
−→
% T <↓ W)24

Insert definitions of PruneGrids
→ and

PruneGridi
←

⇐⇒

I ′ <↓ U ∧ I ′
−→
% T <↓ W →28

I ′ <↓ U ∧ I ′
−→
% T <↓ W

Choose right ‘or’ clause

• I ′ % T ≮↓ W :

⊥ = ⊥ ∨ (⊥ <↓ U ∧ ⊥
−→
% T <↓ W)32

Insert definition of PruneGridi
←, prune assump-

tion

⇐⇒

⊥ = ⊥36

Choose left ‘or’ clause

�

Lemma 2.28 (PruneGridi
← is operational bijective).

(prune-opbi)

Take the operational parts of Sn
n : O(Sn

n) and Sn
d
′

4

: OP runeGridi
←

(Sn
n). We now have to prove that

PruneGridi
← : OP runeGridi

←
(Sn

n) → O(Sn
n) is bijec-

tive.

Proof. Using lemma 2.10, we now have to prove A 8

surjectivity and B injectivity.

A Given an I ∈ O(Sn
n). We take I ′ = I. We now

have to prove that A.1 PruneGridi
←(I ′) = I and

A.2 I ′ ∈ Sn
d
′. 12

We know that I ∈ O(Sn
n). This means, by definition,

that I ≤ U ∧ I % T <↓ W holds. From this, we can
conclude that:

A.1 PruneGridi
←(I ′) = I ′ = I 16

A.2 U ′ = U =⇒ I ′ <↓ U ′ ⇐⇒ I ′ ∈ Sn
d
′

B Given I ∈ O(Sn
g) and I ′, I ′′ ∈ Sn

n
′. We now

have to prove that if PruneGridi
←(I ′) = I and 20

PruneGridi
←(I ′′) = I, then I ′ = I ′′. We prove this

by contradiction. Assume there are two I ′ 6= I ′′ with
PruneGrid(I ′) = I and PruneGridi

←(I ′′) = I:

I ′ 6= I ′′∧PruneGrid(I ′) = I ∧ PruneGridi
←(I ′′) = I 24

⇐⇒

I ′ 6= I ′′∧I ′ = I∧I ′′ = I By definition of PruneGridi
←.

PruneGridi
←(⊥) = ⊥, and I ∈ O(Sn

g), so I ′ and I ′′

cannot be ⊥. 28

This is a contradiction by transitivity of =. E �

Theorem 2.29 (PruneGrid is mapping-equivalent).
(prune-me)

By definition 2.7, PruneGrid is mapping equivalent iff: 32

• A PruneGrids
→ is well defined

• B PruneGridi
← is well defined

• C PruneGridi
← is operationally bijective

Proof. A is proven in lemma 2.26 36

B is proven in lemma 2.27
C is proven in lemma 2.28 �

16

2.7 SplitLast
SplitLast increases the dimensionality by splitting the
last dimension in two. This means that the product
of the lenghts of the two new dimensions is equal to4

the length of the original dimension.

SplitLast takes an extra argument l ∈ N. We assume
UM to be a multiple of l and l > 0.

Definition 2.30 (SplitLast). (def-split)8

• We define the major and minor dimensions to be:
M = n− 1 the major dimension m = n the minor
dimension

• SplitLasts
→ : N→ ∗Sn

d → ∗Sn+1
d

′
12

SplitLasts
→(l)(U) = U ′:

For the definition of U ′ we separate dimensions
as in definition 2.11.

u′ =

u | d < M
UM

l
| d = M

l | d = m

• SplitLasti
← : Sn+1

d
′ → Sn

d16

SplitLasti
←(l)(I ′) = I:

For the definition of I we separate dimensions as
in definition 2.11.

i =
{

i′ | d < M

l ∗ I ′M + I ′m | d = M

Lemma 2.31 (SplitLasts
→ is well defined). (split-20

wds)

Given any ∗Sn
d ∈ Sn

d . We now have to prove that
SplitLasts

→(∗Sn
d) ∈ ∗Sn+1

d
′.

Proof. Using lemma 2.8 for Sn
d , we now only have to24

prove that U ′ ∈ N. We will separate dimensions as in
definition 2.11.

We distinct three cases:

• d < M28

In this case, u′ = u, and we know that u ∈ N, as
∗Sn

d ∈ Sn
d .

• d = M

In this case, u′ = UM

l
. By definition, UM is a32

multiple of l, so UM

l
∈ N.

• d = m

In this case, u′ = l, which by definition comes
from N.

� 4

Lemma 2.32 (SplitLasti
← is well defined). (split-wdi)

Given any I ′ ∈ ∗Sn+1
d

′. We now have to prove that
SplitLasti

←(I ′) ∈ Sn
d .

Proof. Using lemma 2.9 for codomain Sn
d , we can 8

now prove for any given I ′ and I = SplitLasti
←(I ′):

I ′ ∈ Sn+1
d

′ → I ∈ Sn
d . We separate dimensions as

in definition 2.11$. For d < M , we have an identity
mapping and we can use lemma 2.14$. For the rest of 12

the proof, we can now assume that d = M .

