
HPF vs. SAC | a Case Study

Clemens Grelk and Sven-Bodo Sholz

University of Kiel

Department of Computer Siene and Applied Mathematis

e-mail: fg,sbsg�informatik.uni-kiel.de

Abstrat. This paper ompares the funtional programming language

Sa to Hpf with respet to spei�ational elegane and runtime perfor-

mane. A well-known benhmark, red-blak suessive over-relaxation,

serves as a ase study. After presenting theHpf referene implementation

alternative Sa implementations are disussed. Eventually, performane

�gures show the ability to ompile highly generi Sa spei�ations into

mahine ode that outperforms the Hpf implementation on a shared

memory multiproessor.

1 Introdution

Programming language design basially is about �nding the best possible tradeo�

between support for high-level program spei�ations and runtime eÆieny. In

the ontext of array proessing, data parallel languages are well-suited to meet

this goal. Replaing loop nestings by language onstruts that operate on entire

arrays rather than on single elements, not only improves program spei�ations;

it also reates new optimization opportunities for ompilers [3, 4, 1, 8, 7℄.

Fortran-90/Hpf introdue a large set of intrinsis, built-in operations that

manipulate entire arrays in a homogeneous way and that are appliable to arrays

of any dimensionality and size. While this allows for onise spei�ations of

many algorithms, ode beomes less generi if operations have to be applied to

subsets of array elements only. Although regularly strutured ases are addressed

by the triple notation, one step bak to loops and salar spei�ations is often

inevitable. In either ase, the resulting ode must be speialized to the shapes of

argument arrays. Intrinsis are also limited to serve as primary building bloks

of programs; Fortran-90/Hpf provide no means to build abstrations upon

intrinsis without loss of generality, i.e. appliability to arrays of any shape.

Sa is a funtional C-variant with extended support for arrays [9℄. It allows

for high-level array proessing similar to Apl. The basi language onstrut for

speifying array operations is the so-alled with-loop. With-loops de�ne map-

or fold-like operations in a way that is invariant to the dimensionalities of argu-

ment arrays. As a onsequene, almost all operations, typially found as built-in

funtions in other array languages, an be de�ned through with-loops in Sa

without any loss of generality [6℄. This onept allows for both: omprehensive

array support through easily maintainable libraries and far-reahing ustomiza-

tion opportunities for programmers.

In Setion 2 we investigate the spei�ational bene�ts of Sa in terms of

generi high-level programming ompared to Hpf. In Setion 3, we �nd out how

muh of a performane penalty has atually to be paid for the inreased level of

abstration. Sine the Sa-ompiler allows to impliitly generate ode for shared

memory multiproessors [5℄, we fous on this arhiteture. Eventually, Setion 4

onludes.

2 A Case Study: the PDE1-Benhmark

As referene implementation for the ase study, we hose the PDE1-benhmark

as it is supplied by the distribution of the ADAPTOR Hpf ompiler [2℄. PDE1

is a red-blak SOR for approximating three-dimensional Poisson equations. The

ore of the algorithm is a stenil operation on a three-dimensional array u: for

eah inner element u

i;j;k

, the values of the 6 diret neighbor elements are summed

up, added to a �xed number h

2

f

i;j;k

, and subsequently multiplied with a onstant

fator. Assuming NX, NY, and NZ to denote the extents of the three-dimensional

arrays U, U1, and F, this operation in the referene implementation is spei�ed

as:

U1(2:NX-1,2:NY-1,2:NZ-1) = &

& FACTOR*(HSQ*F(2:NX-1,2:NY-1,2:NZ-1)+ &

& U(1:NX-2,2:NY-1,2:NZ-1)+U(3:NX,2:NY-1,2:NZ-1)+ &

& U(2:NX-1,1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &

& U(2:NX-1,2:NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

However, this operation has to be applied to two disjoint sets of elements (the

red elements and the blak elements) in two suessive steps. This is realized by

reating a three-dimensional array of booleans RED and embedding the array

assignment shown above into a WHERE onstrut.

The given Hpf solution an be arried over to Sa almost straightforwardly.

Rather than using the triple notation of Hpf, in Sa, the omputation of the

inner elements is spei�ed for a single element at index position iv, whih by

means of a with-loop is mapped to all inner elements of an array u:

u1 = with (. < iv < .) {

st_sum = u[iv+[1,0,0℄℄ + u[iv-[1,0,0℄℄ + u[iv+[0,1,0℄℄

+ u[iv-[0,1,0℄℄ + u[iv+[0,0,1℄℄ + u[iv-[0,0,1℄℄;

} modarray (u, iv, fator * (hsq * f[iv℄ + st_sum));

Note here, that the usage of < instead of <= on both sides of the generator part

restrits the elements to be omputed to the inner elements of the array u.

