
Generic Programming on the Nesting Structure of Arrays

Stephan Herhut Sven-Bodo Scholz Clemens Grelck
Dept. of Computer Science, University of Hertfordshire, United Kingdom

{S.A.Herhut,S.Scholz,C.Grelck}@herts.ac.uk

Abstract
Multi-dimensional arrays lack expressiveness with respect to log-
ical layers of data; they provide no means to encode that, for ex-
ample, a three-dimensional array of double values is used to rep-
resent a matrix of RGB-values. Existing approaches, e.g., boxing
and unboxing the inner dimensions of an array, allow the pro-
grammer to encode additional structure, but make programming on
nested arrays a tedious and error-prone task: nesting and de-nesting
operations have to be explicitly encoded in function applications.
Apart from the additional work spent on program specification, this
scattered encoding of structural information renders refactoring of
widely used data structures difficult.

We propose a new means to model the structure of homoge-
neously nested arrays in the type system, rather than the actual
data. We exploit this additional type knowledge for subtyping-
based function overloading, liberating the programmer from ex-
plicitly encoding nesting operations in function applications. Fur-
thermore, we propose and demonstrate a nesting-structure generic
programming extension that allows us to define user-defined homo-
geneously nested array-types without the usual boiler-plate code.

1. Introduction
The term generic programming has gained popularity in the pro-
gramming language community; it is widely used for language fea-
tures that allow programmers to abstract over certain properties of
data and thus facilitate software reuse.

In object-oriented languages like C++ [Str00], JAVA [GJSB05]
or C# [Int03], the term generic programming is used in the context
of parametric polymorphism [BML97, BOSW98, OW97], i.e., the
specification of classes that are parameterised with respect to the
type of the contained data. As an example consider a class for lists
of one specific, but arbitrary datatype. Here, the type of the list’s
elements is a parameter of the list class.

Functional languages such as HASKELL [Pey03] and
CLEAN [PvE01] have recently been extended by generic pro-
gramming facilities on their predominant data structure: algebraic
datatypes. Datatype generic programming [JJ97, Hin00, AP02] al-
lows the programmer to specify algorithms on the structure of a
datatype rather than on the actual datatype itself. Applications of
this technique include, for example, generic definitions of pretty
printers and parsers for arbitrary tree structures.

[Copyright notice will appear here once ’preprint’ option is removed.]

A different approach to generic programming is taken in ar-
ray languages such as APL [Int93], NIAL [JJ93], J [HI04] and
SAC [Sch99, Sch03]. Their expressiveness stems from the use of
one single data structure, i.e., multi-dimensional arrays, and the in-
troduction of a shape-generic programming model thereon; it al-
lows the programmer to define algorithms on arrays of statically
unknown shape (i.e., the extent along each axis of the array) or
even statically unknown dimensionality (i.e., the number of axes).

Multi-dimensional arrays are a versatile data structure. Com-
bined with shape-generic programming, they offer a high level of
abstraction and good opportunities for software reuse. However,
from a software engineering perspective, they lack a certain kind
of expressiveness. Take as an example a 10 ⇥ 10-matrix of com-
plex numbers, represented by a 10⇥10⇥2-array of double values.
Even defining simple arithmetic operations on this representation
of complex matrices is awkward. Software engineering calls for a
solution that properly distinguishes between the two logical layers
of defining arithmetic on individual complex numbers represented
by two-element vectors of double values and on matrices of some
numerical values in an element-wise manner. Examples of this kind
are manifold in practice, e.g., pictures comprising of RGB-colour-
encoded pixels or films represented as vectors of pictures.

In APL and J this separation of logical layers can be achieved
by explicitly boxing inner dimensions, thereby creating a scalar.
In the above example of complex numbers, the inner dimension,
i.e., two-element vectors of double values, can be boxed into scalar
values, i.e., complex numbers. These scalar values can then be used
as elements of the outer array, leading to a 10 ⇥ 10 matrix of
complex numbers. Consecutive function applications operate only
on the non-boxed outer dimensions.

Although boxing inner dimensions allows the programmer to
encode logical layers of data, it has its drawbacks. First, boxing
the inner dimensions into scalar values inhibits shape-generic pro-
gramming. As an example, consider adding two 10⇥10 matrices of
complex numbers. This is easily done by element-wise adding the
underlying 10⇥ 10⇥ 2 array of double values, but to achieve this,
the inner dimensions need to be unboxed first. Second, the boxing
and unboxing operations need to be explicitly inserted into the code
by the programmer. Apart from being tedious and error-prone, this
requires the full knowledge of the underlying structure of an array.
Even more, this knowledge is scattered throughout the code, mak-
ing refactoring the structure of widely used arrays a difficult task.