I ′ < U ′ → i < u

⇐=

I ′M < U ′M ∧ I ′m < U ′m → i < u 16

We are only interested in dimensions M and m

⇐⇒

I ′M <
u

l
∧ I ′m < l→ l ∗ I ′M + I ′m < u

Expand definitions of i and U ′ 20

⇐⇒

I ′M ≤
u

l
− 1 ∧ I ′m < l→ l ∗ I ′M + I ′m < u

As all parts are integers, we can rewrite the leftmost
comparison 24

⇐⇒

l ∗ I ′M ≤ u− l ∧ I ′m < l→ l ∗ I ′M + I ′m < u
Multiply leftmost comparison by l

This is true, as l ∗ I ′M + I ′m combined is less then 28

u− l + l. �

Lemma 2.33 (SplitLasti
← is operational bijective).

(split-opbi)

Take the operational parts of Sn
d : O(Sn

d) and 32

Sn+1
d

′: OSplitLasti
←

(Sn
d). We now have to prove that

SplitLasti
← : OSplitLasti

←
(Sn

d)→ O(Sn
d) is bijective.

Proof. We separate dimensions as in definition 2.11.
If d < M , we have an identity mapping and we will 36

use lemma 2.14. For the rest of this proof, we can now
assume that d = M .

Using lemma ??, we now have to prove A surjectivity
and B injectivity. 40

17

A Given an i ∈ O(Sn
d)M , I ′M =

⌊
i

l

⌋
, I ′m = i % l and

I ′d = Id for any d < M . We now have to prove that
A.1 SplitLasti

←M (I ′) = i and A.2 I ′ ∈ Sn+1
d

′.

A.1 SplitLasti
←M (I ′)4

= l ∗
⌊

i

l

⌋
+ i % l

Expanded definitions of SplitLasti
← and I ′

= (i− i % l) + i % l
Cancelled out the multiplication and division of l, reim-8

plemented the flooring as a modulo operation

= i

A.2 For dimensions d < M this is trivial, as this is12

the identity mapping. We now only have to discuss
dimensions M and m.

• Dimension M : IM < UM → I ′M < U ′M

We assume IM < UM to be true, and prove I ′M <16

U ′M .

I ′M < U ′M

⇐⇒⌊
IM

l

⌋
<

UM

l
20

Expanded definitions of I ′M and U ′M

⇐⇒
IM

l
<

UM

l

Because
⌊

IM

l

⌋
<

IM

l
24

IM < UM

As l > 0

B Given an I ∈ Sn
d and I ′, I ′′ ∈ Sn+1

d
′. We

now have to prove that if SplitLasti
←d(I ′) = i and28

SplitLasti
←d(I ′′) = i, then I ′M = I ′′M and I ′m = I ′′m.

We prove this by contradiction. Assume there are I ′, I ′′

with I ′M neqI ′′M or I ′m 6= I ′′m, SplitLasti
←d(I ′) = i and

SplitLasti
←d(I ′′) = i:32

(I ′M 6= I ′′M ∨ I ′m 6= I ′′m) ∧ SplitLasti
←d(I ′) = i ∧

SplitLasti
←d(I ′′) = i

⇐⇒

(I ′M 6= I ′′M ∨I ′m 6= I ′′m)∧ l∗I ′M +I ′m = i∧ l∗I ′′M +I ′′m = i36

Expanded definition of SplitLasti
←

Let’s compute I ′′M and I ′′m from I ′M and I ′M . If we want
to have l ∗ I ′′M + I ′′m retain it’s value, we have to either
increase l ∗ I ′′M and decrease I ′′m by the same amount,40

or the other way around. However, by definition,

0 ≤ I ′′m < l, and l ∗ I ′′M can only be increased or
decreased by multiples of l. Because of this, I ′′M = I ′M
and I ′′m = I ′m. E �

Theorem 2.34 (SplitLast is mapping-equivalent). 4

(split-me)

By definition 2.7, SplitLast is mapping equivalent iff:

• A SplitLasts
→ is well defined

• B SplitLasti
← is well defined 8

• C SplitLasti
← is operationally bijective

Proof. A is proven in lemma 2.31
B is proven in lemma 2.32
C is proven in lemma 2.33 � 12

2.8 FoldLast2
FoldLast2 is the inverse of SplitLast. It decreases
the dimensionality by folding the last two dimensions
together. This means that the length of the new di- 16

mension is equal to the product of the lengths of the
last two original dimensions.

Definition 2.35 (FoldLast2). (def-fold)

• We define the major and minor dimensions to be: 20

M = n− 2 the major dimension and m = n− 1
the minor dimension.

• FoldLast2s
→ : ∗Sn

d → ∗Sn−1
d

′

FoldLast2s
→(U) = U ′: 24

For the definition of U ′ we separate dimensions
as in definition 2.11.

u′ =
{

u | d < M

UM ∗ Um | d = M

• FoldLast2i
← : Sn−1

d
′ → Sn

d

FoldLast2i
←(I ′) = I: 28

For the definition of I we separate dimensions as
in definition 2.11.

i =

i′ | d < M⌊

i′

Um

⌋
| d = M

i′ % Um | d = m

18

Lemma 2.36 (FoldLast2s
→ is well defined). (fold-

wds)

Given any ∗Sn
d ∈ Sn

d . We now have to prove that
SplitLasts

→(∗Sn
d) ∈ ∗Sn−1

d
′.4

Proof. Using lemma 2.8 for Sn
d , we now only have to

prove that U ′ ∈ N. We will separate dimensions as in
definition 2.11.

We distinct two cases:8

• d < M

In this case, u′ = u, and we know that u ∈ N, as
∗Sn

d ∈ Sn
d .

• d = M12

In this case, u′ = UM ∗Um. As both UM , Um ∈ N,
we know u′ ∈ N.