The disadvantage of this solution is that it is tailor-made for the given sten-

il. In the same way the aess triples in the Hpf-solution have to be adjusted

whenever the stenil hanges, the o�set vetors have to be adjusted in the Sa

solution. These adjustments are very error-prone; in partiular, if the size of the

stenil inreases or the dimensionality of the problem has to be hanged. To alle-

viate these problems, we abstrat from the problem spei� part by introduing

an array of weights W. In this partiular example, W is an array of shape [3,3,3℄

with all elements being 0 but the six diret neighbor elements of the enter

element, whih are set to 1. With suh an array W, relaxation an be de�ned as:

u1 = with (. < iv < .) {

blok = tile(shape(W), iv-1, u);

} modarray(u, iv, fator * (hsq * f[iv℄ + sum(W * blok)));

In this spei�ation, for eah inner element of u1 a sub-array blok is taken

from u whih holds all the neighbor elements of u[iv℄. This is done by apply-

ing the library funtion tile(shape, offset, array) whih reates an array

of shape shape whose elements are taken from array starting at position o�-

set. The omputation of the weighted sum of neighbor elements thus turns into

sum(W * blok), where (array * array) refers to an elementwise multi-

pliation of arrays, and sum(array) sums up all elements of array.

Abstrating from the problem spei� stenil data has another advantage:

the resulting program does not only support arbitrary stenils but an also be

applied to arrays and stenils of other dimensionalities without hanges. Note

here, that the usage of shape(W) rather than [3,3,3℄ as �rst argument for tile

is essential for ahieving this.

Although the error-prone indexing operations have been eliminated by the

introdution of W, the spei�ation still onsists of a problem spei� with-loop

whih ontains an elementwise spei�ation of the relaxation step. It should be

noted here, that the elementwise spei�ation an be \lifted" into a nesting of

Apl-like operations on entire arrays without ausing any performane penalty

(f. [?℄).

After de�ning relaxation on the entire array, the operation has to be restrited

to subsets of the array elements, i.e. to the sets of red and blak elements. In

the same way as in the Hpf program, an array of booleans an be de�ned whih

masks the elements of the red set.

For avoiding omputational redundany, the restrition to red/blak elements

in theHpf solution is realized by integrating it into relaxation algorithm itself. In

Sa, we want to keep these spei�ations separated in order to improve program

modularity as well as its potential for ode re-use. Therefore, a shape-invariant

general purpose funtion CombineMasked(mask, a, b) is de�ned, whih a-

ording to a mask of booleans ombines two arrays into a new one:

inline double[℄ CombineMasked(bool[℄ mask, double[℄ a, double[℄ b)

{

 = with(. <= iv <= .)

genarray(shape(a), (mask[iv℄? a[iv℄: b[iv℄));

return();

}

Provided that mask, a, and b are identially shaped, a new array of the same

shape is reated, whose elements are opied from those of the array a if the mask

is true, and from b otherwise. Using this funtion, red blak relaxation an be

de�ned as:

u = CombineMasked(red, relax(u, f, hsq), u);

u = CombineMasked(!red, relax(u, f, hsq), u);

Note here, that the blak set is referred to by !red, i.e., by using the elementwise

extension of the negation operator (!).

3 Performane Comparison

This setion presents the essene of thorough investigations on the performane

of the Hpf- and various alternative Sa-implementations of PDE1 on a 12-

proessor SUN Ultra Enterprise 4000. The Adaptor Hpf-ompiler v7.0 [2℄,

Sun f77 v5.0, and Pvm 3.4.2 for shared memory were used to evaluate the Hpf

ode, the Sa ompiler v0.9 and Sun v5.0 to ompile the Sa ode.

single node performane

runtime Hpf Sa

64

3

283ms 84ms

256

3

22.2s 6.6s

memory Hpf Sa

64

3

10MB 8MB

256

3

450MB 260MB

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

1 2 4 6 8 10

sp
ee

du
p

re
la

tiv
e

to
 H

P
F

 o
n

on
e

pr
oc

es
so

r

number of processors engaged

pde1.sac
pde1.hpf

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

1 2 4 6 8 10
sp

ee
du

p
re

la
tiv

e
to

 H
P

F
 o

n
on

e
pr

oc
es

so
r

number of processors engaged

pde1.sac
pde1.hpf

Fig. 1. Runtime performane of Sa- and Hpf-implementations of the PDE1 benh-

mark, problem sizes 64

3

(enter) and 256

3

(right).

