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Abstra
t. This paper 
ompares the fun
tional programming language

Sa
 to Hpf with respe
t to spe
i�
ational elegan
e and runtime perfor-

man
e. A well-known ben
hmark, red-bla
k su

essive over-relaxation,

serves as a 
ase study. After presenting theHpf referen
e implementation

alternative Sa
 implementations are dis
ussed. Eventually, performan
e

�gures show the ability to 
ompile highly generi
 Sa
 spe
i�
ations into

ma
hine 
ode that outperforms the Hpf implementation on a shared

memory multipro
essor.

1 Introdu
tion

Programming language design basi
ally is about �nding the best possible tradeo�

between support for high-level program spe
i�
ations and runtime eÆ
ien
y. In

the 
ontext of array pro
essing, data parallel languages are well-suited to meet

this goal. Repla
ing loop nestings by language 
onstru
ts that operate on entire

arrays rather than on single elements, not only improves program spe
i�
ations;

it also 
reates new optimization opportunities for 
ompilers [3, 4, 1, 8, 7℄.

Fortran-90/Hpf introdu
e a large set of intrinsi
s, built-in operations that

manipulate entire arrays in a homogeneous way and that are appli
able to arrays

of any dimensionality and size. While this allows for 
on
ise spe
i�
ations of

many algorithms, 
ode be
omes less generi
 if operations have to be applied to

subsets of array elements only. Although regularly stru
tured 
ases are addressed

by the triple notation, one step ba
k to loops and s
alar spe
i�
ations is often

inevitable. In either 
ase, the resulting 
ode must be spe
ialized to the shapes of

argument arrays. Intrinsi
s are also limited to serve as primary building blo
ks

of programs; Fortran-90/Hpf provide no means to build abstra
tions upon

intrinsi
s without loss of generality, i.e. appli
ability to arrays of any shape.

Sa
 is a fun
tional C-variant with extended support for arrays [9℄. It allows

for high-level array pro
essing similar to Apl. The basi
 language 
onstru
t for

spe
ifying array operations is the so-
alled with-loop. With-loops de�ne map-

or fold-like operations in a way that is invariant to the dimensionalities of argu-

ment arrays. As a 
onsequen
e, almost all operations, typi
ally found as built-in

fun
tions in other array languages, 
an be de�ned through with-loops in Sa


without any loss of generality [6℄. This 
on
ept allows for both: 
omprehensive

array support through easily maintainable libraries and far-rea
hing 
ustomiza-

tion opportunities for programmers.



In Se
tion 2 we investigate the spe
i�
ational bene�ts of Sa
 in terms of

generi
 high-level programming 
ompared to Hpf. In Se
tion 3, we �nd out how

mu
h of a performan
e penalty has a
tually to be paid for the in
reased level of

abstra
tion. Sin
e the Sa
-
ompiler allows to impli
itly generate 
ode for shared

memory multipro
essors [5℄, we fo
us on this ar
hite
ture. Eventually, Se
tion 4


on
ludes.

2 A Case Study: the PDE1-Ben
hmark

As referen
e implementation for the 
ase study, we 
hose the PDE1-ben
hmark

as it is supplied by the distribution of the ADAPTOR Hpf 
ompiler [2℄. PDE1

is a red-bla
k SOR for approximating three-dimensional Poisson equations. The


ore of the algorithm is a sten
il operation on a three-dimensional array u: for

ea
h inner element u

i;j;k

, the values of the 6 dire
t neighbor elements are summed

up, added to a �xed number h

2

f

i;j;k

, and subsequently multiplied with a 
onstant

fa
tor. Assuming NX, NY, and NZ to denote the extents of the three-dimensional

arrays U, U1, and F, this operation in the referen
e implementation is spe
i�ed

as:

U1(2:NX-1,2:NY-1,2:NZ-1) = &

& FACTOR*(HSQ*F(2:NX-1,2:NY-1,2:NZ-1)+ &

& U(1:NX-2,2:NY-1,2:NZ-1)+U(3:NX,2:NY-1,2:NZ-1)+ &

& U(2:NX-1,1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &

& U(2:NX-1,2:NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

However, this operation has to be applied to two disjoint sets of elements (the

red elements and the bla
k elements) in two su

essive steps. This is realized by


reating a three-dimensional array of booleans RED and embedding the array

assignment shown above into a WHERE 
onstru
t.