In the following, we propose a novel representation that we have
developed in the context of the functional array language SAC. It
makes heavy use of subtyping, overloading and generic program-
ming techniques. We explicitly model nested array-types in our
type system: we introduce types of the form
<complex=double[2]>. These nesting constructors combine a
type definition and the name of the defined type as a new type,
which may serve as the base type of an array. By means of these
nesting constructors we can define array operations on the nested
elements of an array. Nesting constructors as types enable full use

1 2008/3/6

of overloading, and definition of different instances of functions on
types that are structurally identical, but semantically require differ-
ent handling in certain situations, e.g., multiplication of complex
numbers vs. element-wise multiplication of pairs of double values.

While this solution is adequate in principle, it lacks conve-
nience. Nested array-types that share structural properties often do
not require different handling: Unlike multiplication, summation of
complex numbers and element-wise summation of pairs of double
values are the same. In general, nested array-types bring the burden
of redefining many basic operations. Although this is usually not
difficult, it is tedious and error-prone.

We propose to acompany shape-generic programming by a fur-
ther means of generic program specification: generic programming
on the nesting structure of arrays. To allow us to specify abstract
operations that solely reflect the nesting structure, but not the spe-
cific needs of certain nested types like complex numbers, we intro-
duce generic nesting constructors of the form <a=b[shp]>, where
a, b and shp are placeholders for concrete types and shape speci-
fications. Using these nesting constructors, we define generic func-
tions on arbitrary homogeneously nested arrays.

In order to support both, generic function implementations and,
where necessary, specific function implementations, we define a
subtyping relation on nesting constructors in which each specific
nesting constructor, e.g., <complex=double[2]>, is a subtype of
the generic nesting constructor <a=b[shp]>. As a result, SAC
supports two orthogonal hierarchies of subtyping, overloading and
generic programming: on the level of element types through nesting
constructors and on the level of array types through varying levels
of static knowledge of shapes. These hierarchies let us provide a
generic library of abstract basic nested operations. Whenever we
need to introduce a new nested array-type, we simply import that
library, then overload only those operations by specific implemen-
tations where the new nested array-type requires a non-standard
solution.

The remainder of this paper is organised as follows. In the next
section, we give a brief overview of SAC and its array types. In
Section 3 we introduce nesting constructors. Section 4 illustrates
inductive definitions of generic functions on nested array-types. In
Section 5, an extension of the subtyping based function overloading
in SAC to generic functions on nested array-types is presented. Sec-
tion 6 gives a full example combining nested array-types, generic
functions and overloading. Related work is discussed in Section 7,
and some conclusions are drawn in Section 8.

2. SAC — Single Assignment C
SAC is a purely functional first-order array programming language
with a syntax that is largely adopted from C and genuine support
for multi-dimensional arrays: any type in SAC describes an array.
As shown in Figure 1, SAC array types consist of two components:
an element type, which can be chosen from a fixed set of built-in
types, and a shape specification, which defines the shape of an array
to varying degrees of accuracy.

Arraytype) Elementtype Shape

Elementtype) int | double | float | char | bool

Shape) [[Num [, Num]⇤]]
| [. [, .]⇤]

| [*]

Figure 1. Array types in SAC.

To this effect we support three classes of array types. The first
class of array types specifies the shape of an array using a comma-

separated list of non-negative numbers. The length of that list
equals the number of axes or dimensions of the array, and each
individual number gives the extent of the array along that axis or
dimension. For example, an integer matrix of 10 ⇥ 2 elements is
of type int[10,2]. This class of array types also includes scalars,
which in SAC, as in APL and J, are considered zero-dimensional
arrays. Hence, a scalar floating point number hast type float[].

The second class of array types lifts the restriction of fixed array
shapes, but still specifies the exact number of axes. Syntactically,
we achieve this by using dots, instead of concrete numbers, in the
shape vector. For example, an arbitrarily-sized matrix of boolean
values has type bool[.,.].

Finally, the third class of array types in SAC abstracts from both
the extent of an array along its axes and the number of axes or
dimensions itself. For any given element type ↵ this class consists
of a single element only. In the style of regular expression syntax,
we denote this type ↵[*].

↵[*]

↵[.]

↵[.,.] ↵[.,.,.]

· · ·

↵[1] ↵[4]

· · ·
↵[7,2] ↵[2,9]

· · ·
↵[9,8,11]

· · ·
↵[]

Figure 2. Subtyping structure on array types in SAC.