�

Lemma 2.37 (FoldLast2i
← is well defined). (fold-16

wdi)

Given any I ′ ∈ ∗Sn−1
d

′. We now have to prove that
FoldLast2i

←(I ′) ∈ Sn
d .

Proof. Using lemma 2.9 for codomain Sn
d , we can20

now prove for any given I ′ and I = FoldLast2i
←(I ′):

I ′ ∈ Sn−1
d

′ → I ∈ Sn
d . We separate dimensions as

in definition 2.11$. For d < M , we have an identity
mapping and we can use lemma 2.14$. For the rest of24

the proof, we only have to prove the cases A d = M
and B d = m.

A d = M

i′ < u′ → i < u28

⇐⇒

i′ < UM ∗ Um →
⌊

i′

Um

⌋
< UM

Expand definitions of i and u′

⇐⇒32

i′

UM
< Um →

⌊
i′

Um

⌋
< UM

Divided left side of the implication by UM

This holds, as bXc ≤ X for any X.

B d = m36

I ′M < U ′M → i < u

⇐⇒

I ′M < U ′M → i′M % Um < Um

Expand definition of i40

This holds, as X % Y < Y holds for any X, Y ∈ N . �

Lemma 2.38 (FoldLast2i
← is operational bijective).

(fold-opbi)

Take the operational parts of Sn
d : O(Sn

d) and
Sn−1

d
′: OF oldLast2i

←
(Sn

d). We now have to prove that 4

FoldLast2i
← : OF oldLast2i

←
(Sn

d)→ O(Sn
d) is bijective.

Proof. We separate dimensions as in definition 2.11.
If d < M , we have an identity mapping and we will
use lemma 2.14. For the rest of this proof, we can 8

assume that d = M or d = m.

Using lemma ??, we now have to prove A surjectivity
and B injectivity.

A Given I ∈ O(Sn
d), I ′M = Um ∗ IM + Im and I ′d = Id 12

for any d < M . We now have to prove that A.1
FoldLast2i

←(I ′) = I and A.2 I ′ ∈ Sn−1
d

′.

A.1 We distinct three cases: d < M , d = M and
d = m. 16

• d < M

In this case we have an identity mapping, and we
can use lemma 2.14.

• d = M 20

FoldLast2i
←M (I ′)

=
⌊

I ′M
Um

⌋
Expand definition of FoldLast2i

←

=
⌊

Um ∗ IM + Im

Um

⌋
24

Expand definition of I ′M

=
⌊

Um ∗ IM

Um

⌋
As Um ∗ IM is a multiple of Um and Im < Um, we
can remove Im from the equasion 28

= IM

• d = m

FoldLast2i
←m(I ′) 32

= I ′M % Um

Expand definition of FoldLast2i
←

= (Um ∗ IM + Im) % Um

Expand definition of I ′M 36

= Im % Um

As Um ∗ IM % Um = 0, we can remove it

= Im

As Im < Um by definition of I ∈ Sn
d 40

19

A.2 For dimensions d < M this is trivial, as this is
the identity mapping. We now only have to discuss
dimension M .

IM < UM ∧ Im < Um → I ′M < U ′M4

⇐⇒

IM < UM ∧ Im < Um → Um ∗ IM + Im < UM ∗ Um

Expand definitions of I ′M and U ′M

⇐=8

IM < UM ∧ Im < Um →
Um ∗ IM ≤ UM ∗ Um − Um ∧ Im < Um

Split the smaller then into two smaller smaller then’s

⇐⇒12

IM < UM ∧ Im < Um → IM ≤ UM − 1 ∧ Im < Um

Divide by Um

This is trivially true.

B Given an I ∈ Sn
d and I ′, I ′′ ∈ Sn−1

d
′. We16

now have to prove that if FoldLast2i
←M (I ′) = IM ,

FoldLast2i
←M (I ′′) = IM , FoldLast2i

←m(I ′) = Im

and FoldLast2i
←m(I ′′) = Im, then I ′M = I ′′M . We

prove this by contradiction. Assume there are I ′, I ′′20

with I ′M 6= I ′′M for which this holds:

I ′M 6= I ′′M∧
FoldLast2i

←M (I ′) = IM ∧ FoldLast2i
←M (I ′′) = IM∧

FoldLast2i
←m(I ′) = Im ∧ FoldLast2i

←m(I ′′) = Im24

⇐⇒

I ′M 6= I ′′M∧⌊
I ′M
Um

⌋
= IM ∧

⌊
I ′′M
Um

⌋
= IM∧

I ′M % Um = Im ∧ I ′′M % Um = Im28

Expand definition of FoldLast2i
←

For
⌊

I ′M
Um

⌋
= IM ∧

⌊
I ′′M
Um

⌋
= IM to hold, I ′M and I ′′M

can differ at most Um − 1.

For I ′M % Um = Im ∧ I ′′M % Um = Im to hold, I ′M and32

I ′′M must differ an exact multiple of Um.

Combined, this ensures that I ′M = I ′′M , which contra-
dicts with I ′M 6= I ′′M . E

�36

Theorem 2.39 (FoldLast2 is mapping-equivalent).
(fold-me)

By definition 2.7, FoldLast2 is mapping equivalent iff:

• A FoldLast2s
→ is well defined40

• B FoldLast2i
← is well defined

• C FoldLast2i
← is operationally bijective

Proof. A is proven in lemma 2.31
B is proven in lemma 2.32
C is proven in lemma 2.33 �

2.9 Permute 4

Permute changes the order of dimensions, preparing it
for a mapping operating on specific dimensions, such
as FoldLast2 or PadLast. The mapping does not
change the dimensions themselves. 8

Permute takes an extra argument P ∈ Zn. We assume
P to be a valid permuatation of 0..[n− 1].