The given Hpf solution 
an be 
arried over to Sa
 almost straightforwardly.

Rather than using the triple notation of Hpf, in Sa
, the 
omputation of the

inner elements is spe
i�ed for a single element at index position iv, whi
h by

means of a with-loop is mapped to all inner elements of an array u:

u1 = with (. < iv < .) {

st_sum = u[iv+[1,0,0℄℄ + u[iv-[1,0,0℄℄ + u[iv+[0,1,0℄℄

+ u[iv-[0,1,0℄℄ + u[iv+[0,0,1℄℄ + u[iv-[0,0,1℄℄;

} modarray (u, iv, fa
tor * (hsq * f[iv℄ + st_sum));

Note here, that the usage of < instead of <= on both sides of the generator part

restri
ts the elements to be 
omputed to the inner elements of the array u.

The disadvantage of this solution is that it is tailor-made for the given sten-


il. In the same way the a

ess triples in the Hpf-solution have to be adjusted

whenever the sten
il 
hanges, the o�set ve
tors have to be adjusted in the Sa


solution. These adjustments are very error-prone; in parti
ular, if the size of the

sten
il in
reases or the dimensionality of the problem has to be 
hanged. To alle-

viate these problems, we abstra
t from the problem spe
i�
 part by introdu
ing

an array of weights W. In this parti
ular example, W is an array of shape [3,3,3℄

with all elements being 0 but the six dire
t neighbor elements of the 
enter

element, whi
h are set to 1. With su
h an array W, relaxation 
an be de�ned as:



u1 = with (. < iv < .) {

blo
k = tile( shape(W), iv-1, u);

} modarray( u, iv, fa
tor * (hsq * f[iv℄ + sum( W * blo
k)));

In this spe
i�
ation, for ea
h inner element of u1 a sub-array blo
k is taken

from u whi
h holds all the neighbor elements of u[iv℄. This is done by apply-

ing the library fun
tion tile( shape, offset, array) whi
h 
reates an array

of shape shape whose elements are taken from array starting at position o�-

set. The 
omputation of the weighted sum of neighbor elements thus turns into

sum( W * blo
k), where ( array * array ) refers to an elementwise multi-

pli
ation of arrays, and sum( array) sums up all elements of array.

Abstra
ting from the problem spe
i�
 sten
il data has another advantage:

the resulting program does not only support arbitrary sten
ils but 
an also be

applied to arrays and sten
ils of other dimensionalities without 
hanges. Note

here, that the usage of shape(W) rather than [3,3,3℄ as �rst argument for tile

is essential for a
hieving this.

Although the error-prone indexing operations have been eliminated by the

introdu
tion of W, the spe
i�
ation still 
onsists of a problem spe
i�
 with-loop

whi
h 
ontains an elementwise spe
i�
ation of the relaxation step. It should be

noted here, that the elementwise spe
i�
ation 
an be \lifted" into a nesting of

Apl-like operations on entire arrays without 
ausing any performan
e penalty

(
f. [?℄).

After de�ning relaxation on the entire array, the operation has to be restri
ted

to subsets of the array elements, i.e. to the sets of red and bla
k elements. In

the same way as in the Hpf program, an array of booleans 
an be de�ned whi
h

masks the elements of the red set.

