
HPF vs. SAC | a Case Study

Clemens Grel
k and Sven-Bodo S
holz

University of Kiel

Department of Computer S
ien
e and Applied Mathemati
s

e-mail: f
g,sbsg�informatik.uni-kiel.de

Abstra
t. This paper
ompares the fun
tional programming language

Sa
 to Hpf with respe
t to spe
i�
ational elegan
e and runtime perfor-

man
e. A well-known ben
hmark, red-bla
k su

essive over-relaxation,

serves as a
ase study. After presenting theHpf referen
e implementation

alternative Sa
 implementations are dis
ussed. Eventually, performan
e

�gures show the ability to
ompile highly generi
 Sa
 spe
i�
ations into

ma
hine
ode that outperforms the Hpf implementation on a shared

memory multipro
essor.

1 Introdu
tion

Programming language design basi
ally is about �nding the best possible tradeo�

between support for high-level program spe
i�
ations and runtime eÆ
ien
y. In

the
ontext of array pro
essing, data parallel languages are well-suited to meet

this goal. Repla
ing loop nestings by language
onstru
ts that operate on entire

arrays rather than on single elements, not only improves program spe
i�
ations;

it also
reates new optimization opportunities for
ompilers [3, 4, 1, 8, 7℄.

Fortran-90/Hpf introdu
e a large set of intrinsi
s, built-in operations that

manipulate entire arrays in a homogeneous way and that are appli
able to arrays

of any dimensionality and size. While this allows for
on
ise spe
i�
ations of

many algorithms,
ode be
omes less generi
 if operations have to be applied to

subsets of array elements only. Although regularly stru
tured
ases are addressed

by the triple notation, one step ba
k to loops and s
alar spe
i�
ations is often

inevitable. In either
ase, the resulting
ode must be spe
ialized to the shapes of

argument arrays. Intrinsi
s are also limited to serve as primary building blo
ks

of programs; Fortran-90/Hpf provide no means to build abstra
tions upon

intrinsi
s without loss of generality, i.e. appli
ability to arrays of any shape.

Sa
 is a fun
tional C-variant with extended support for arrays [9℄. It allows

for high-level array pro
essing similar to Apl. The basi
 language
onstru
t for

spe
ifying array operations is the so-
alled with-loop. With-loops de�ne map-

or fold-like operations in a way that is invariant to the dimensionalities of argu-

ment arrays. As a
onsequen
e, almost all operations, typi
ally found as built-in

fun
tions in other array languages,
an be de�ned through with-loops in Sa

without any loss of generality [6℄. This
on
ept allows for both:
omprehensive

array support through easily maintainable libraries and far-rea
hing
ustomiza-

tion opportunities for programmers.

In Se
tion 2 we investigate the spe
i�
ational bene�ts of Sa
 in terms of

generi
 high-level programming
ompared to Hpf. In Se
tion 3, we �nd out how

mu
h of a performan
e penalty has a
tually to be paid for the in
reased level of

abstra
tion. Sin
e the Sa
-
ompiler allows to impli
itly generate
ode for shared

memory multipro
essors [5℄, we fo
us on this ar
hite
ture. Eventually, Se
tion 4

on
ludes.

2 A Case Study: the PDE1-Ben
hmark

As referen
e implementation for the
ase study, we
hose the PDE1-ben
hmark

as it is supplied by the distribution of the ADAPTOR Hpf
ompiler [2℄. PDE1

is a red-bla
k SOR for approximating three-dimensional Poisson equations. The

ore of the algorithm is a sten
il operation on a three-dimensional array u: for

ea
h inner element u

i;j;k

, the values of the 6 dire
t neighbor elements are summed

up, added to a �xed number h

2

f

i;j;k

, and subsequently multiplied with a
onstant

fa
tor. Assuming NX, NY, and NZ to denote the extents of the three-dimensional

arrays U, U1, and F, this operation in the referen
e implementation is spe
i�ed

as:

U1(2:NX-1,2:NY-1,2:NZ-1) = &

& FACTOR*(HSQ*F(2:NX-1,2:NY-1,2:NZ-1)+ &

& U(1:NX-2,2:NY-1,2:NZ-1)+U(3:NX,2:NY-1,2:NZ-1)+ &

& U(2:NX-1,1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &

& U(2:NX-1,2:NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

However, this operation has to be applied to two disjoint sets of elements (the

red elements and the bla
k elements) in two su

essive steps. This is realized by

reating a three-dimensional array of booleans RED and embedding the array

assignment shown above into a WHERE
onstru
t.

The given Hpf solution
an be
arried over to Sa
 almost straightforwardly.

Rather than using the triple notation of Hpf, in Sa
, the
omputation of the

inner elements is spe
i�ed for a single element at index position iv, whi
h by

means of a with-loop is mapped to all inner elements of an array u:

u1 = with (. < iv < .) {

st_sum = u[iv+[1,0,0℄℄ + u[iv-[1,0,0℄℄ + u[iv+[0,1,0℄℄

+ u[iv-[0,1,0℄℄ + u[iv+[0,0,1℄℄ + u[iv-[0,0,1℄℄;

} modarray (u, iv, fa
tor * (hsq * f[iv℄ + st_sum));

Note here, that the usage of < instead of <= on both sides of the generator part

restri
ts the elements to be
omputed to the inner elements of the array u.