Definition 2.40 (Permute). (def-permute)

• Permutes
→ : Zn → ∗Sn

g → ∗Sn
g 12

Permutes
→(P)(L, U, T, W) = (L′, U ′, T ′, W ′):

For definitions of L′, U ′, T ′, W ′, we separate di-
mensions as in definition 2.11.

– l′ = Lp′ 16

– u′ = Up′

– t′ = Tp′

– w′ = Wp′

• Permutei
← : Sn

d
′ → Sn

n 20

Permutei
←(P)(I ′) = I:

For definition of I, we separate dimensions as in
definition 2.11.

– let p′ ∈ Z with Pp′ = d 24

i = I ′p′

Lemma 2.41 (Permutes
→ is well defined). (permute-

wds)

Given any ∗Sn
g ∈ ∗Sn

g . We now have to prove that 28

Permutei
←(∗Sn

g) ∈ ∗Sn
g .

Proof. Using lemma 2.8 for Sn
g , we now have to prove

that A L′, U ′, T ′, W ′ ∈ Zn and B L ≤ U and W ≤ T .
We separate dimensions as in definition 2.11. 32

A We know that l = Lp. By definition, Lp ∈ Z.
So, we can conclude that l ∈ Z also holds. Similarly,
u, t, w ∈ Z also hold.

B We know that l = Lp and u = Up. By definition, 36

Lp ≤ Up. So, we can conclude that l ≤ u also holds.
Similarly, w ≤ t also holds. �

Lemma 2.42 (Permutei
← is well defined). (permute-

wdi) 40

Given any I ′ ∈ Sn
g
′. We now have to prove that

Permutei
←(I ′) ∈ Sn

g .

20

Proof. Using lemma 2.9, we can now prove for any
given I ′ and I = PruneGridi

←(I ′). We split separate
dimensions for I.

L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′)
−→
% T ′ <↓ W ′ →4

i = ⊥ ∨ (l ≤ i <↓ u ∧ (i− l)
−→
% t <↓ w)

⇐⇒

L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′)
−→
% T ′ <↓ W ′ →

I ′p′ = ⊥∨(L′p′ ≤ I ′p′ <↓ U ′p′∧(I ′p′−L′p′)
−→
% T ′p′ <↓ W ′

p′)8

By definition of Permutei
←, with Pp′ = d. Because P

is a permutation, we know such a p′ exists.

This holds, as the right hand side of the implication is
equal to the left hand side in a single dimension. �12

Lemma 2.43 (Permutei
← is operational bijective).

(permute-opbi)

Take the operational parts of Sn
g : O(Sn

g) and
Sn

g
′ : OP ermutei

←
(Sn

g). We now have to prove that16

Permutei
← : OP ermutei

←
(Sn

g)→ O(Sn
g) is bijective.

Proof. Using lemma 2.10, we now have to prove A
surjectivity and B injectivity.

A Given an I ∈ O(Sn
g). For each d′ ∈ [0..n − 1],20

we take I ′ with 1 (tfi-opbi-Ip) I ′d′ = IPd′ . We now
have to prove that A.1 Permutei

←(I ′) = I and A.2
I ′ ∈ Sn

g
′.

A.1 By definition, for each d ∈ [0..n − 1] we have24

a p′ ∈ Z with 2 (tfi-opbi-Pp) Pp′ = d. We have to
prove that Id = I ′p′ .

Id

= I ′p′28

= IPp′ 1
= Id 2

A.2 We separate dimensions using definition 2.11 for
I ′. By definition, we now need to prove that:32

i′ = ⊥ ∨ (l′ ≤ i′ < u′ ∧ (i′ − l′) % t′ < w′)

⇐⇒

Lp′ ≤ IPd
< Up′ ∧ (Ip′ − Lp′) % Tp′ < Wp′

Truncated left hand side of the ‘or,’ expanded definition36

of Permutes
→ for l′, u′, t′, w′, expanded definition of i′

1

⇐⇒

Lp′ ≤ Ip′ < Up′ ∧ (Ip′ − Lp′) % Tp′ < Wp′40

This holds, as it holds for any dimension p′ ∈ [0..n−1],
and p′ ∈ [0..1] as P is a permutation of [0..n− 1].

B Given I ∈ O(Sn
g) and I ′, I ′′ ∈ Sn

g
′. We

now have to prove that if Permutei
←(I ′) = I and

Permutei
←(I ′′) = I, then I ′ = I ′′. We prove this by

contradiction. Assume there are two I ′ 6= I ′′ with 4

Permutei
←(I ′) = I and Permutei

←(I ′′) = I. We sep-
arate dimensions for I ′ and I ′′ using definition 2.11$

i′ 6= i′′ ∧ Permutei
←(i′) = i ∧ Permutei

←(i′′) = i

⇐⇒ 8

i′ 6= i′′ ∧ Pp′ = d ∧ I ′p′ = i ∧ I ′′p′ = i

⇐⇒

I ′ 6= I ′′ ∧ Pp′ = d ∧ I ′ = I ∧ I ′′ = I
As P is a permutation, the above holds for all p′ ∈ 12

[0..n− 1].