One interesting result is that with respet to the auray of the timing fa-

ility all di�erent Sa-spei�ations | among them those presented in Setion

2 | ahieve the same runtimes. Having a look into the ompiled ode reveals

that the Sa-ompiler manages to transform all of them into almost idential

intermediate representations. This is mostly due to a Sa-spei� optimization

tehnique alled with-loop-folding [10℄ that aggressively eliminates interme-

diate arrays. Fig. 1 shows performane results for the problem sizes 64

3

and

256

3

. Upon sequential exeution, Sa outperforms Hpf by a fator of 3.4 for

both problem sizes; Sa also needs muh less memory: 260MB instead of 450MB

in the 256

3

ase. This derease in memory onsumption an also be attributed

to with-loop-folding.

Multiproessor runtimes of the Hpf- and Sa-ode are shown as speedups

relative to Hpf single node runtimes. For 64

3

elements, Hpf sales well up to 6

proessors; any additional proessor leads to absolute performane degradation.

In ontrast, the Sa runtimes sale linearly up to 8 proessors and even ahieve

an additional speedup with all 10 proessors. The Hpf performane sales muh

better for the problem size 256

3

. So, the usage of Pvm as low-level ommuni-

ation layer is no priniple hindrane to ahieve good performane on a shared

memory arhiteture. Nevertheless, even with 10 proessors Sa outperforms

Hpf by a fator of 2.5.

4 Conlusion

The major design goal of Sa is to ombine highly generi spei�ations of ar-

ray operations with ompilation tehniques for generating eÆiently exeutable

ode. By means of a ase study, this paper investigates di�erent opportunities

for the spei�ation of the PDE1 benhmark in Sa and ompares them to the

Hpf referene implementation in terms of spei�ational elegane and reusabil-

ity. Despite their inreasingly higher levels of abstration the various Sa im-

plementations learly outperform the given Hpf program on a shared memory

multiproessor. This shows that high-level generi program spei�ations and

good runtime performane not neessarily exlude eah other.

Referenes

1. G.E. Blelloh, S.Chatterjee, J.C. Hardwik, J. Sipelstein, and M.Zagha. Imple-

mentation of a Portable Nested Data-Parallel Language. In Proeedings 4th ACM

SIGPLAN Symposium on Priniples and Pratie of Parallel Programming, San

Diego, California, pages 102{111, 1993.

2. T. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF

Programs. In Programming Environments for Massively Parallel Distributed Sys-

tems, pages 91{96. Birkh�auser Verlag, 1994.

3. D.C. Cann. Compilation Tehniques for High Performane Appliative Compu-

tation. Tehnial Report CS-89-108, Lawrene Livermore National Laboratory,

LLNL, Livermore, California, 1989.

4. D.C. Cann. Retire Fortran? A Debate Rekindled. Communiations of the ACM,

35(8):81{89, 1992.

5. C. Grelk. Shared Memory Multiproessor Support for SAC. In K. Hammond,

T. Davie, and C. Clak, editors, Pro. of Implementing Funtional Languages (IFL

'98), London, Seleted Papers, volume 1595 of LNCS, pages 38{54. Springer, 1999.

6. C. Grelk and S.-B. Sholz. Aelerating APL Programs with SAC. In O. Lefevre,

editor, Proeedings of the Array Proessing Language Conferene (APL'99), Sran-

ton, Pa., volume 29(1) of APL Quote Quad, pages 50{57. ACM Press, 1999.

7. E.C. Lewis, C. Lin, and L. Snyder. The Implementation and Evaluation of Fusion

and Contration in Array Languages. In Proeedings of the ACM SIGPLAN '98

Conferene on Programming Language Design and Implementation. ACM, 1998.

8. G. Roth and K. Kennedy. Dependene Analysis of Fortran90 Array Syntax. In

Pro. PDPTA'96, 1996.

9. S.-B. Sholz. Single Assignment C { Entwurf und Implementierung einer

funktionalen C-Variante mit spezieller Unterst�utzung shape-invarianter Array-

Operationen. PhD thesis, University of Kiel, 1996.

10. S.-B. Sholz. With-loop-folding in SAC{Condensing Conseutive Array Opera-

tions. In C. Clak, K.Hammond, and T. Davie, editors, Implementation of Fun-

tional Languages, 9th International Workshop, IFL'97, St. Andrews, Sotland, UK,

September 1997, Seleted Papers, volume 1467 of LNCS, pages 72{92. Springer,

1998.