The disadvantage of this solution is that it is tailor-made for the given sten-

il. In the same way the a

ess triples in the Hpf-solution have to be adjusted

whenever the sten
il
hanges, the o�set ve
tors have to be adjusted in the Sa

solution. These adjustments are very error-prone; in parti
ular, if the size of the

sten
il in
reases or the dimensionality of the problem has to be
hanged. To alle-

viate these problems, we abstra
t from the problem spe
i�
 part by introdu
ing

an array of weights W. In this parti
ular example, W is an array of shape [3,3,3℄

with all elements being 0 but the six dire
t neighbor elements of the
enter

element, whi
h are set to 1. With su
h an array W, relaxation
an be de�ned as:

u1 = with (. < iv < .) {

blo
k = tile(shape(W), iv-1, u);

} modarray(u, iv, fa
tor * (hsq * f[iv℄ + sum(W * blo
k)));

In this spe
i�
ation, for ea
h inner element of u1 a sub-array blo
k is taken

from u whi
h holds all the neighbor elements of u[iv℄. This is done by apply-

ing the library fun
tion tile(shape, offset, array) whi
h
reates an array

of shape shape whose elements are taken from array starting at position o�-

set. The
omputation of the weighted sum of neighbor elements thus turns into

sum(W * blo
k), where (array * array) refers to an elementwise multi-

pli
ation of arrays, and sum(array) sums up all elements of array.

Abstra
ting from the problem spe
i�
 sten
il data has another advantage:

the resulting program does not only support arbitrary sten
ils but
an also be

applied to arrays and sten
ils of other dimensionalities without
hanges. Note

here, that the usage of shape(W) rather than [3,3,3℄ as �rst argument for tile

is essential for a
hieving this.

Although the error-prone indexing operations have been eliminated by the

introdu
tion of W, the spe
i�
ation still
onsists of a problem spe
i�
 with-loop

whi
h
ontains an elementwise spe
i�
ation of the relaxation step. It should be

noted here, that the elementwise spe
i�
ation
an be \lifted" into a nesting of

Apl-like operations on entire arrays without
ausing any performan
e penalty

(
f. [?℄).

After de�ning relaxation on the entire array, the operation has to be restri
ted

to subsets of the array elements, i.e. to the sets of red and bla
k elements. In

the same way as in the Hpf program, an array of booleans
an be de�ned whi
h

masks the elements of the red set.

For avoiding
omputational redundan
y, the restri
tion to red/bla
k elements

in theHpf solution is realized by integrating it into relaxation algorithm itself. In

Sa
, we want to keep these spe
i�
ations separated in order to improve program

modularity as well as its potential for
ode re-use. Therefore, a shape-invariant

general purpose fun
tion CombineMasked(mask, a, b) is de�ned, whi
h a
-

ording to a mask of booleans
ombines two arrays into a new one:

inline double[℄ CombineMasked(bool[℄ mask, double[℄ a, double[℄ b)

{

 = with(. <= iv <= .)

genarray(shape(a), (mask[iv℄? a[iv℄: b[iv℄));

return(
);

}

Provided that mask, a, and b are identi
ally shaped, a new array
 of the same

shape is
reated, whose elements are
opied from those of the array a if the mask

is true, and from b otherwise. Using this fun
tion, red bla
k relaxation
an be

de�ned as:

u = CombineMasked(red, relax(u, f, hsq), u);

u = CombineMasked(!red, relax(u, f, hsq), u);

Note here, that the bla
k set is referred to by !red, i.e., by using the elementwise

extension of the negation operator (!).

3 Performan
e Comparison

This se
tion presents the essen
e of thorough investigations on the performan
e

of the Hpf- and various alternative Sa
-implementations of PDE1 on a 12-

pro
essor SUN Ultra Enterprise 4000. The Adaptor Hpf-
ompiler v7.0 [2℄,

Sun f77 v5.0, and Pvm 3.4.2 for shared memory were used to evaluate the Hpf

ode, the Sa

ompiler v0.9 and Sun

 v5.0 to
ompile the Sa

ode.

single node performan
e

runtime Hpf Sa

64

3

283ms 84ms

256

3

22.2s 6.6s

memory Hpf Sa

64

3

10MB 8MB

256

3

450MB 260MB

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

1 2 4 6 8 10

sp
ee

du
p

re
la

tiv
e

to
 H

P
F

 o
n

on
e

pr
oc

es
so

r

number of processors engaged

pde1.sac
pde1.hpf

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

1 2 4 6 8 10
sp

ee
du

p
re

la
tiv

e
to

 H
P

F
 o

n
on

e
pr

oc
es

so
r

number of processors engaged

pde1.sac
pde1.hpf

Fig. 1. Runtime performan
e of Sa
- and Hpf-implementations of the PDE1 ben
h-

mark, problem sizes 64

3

(
enter) and 256

3

(right).