This is a contradiction by transitivity of = E �

Theorem 2.44 (Permute is mapping-equivalent).
(permute-me) 16

By definition 2.7, Permute is mapping equivalent iff:

• A Permutes
→ is well defined

• B Permutei
← is well defined

• C Permutei
← is operationally bijective 20

Proof. A is proven in lemma 2.41
B is proven in lemma 2.42
C is proven in lemma 2.43 �

2.10 Padlast 24

PadLast extends the length of the last dimension to
a multiple of a given integer. This is to prepare it for
the GPU warp size, or to be split using SplitLast.

PadLast takes an extra argument p ∈ Z to indicate 28

the size of the padding.

Definition 2.45 (PadLast). (def-pad)

• PadLasts
→ : Z→ ∗Sn

g → ∗Sn
g

PadLasts
→(p)(L, U, T, W) = (L′, U ′, T ′, W ′): 32

– L′ = L

– T ′ = T

– W ′ = W

– For the definition of U ′, we separate dimen- 36

sions as in definition 2.11.

u′ =

 u | d 6= n− 1⌈
u

p

⌉
∗ p | d = n− 1

21

• PadLasti
← : Sn

g
′ → Sn

g

PadLasti
←(p)(I ′) = I:

–

I =
{

I ′ | I ′ <↓ U
⊥ | I ′ ≮↓ U

Lemma 2.46 (PadLasts
→ is well defined). (pad-wds)

Given any ∗Sn
g ∈ ∗Sn

g . We now have to prove that4

PadLasts
→(∗Sn

g) ∈ ∗Sn
g .

Proof. Using lemma 2.8 for Sn
g , we now have to prove

that A L′, U ′, T ′, W ′ ∈ Zn and B L ≤ U and W ≤ T .
We separate dimensions as in definition 2.11.8

A By definition of PadLasts
→: L′ = L, T ′ = T, W ′ =

W . Because L, T, W ∈ Z, L′, T ′, W ′ ∈ Z as well.

Similarly, U ′ =
⌈

U

p

⌉
∗ 32, so U ′ ∈ Z as well.

B We know that L′ = L, U ′ ≥ U, T ′ = T, W ′ = W .12

We also know that L ≤ U and W ≤ T . Together, this
proves L′ ≤ U ′ and W ′ ≤ T ′. �

Lemma 2.47 (PadLasti
← is well defined). (pad-wdi)

Given any I ′ ∈ Sn
g
′. We now have to prove that16

PadLasti
←(I ′) ∈ Sn

g .

Proof. Using lemma 2.9, we can now prove for any
given I ′ and I = PadLasti

←(I ′). We distinct two
cases:20

• I ′ <↓ U

L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′)
−→
% T ′ <↓ W ′ →

I = ⊥ ∨ (L ≤ I <↓ U ∧ (I − L)
−→
% T <↓ W)

⇐⇒24

L ≤ I ′ <↓ U ∧ (I ′ − L)
−→
% T <↓ W →

L ≤ I ′ <↓ U ∧ (I ′ − L)
−→
% T <↓ W

– Expand definition of PadLasts
→ for

L′, T ′, W ′.28

– Replace I ′ <↓ U ′ with distinction assumption
I ′ <↓ U .

– Prune left hand side of the ‘or’
– Expand definition of PadLasti

← for I using32

I ′ <↓ U ′

• I ′ ≮↓ U

L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′)
−→
% T ′ <↓ W ′ →

I = ⊥ ∨ (L ≤ I <↓ U ∧ (I − L)
−→
% T <↓ W)36

⇐⇒

L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′)
−→
% T ′ <↓ W ′ →

⊥ = ⊥
Expand definition of PadLasti

← for I using I ′ ≮↓
U ′, prune right hand side of the ‘or’ 4

�

Lemma 2.48 (PadLasti
← is operational bijective).

(pad-opbi)

Take the operational parts of Sn
g : O(Sn

g) and 8

Sn
g
′ : OP adLasti

←
(Sn

g). We now have to prove that
PadLasti

← : OP adLasti
←

(Sn
g)→ O(Sn

g) is bijective.

Proof. Using lemma 2.10, we now have to prove A
surjectivity and B injectivity. 12

A Given an I ∈ O(Sn
g) and I ′ ∈ Sn

g with I ′ = I. We
now have to prove that A.1 PadLasti

←(I ′) = I and
A.2 I ′ ∈ Sn

g
′.

A.1 By definition 2.45 of PadLasti
←, 16

PadLasti
←(I ′) = I ⇐⇒ I ′ <↓ U . We know

that I’ = I, and by definition of I ∈ O(Sn
g), I <↓ U .

So, we can conclude that PadLasti
←(I ′) = I holds.

A.2 20

L ≤ I <↓ U ∧ (I − L) % T <↓ W →
L′ ≤ I ′ <↓ U ′ ∧ (I ′ − L′) % T ′ <↓ W ′

⇐⇒

L′ ≤ I <↓ U ∧ (I − L′) % T ′ <↓ W ′ → 24

L′ ≤ I <↓ U ′ ∧ (I − L′) % T ′ <↓ W ′

By expanding the definition of PadLasts
→ for L, T, W

and the definition of I ′

This holds, as U can only be bigger then U ′. 28

B Given I ∈ O(Sn
g) and I ′, I ′′ ∈ Sn

g
′. We now have to

prove that if PadLasti
←(I ′) = I and PadLasti

←(I ′′) =
I, then I ′ = I ′′. We prove this by contradiction.
Assume there are two I ′ 6= I ′′ with PadLasti

←(I ′) = I 32

and PadLasti
←(I ′′) = I.