For avoiding 
omputational redundan
y, the restri
tion to red/bla
k elements

in theHpf solution is realized by integrating it into relaxation algorithm itself. In

Sa
, we want to keep these spe
i�
ations separated in order to improve program

modularity as well as its potential for 
ode re-use. Therefore, a shape-invariant

general purpose fun
tion CombineMasked( mask, a, b) is de�ned, whi
h a
-


ording to a mask of booleans 
ombines two arrays into a new one:

inline double[℄ CombineMasked( bool[℄ mask, double[℄ a, double[℄ b)

{


 = with(. <= iv <= .)

genarray( shape(a), (mask[iv℄? a[iv℄: b[iv℄));

return( 
);

}

Provided that mask, a, and b are identi
ally shaped, a new array 
 of the same

shape is 
reated, whose elements are 
opied from those of the array a if the mask

is true, and from b otherwise. Using this fun
tion, red bla
k relaxation 
an be

de�ned as:

u = CombineMasked( red, relax(u, f, hsq), u);

u = CombineMasked( !red, relax(u, f, hsq), u);

Note here, that the bla
k set is referred to by !red, i.e., by using the elementwise

extension of the negation operator (!).



3 Performan
e Comparison

This se
tion presents the essen
e of thorough investigations on the performan
e

of the Hpf- and various alternative Sa
-implementations of PDE1 on a 12-

pro
essor SUN Ultra Enterprise 4000. The Adaptor Hpf-
ompiler v7.0 [2℄,

Sun f77 v5.0, and Pvm 3.4.2 for shared memory were used to evaluate the Hpf


ode, the Sa
 
ompiler v0.9 and Sun 

 v5.0 to 
ompile the Sa
 
ode.
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Fig. 1. Runtime performan
e of Sa
- and Hpf-implementations of the PDE1 ben
h-

mark, problem sizes 64

3

(
enter) and 256

3

(right).

One interesting result is that with respe
t to the a

ura
y of the timing fa-


ility all di�erent Sa
-spe
i�
ations | among them those presented in Se
tion

2 | a
hieve the same runtimes. Having a look into the 
ompiled 
ode reveals

that the Sa
-
ompiler manages to transform all of them into almost identi
al

intermediate representations. This is mostly due to a Sa
-spe
i�
 optimization

te
hnique 
alled with-loop-folding [10℄ that aggressively eliminates interme-

diate arrays. Fig. 1 shows performan
e results for the problem sizes 64

3

and

256

3

. Upon sequential exe
ution, Sa
 outperforms Hpf by a fa
tor of 3.4 for

both problem sizes; Sa
 also needs mu
h less memory: 260MB instead of 450MB

in the 256

3


ase. This de
rease in memory 
onsumption 
an also be attributed

to with-loop-folding.

Multipro
essor runtimes of the Hpf- and Sa
-
ode are shown as speedups

relative to Hpf single node runtimes. For 64

3

elements, Hpf s
ales well up to 6

pro
essors; any additional pro
essor leads to absolute performan
e degradation.

In 
ontrast, the Sa
 runtimes s
ale linearly up to 8 pro
essors and even a
hieve

an additional speedup with all 10 pro
essors. The Hpf performan
e s
ales mu
h

better for the problem size 256

3

. So, the usage of Pvm as low-level 
ommuni-


ation layer is no prin
iple hindran
e to a
hieve good performan
e on a shared

memory ar
hite
ture. Nevertheless, even with 10 pro
essors Sa
 outperforms

Hpf by a fa
tor of 2.5.



4 Con
lusion

The major design goal of Sa
 is to 
ombine highly generi
 spe
i�
ations of ar-

ray operations with 
ompilation te
hniques for generating eÆ
iently exe
utable


ode. By means of a 
ase study, this paper investigates di�erent opportunities

for the spe
i�
ation of the PDE1 ben
hmark in Sa
 and 
ompares them to the

Hpf referen
e implementation in terms of spe
i�
ational elegan
e and reusabil-

ity. Despite their in
reasingly higher levels of abstra
tion the various Sa
 im-

plementations 
learly outperform the given Hpf program on a shared memory

multipro
essor. This shows that high-level generi
 program spe
i�
ations and

good runtime performan
e not ne
essarily ex
lude ea
h other.
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