One interesting result is that with respe
t to the a

ura
y of the timing fa-

ility all di�erent Sa
-spe
i�
ations | among them those presented in Se
tion

2 | a
hieve the same runtimes. Having a look into the
ompiled
ode reveals

that the Sa
-
ompiler manages to transform all of them into almost identi
al

intermediate representations. This is mostly due to a Sa
-spe
i�
 optimization

te
hnique
alled with-loop-folding [10℄ that aggressively eliminates interme-

diate arrays. Fig. 1 shows performan
e results for the problem sizes 64

3

and

256

3

. Upon sequential exe
ution, Sa
 outperforms Hpf by a fa
tor of 3.4 for

both problem sizes; Sa
 also needs mu
h less memory: 260MB instead of 450MB

in the 256

3

ase. This de
rease in memory
onsumption
an also be attributed

to with-loop-folding.

Multipro
essor runtimes of the Hpf- and Sa
-
ode are shown as speedups

relative to Hpf single node runtimes. For 64

3

elements, Hpf s
ales well up to 6

pro
essors; any additional pro
essor leads to absolute performan
e degradation.

In
ontrast, the Sa
 runtimes s
ale linearly up to 8 pro
essors and even a
hieve

an additional speedup with all 10 pro
essors. The Hpf performan
e s
ales mu
h

better for the problem size 256

3

. So, the usage of Pvm as low-level
ommuni-

ation layer is no prin
iple hindran
e to a
hieve good performan
e on a shared

memory ar
hite
ture. Nevertheless, even with 10 pro
essors Sa
 outperforms

Hpf by a fa
tor of 2.5.

4 Con
lusion

The major design goal of Sa
 is to
ombine highly generi
 spe
i�
ations of ar-

ray operations with
ompilation te
hniques for generating eÆ
iently exe
utable

ode. By means of a
ase study, this paper investigates di�erent opportunities

for the spe
i�
ation of the PDE1 ben
hmark in Sa
 and
ompares them to the

Hpf referen
e implementation in terms of spe
i�
ational elegan
e and reusabil-

ity. Despite their in
reasingly higher levels of abstra
tion the various Sa
 im-

plementations
learly outperform the given Hpf program on a shared memory

multipro
essor. This shows that high-level generi
 program spe
i�
ations and

good runtime performan
e not ne
essarily ex
lude ea
h other.

Referen
es

1. G.E. Blello
h, S.Chatterjee, J.C. Hardwi
k, J. Sipelstein, and M.Zagha. Imple-

mentation of a Portable Nested Data-Parallel Language. In Pro
eedings 4th ACM

SIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming, San

Diego, California, pages 102{111, 1993.

2. T. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF

Programs. In Programming Environments for Massively Parallel Distributed Sys-

tems, pages 91{96. Birkh�auser Verlag, 1994.

3. D.C. Cann. Compilation Te
hniques for High Performan
e Appli
ative Compu-

tation. Te
hni
al Report CS-89-108, Lawren
e Livermore National Laboratory,

LLNL, Livermore, California, 1989.

4. D.C. Cann. Retire Fortran? A Debate Rekindled. Communi
ations of the ACM,

35(8):81{89, 1992.

5. C. Grel
k. Shared Memory Multipro
essor Support for SAC. In K. Hammond,

T. Davie, and C. Cla
k, editors, Pro
. of Implementing Fun
tional Languages (IFL

'98), London, Sele
ted Papers, volume 1595 of LNCS, pages 38{54. Springer, 1999.

6. C. Grel
k and S.-B. S
holz. A

elerating APL Programs with SAC. In O. Lefevre,

editor, Pro
eedings of the Array Pro
essing Language Conferen
e (APL'99), S
ran-

ton, Pa., volume 29(1) of APL Quote Quad, pages 50{57. ACM Press, 1999.

7. E.C. Lewis, C. Lin, and L. Snyder. The Implementation and Evaluation of Fusion

and Contra
tion in Array Languages. In Pro
eedings of the ACM SIGPLAN '98

Conferen
e on Programming Language Design and Implementation. ACM, 1998.

8. G. Roth and K. Kennedy. Dependen
e Analysis of Fortran90 Array Syntax. In

Pro
. PDPTA'96, 1996.

9. S.-B. S
holz. Single Assignment C { Entwurf und Implementierung einer

funktionalen C-Variante mit spezieller Unterst�utzung shape-invarianter Array-

Operationen. PhD thesis, University of Kiel, 1996.

10. S.-B. S
holz. With-loop-folding in SAC{Condensing Conse
utive Array Opera-

tions. In C. Cla
k, K.Hammond, and T. Davie, editors, Implementation of Fun
-

tional Languages, 9th International Workshop, IFL'97, St. Andrews, S
otland, UK,

September 1997, Sele
ted Papers, volume 1467 of LNCS, pages 72{92. Springer,

1998.