I ′ 6= I ′′ ∧ PadLasti
←(I ′) = I ∧ PadLasti

←(I ′′) = I

⇐⇒

I ′ 6= I ′′ ∧ I ′ = I ∧ I ′′ = I 36

PadLasti
←(I ′) cannot be ⊥, as ⊥ /∈ O(Sn

g). Similarly
for I ′′.

This is a contradiction by transitivity of = E �

Theorem 2.49 (PadLast is mapping-equivalent). 40

(pad-me)

By definition 2.7, PadLast is mapping equivalent iff:

• A PadLasts
→ is well defined

22

• B PadLasti
← is well defined

• C PadLasti
← is operationally bijective

Proof. A is proven in lemma 2.46
B is proven in lemma 2.474

C is proven in lemma 2.48 �

23

Chapter 3

Implementation

The implementation of these mappings was done in
the SAC compiler [1], which is implemented in C. The
compiler takes a SAC program as input, generates
C code, and uses a C or cuda C compiler to create4

an executable. We will distinct the implementation
of the SAC compiler in three different parts: The
existing compiler, the implementation of the mappings
as defined in chapter ??, and the mechanisms that8

determine what mappings will be executed, in what
order, and with what parameters. We will discuss each
part in it’s own section below.

3.1 The SAC compiler12

First of all, there is the existing compiler. The part
we’re mainly interested in is the part with Jing’s imple-
mentation for executing SAC with-loops on the GPU.
This implementation is fairly limited and has many16

cases where a with-loop cannot be executed. If such a
case occurs, it either results in a compiler or runtime
error, while the program would have been valid in the
normal sequential compiler backend.20

AST Traversals
When the compiler compiles a SAC program for the
CUDA backend, it will do so using many different AST
traversals. We will discuss the traversals relevant to the24

execution of with-loops on the GPU using a small code
example in figure ?? 3.1. Note that some of the code
examples use a bit of pseudo code to illustrate internal
AST representations. Also note that this example will28

probably not work like this when compiled, as some
optimizations may take out the loop altogether.

• Annotate cudarizable loops: This compiler phase
determines whether a with-loop is eligible for ex-32

ecution on a GPU. Examples of with-loops not
eligible are very small loops, nested with-loops, or
with loops with non-cudarizable function calls in
their bodies. This compiler phase sets a boolean36

1 int[.,.] plusone(int[.,.] a) {
2 b = with {
3 (0 <= iv < shape(a)) : a[iv] + 1;
4 } : genarray (shape(a), 0);
5 return b;
6 }
(trav-ex)

code example 3.1: Example SAC program

flag in with-loop AST nodes. Note that the dimen-
sionality is always known. When a cudarizable
function has an unknown dimensionality, e.g. it
can be used with any dimensionality, a separate 4

instance of this function is created for each used
dimensionality.

• Insert primitives to prepare for GPU execution:
These are multiple phases responsible for trans- 8

fering variables, constants and arrays to the GPU
before execution, and the generated array back to
the CPU after execution. Figure 3.2 displays the
state of the example program after this phase. 12

• Create CUDA kernels: Create a CUDA kernel
function for each partition in the with loop. Note
that multiple partitions can exist within a with-
loop. Each kernel function will contain the body of 16

the partition it was created for. Information as the
lowerbound, upperbound, step and width will be
passed in as an argument, as well as GPU pointers
to the arrays. The current iv can be derived from 20

the variables threadIdx and blockIdx, which both
contain the properties x, y and z. Figure 3.3
displays the state of the example program after
this phase. 24

• Generate C code: The actual generated C code
does not contain any pseudocode anymore, but
should be compilable by the C-compiler.

24

1 int[.,.] plusone(int[.,.] a) {
2 a_d = cudaMemCpyHost2Dev(a);
3 b_d = cudaMemCreate(...);
4

5 b_d = with {
6 (0 <= iv < shape(a_d)) : a_d[iv]+1;
7 } : genarray (shape(a_d), 0);
8

9 b = cudaMemCpyDev2Host(a_d);
10 cudaMemFree(a_d);
11 cudaMemFree(b_d);
12

13 return b;
14 }
(trav-mem)

code example 3.2: Example SAC program after memory
transfers have been inserted

Grid and block
In figure 3.3, there are a few lines of code left undefined.
The most important of these are the lines annotated
with the comments Compute CUDA grid and block4

sizes and Recompute iv from threadIdx and blockIdx.
The original implementation is pretty straightforward.
Let us define the lengths of the dimensions as d0...dn.
Now we make a case distincion for the first five dimen-8

sionalities, and map them as described in table 3.4.
For 6 or more dimensions, the current implementation
gives a compiler error. Note that the block size has a
maximum 1024 threads (may vary per GPU), so d0∗d112

can be at most 1024. If it is not, a runtime error is
thrown.

Inside the kernel, the original iv is reconstructed from
the threadIdx and blockIdx variables. For dimen-16

sionalities 3 to 5, we can directly take the values of
blockIdx.z, blockIdx.y, blockIdx.x, threadIdx.y and
threadIdx.x. However, for dimensionalities 1 and 2,
iv0 and iv1 have to be recomputed, and because the20

dimension length has been padded to be divisible by
32, we also have to check it against the original di-
mension length. For iv0, we do this as shown in code
example 3.5. iv1 is computed similarly. Note that in24

the generated C code, these values do not exist as an
array. Instead, all values for each dimensions have
their own variables.

Lowerbound, upperbound, step and28

width
In table 3.4, we used dimension lengths d0...dn. How-
ever, in our C program we have lb0...lbn, ub0...ubn,
step0...stepn and width0...widthn. This means we32

1 int[.,.] plusone(int[.,.] a) {
2 a_d = cudaMemCpyHost2Dev(a);
3 b_d = cudaMemCreate(...);
4

5 // Compute CUDA grid and block sizes
6 grid = ...
7 block = ...
8

9 plusone_kernel<grid, block>(
10 lb_0, lb_1, ub_0, ub_1, a_d, b_d);
11

12 b = cudaMemCpyDev2Host(a_d);
13 cudaMemFree(a_d);
14 cudaMemFree(b_d);
15

16 return b;
17 }
18

19 void plusone_kernel_0 (
20 lb_0, lb_1, ub_0, ub_1, a_d, b_d) {
21 // Recompute iv from
22 // threadIdx and blockIdx
23 iv = ...
24

25 b_d[iv] = a_d[iv] + 1;
26 }
(trav-kernel)

code example 3.3: Example SAC program after kernels
have been generated

have to make a few slight changes still:

∀i < dims :

• We take the upperbound as the dimension lengths

1 // Computing grid and block sizes
2 d_i = ub_i

• We substract the lowerbound from the dimension 4

length. Note that we have to add it again inside
the kernels.

1 // Computing grid and block sizes
2 d_i = d_i - lb_i
3

4 // Recomputing the index vector
5 iv_i = iv_i + lb_i

• The step and width do not influence the lengths
of the dimensions. Instead, we will check inside 8

of the kernel whether iv is inside the grid:

1 // Recomputing the index vector
2 if (iv_i % step_i > width_i)
3 return;

25

d grid.z grid.y grid.x blk.y blk.x
1 1 1 d0/32 + 1 1 32
2 1 d1/32 + 1 d0/32 + 1 32 32
3 1 1 d2 d1 d0
4 1 d3 d2 d1 d0
5 d4 d3 d2 d1 d0

(jing-mapping)

table 3.4: Case distinction for mapping n-dimensional
index spaces onto the GPU, using Jing’s heuristics

1 iv_0 = blockIdx.x * 32 + threadIdx.x;
2 if (iv_0 >= d_0) return;
(trav-kernel-iv)

code example 3.5: Recomputation of iv_0 in the ker-
nel, for dimensionalities 1 and 2. iv_1 is computed
similarly.

If we combine all this together, we get code example
3.6 as output of the compiler:

Optimizations
As SAC is a functional language, the SAC compiler4

can do many different optimizations that are unique to
functional languages. For example, the SAC compiler
will, in this case, probably decide that the memory
of variable a can be reused. This means that no b8

or b_dev have to be allocated. Furthermore, the
SAC compiler may just omit the with-loop altogether,
and replace it with an accessor that adds one to the
original array value. The code fragments we have been12

looking at merely serve as an example, so there are no
guarantees that the SAC compiler will, in this case,
behave exactly as illustrated here.

3.2 Mapping execution16

The mappings introduced in ?? change how the grid
and block spaces are generated, and how the iv is com-
puted from the grid and block coordinates. This also
means that the mapping execution implementation20

only changes the generated code responsible for those
two tasks. In code example 3.3, this would be lines
5-7 and 21-23.

Differences from theoretical model24

Because C works a bit different then theoretical maths,
the C implementation differs a bit from the theoretical
model we implemented in ??. Besides these imple-
mentation details, there are also a few conceptual28

differences in the implementation.

Grid index spaces
The representation of the grid index spaces in the com-
piler are very similar to the definition of a grid index
space as defined in section 3.2. There are, however, a 4

few small differences.

• The arrays of I, L, U, T and W variables only exist
in the compiler. In the generated code, the values
are represented either in individual variables or, 8

if possible, as constants.
• The filter function f does not exist in the runtime.

The check is immediately executed alongside of
the mappings, and if it fails we either return imme- 12

diately in branching mode, or we set an “outside
of grid” variable in branchless mode. More on
branching/branchless modes in section TODO.

3.3 Mapping generation using 16

strategies

26

1 int[.,.] plusone(int[.,.] a) {
2 // Assume all lb_i, ub_i, step_i
3 // and width_i variables exist
4

5 a_d = cudaMemCpyHost2Dev(a);
6 b_d = cudaMemCreate(...);
7

8 // Compute CUDA grid and block sizes
9 grid.x = (ub_0 - lb_0) / 32;

10 grid.y = (ub_1 - lb_1) / 32;
11 block.x = 32;
12 block.y = 32;
13

14 plusone_kernel<grid, block>(
15 lb_0, lb_1, ub_0, ub_1, a_d, b_d);
16

17 b = cudaMemCpyDev2Host(a_d);
18 cudaMemFree(a_d);
19 cudaMemFree(b_d);
20

21 return b;
22 }
23

24 void plusone_kernel_0 (
25 lb_0, lb_1, ub_0, ub_1, a_d, b_d) {
26 // Recompute iv from
27 // threadIdx and blockIdx
28 iv_0 = blockIdx.x * 32 + threadIdx.x;
29 iv_0 = iv_0 + lb_0
30 if (iv_0 >= ub_0) return;
31 // No step or width, so check omitted
32

33 iv_1 = blockIdx.y * 32 + threadIdx.y;
34 iv_1 = iv_1 + lb_1
35 if (iv_1 >= ub_1) return;
36 // No step or width, so check omitted
37

38 iv = {iv_1, iv_0};
39

40 b_d[iv] = a_d[iv] + 1;
41 }
(trav-complete)

code example 3.6: Example SAC program after it has
been compiled

27

Chapter 4

Listings

List of figures

List of tables
3.4 Case distinction for mapping n-

dimensional index spaces onto the4

GPU, using Jing’s heuristics 26

List of code examples
3.1 Example SAC program 24
3.2 Example SAC program after memory8

transfers have been inserted 25
3.3 Example SAC program after kernels

have been generated 25
3.5 Recomputation of iv_0 in the kernel,12

for dimensionalities 1 and 2. iv_1 is
computed similarly. 26

3.6 Example SAC program after it has been
compiled 2716

28

List of definitions

2.1 Definition (Preliminary assumptions) . 7
2.2 Definition (Posets using product order) . 7
2.3 Definition (Index space transformations) . 84

2.4 Definition (Index spaces) . 8
2.6 Definition (Operative and excess subsets) . 9
2.7 Definition (Mapping equivalence) . 9
2.11 Definition (Separating dimensions) . 108

2.12 Definition (Dimension dependency) . 11
2.15 Definition (ShiftLB) . 11
2.20 Definition (CompressGrid) . 12
2.25 Definition (PruneGrid) . 1612

2.30 Definition (SplitLast) . 17
2.35 Definition (FoldLast2) . 18
2.40 Definition (Permute) . 20
2.45 Definition (PadLast) . 2116

29

List of lemmas

2.5 Lemma (gen of normalized and dense index spaces) . 8
2.8 Lemma (Well-definedness of tfs

→) . 9
2.9 Lemma (Well-definedness of tf i

←) . 10 4

2.10 Lemma (Operational bijectivity of tf i
←) . 10

2.13 Lemma (Proofs with separated dimensions) . 11
2.14 Lemma (Mapping equivalence for identity dimensions) . 11
2.16 Lemma (ShiftLBs

→ is well-defined) . 11 8

2.17 Lemma (ShiftLBi
← is well-defined) . 12

2.18 Lemma (ShiftLBi
← is operational bijective) . 12

2.21 Lemma (CompressGrids
→ is well defined) . 13

2.22 Lemma (CompressGridi
← is well defined) . 13 12

2.23 Lemma (CompressGridi
← is operational bijective) . 14

2.26 Lemma (PruneGrids
→ is well defined) . 16

2.27 Lemma (PruneGridi
← is well defined) . 16

2.28 Lemma (PruneGridi
← is operational bijective) . 16 16

2.31 Lemma (SplitLasts
→ is well defined) . 17

2.32 Lemma (SplitLasti
← is well defined) . 17

2.33 Lemma (SplitLasti
← is operational bijective) . 17

2.36 Lemma (FoldLast2s
→ is well defined) . 19 20

2.37 Lemma (FoldLast2i
← is well defined) . 19

2.38 Lemma (FoldLast2i
← is operational bijective) . 19

2.41 Lemma (Permutes
→ is well defined) . 20

2.42 Lemma (Permutei
← is well defined) . 20 24

2.43 Lemma (Permutei
← is operational bijective) . 21

2.46 Lemma (PadLasts
→ is well defined) . 22

2.47 Lemma (PadLasti
← is well defined) . 22

2.48 Lemma (PadLasti
← is operational bijective) . 22 28

30

List of theorems

2.19 Theorem (ShiftLB is mapping-equivalent) . 12
2.24 Theorem (CompressGrid is mapping-equivalent) . 15
2.29 Theorem (PruneGrid is mapping-equivalent) . 164

2.34 Theorem (SplitLast is mapping-equivalent) . 18
2.39 Theorem (FoldLast2 is mapping-equivalent) . 20
2.44 Theorem (Permute is mapping-equivalent) . 21
2.49 Theorem (PadLast is mapping-equivalent) . 228

31

References
[1] url: https://www.sac-home.org/.
[2] Jing Guo, Jeyarajan Thiyagalingam, and Sven-

Bodo Scholz. “Breaking the GPU programming4

barrier with the auto-parallelising SAC compiler”.
In: Proceedings of the sixth workshop on Declar-
ative aspects of multicore programming. 2011,
pp. 15–24.8

[3] Hee Sik Kim J. Neggers. Basic posets, pp. 64–
78. isbn: 9789810235895. url: https://books.
google.nl/books?id=-ip3-wejeR8C&pg=PA64&
redir_esc=y#v=onepage&q&f=false.12

32

https://www.sac-home.org/
https://books.google.nl/books?id=-ip3-wejeR8C&pg=PA64&redir_esc=y#v=onepage&q&f=false
https://books.google.nl/books?id=-ip3-wejeR8C&pg=PA64&redir_esc=y#v=onepage&q&f=false
https://books.google.nl/books?id=-ip3-wejeR8C&pg=PA64&redir_esc=y#v=onepage&q&f=false
https://books.google.nl/books?id=-ip3-wejeR8C&pg=PA64&redir_esc=y#v=onepage&q&f=false
https://books.google.nl/books?id=-ip3-wejeR8C&pg=PA64&redir_esc=y#v=onepage&q&f=false

	Context
	SAC
	CUDA and SAC
	CUDA limits and solutions
	Mental model

	Formalization of mappings
	Preliminary definitions
	Index spaces and mappings
	Proving mapping equivalence
	ShiftLB
	CompressGrid
	PruneGrid
	SplitLast
	FoldLast2
	Permute
	Padlast

	Implementation
	The SAC compiler
	Mapping execution
	Mapping generation using strategies

	Listings