Our three classes of array types naturally form a subtyping
hierarchy as shown in Figure 2. For any element type ↵, an array
type with fixed shape naturally is a subtype of the corresponding
array type that leaves the concrete shape unspecified, but prescribes
the number of dimensions. Likewise, an array type with fixed
dimensionality naturally is a subtype of the most general type that
abstracts from a concrete dimensionality.

To achieve this strictly separated hierarchy of shape knowledge
and maintain a tree structure as subtyping hierarchy, SAC does not
support types that mix dots with numbers and, hence, abstract from
concrete extents along selected axes only.

We exploit this subtyping hierarchy for function overloading
and for shape-generic programming. As an example consider the
shape-generic definition of a function for the element-wise multi-
plication of two arrays, as shown in Figure 3.

1 double [] (⇤) (double [] A, double [] B)

2 {

3 return(_mul_SxS_(A, B));

4 }

5 double [*] (⇤) (double [*] A, double [*] B)

6 {

7 return({ iv -> A[iv] ⇤ B[iv] });

8 }

Figure 3. Shape generic definition of element-wise multiplication
of two arrays.

The first definition of function * takes two scalar arguments
and computes by the help of a built-in scalar-scalar primitive
_mul_SxS_. In contrast, the second definition of function * takes
two arguments of any dimensionality and shape. The expression
{ iv -> A[iv] * B[iv] } essentially is a SAC array comprehen-
sion that maps the * operator to pairs of corresponding elements of
arrays A and B. Since a deeper understanding of the SAC expres-
sion language is not required in the following, we refrain from an
appropriate explanation and refer the interested reader to [Sch03]
and [GS03] for reference.

2 2008/3/6

Function overloading and subtyping effectively combine the
two definitions of function * in Figure 3, referred to as instances
in the following, into a single overloaded function *. The resulting
overloaded function is defined on the superset of its instances.
Thus, in our example, the resulting overloaded function * is defined
on arrays of any shape and dimensionality.

Each application of * is then dispatched to that available in-
stance whose formal arguments have the least supertype of the
corresponding actual arguments’ types. As an example, consider
an application of function * to two double vectors. As double[*]
is the least supertype of double[.] for which an instance is de-
fined, the function application will be dispatched to the second in-
stance. Within its body, the * operation is mapped down to scalar
level. Therefore, the application of function * in line 7 is dispatched
to the double[] instance, as double[] is the least supertype of
double[] for which an instance is defined. Finally, the * operation
is performed on the scalar level by the built-in _mul_SxS_ func-
tion.

1 double [*] (+) (double [*] A, double [] B)

2 {

3 return({ iv -> _add_SxS_(A[iv], B) });

4 }

5 double [*] (+) (double [] A, double [*] B)

6 {

7 return({ iv -> _add_SxS_(A, B[iv]) });

8 }

Figure 4. Ambiguously overloaded function with two non-
covariant instances.

In general, such an instance may not be uniquely defined. We
give an example in Figure 4, using two instances for addition on
arrays and scalar values. The first instance (cf. line 1ff.) is defined
for an array as first argument and a scalar value as second. The
second instance (cf. line 5ff.) is defined for the opposite argument
combination. Here, the first argument is a scalar value and the
second an array. We use the same SAC array comprehension as in
the previous example, given in Figure 3, to map the operation down
to scalar level. The actual addition is then performed by the built-in
scalar-scalar _add_SxS_ operation in lines 3 and 7, respectively.

When applying the resulting overloaded function + to two scalar
values, both of the instances match equally well. The first instance
matches on the first argument, as the formal and actual arguments
both have type double[]. The same holds true for the second
instance and second argument. For the remaining arguments, both
instances are defined on type double[*], which is a supertype
of the actual argument’s type double[]. Overall, both instances
match, not exactly, but equally well on the given arguments.

To ensure a unique dispatch, we rule out instance definitions as
those shown in the previous example. We achieve this by enforcing
a strict order on function instances with respect to function dis-
patch, i.e., we ensure that for given actual arguments and every two
matching instances, one is a closer match than the other. Formally,
this idea is captured by the concept of covariance [Pie02]: For each
pair of function instances a and b with argument types ↵1, . . . , ↵n

and �1, . . . , �n, we require that for all i 2 1, . . . , n� 1 the state-
ment ↵i � �i) ↵i+1 � �i+1 holds. The symbol � thereby
denotes the subtype relation, i.e., ↵ � � denotes ↵ being subtype
of �.

For the example given in Figure 3, this requirement is met as for
both arguments the type double[] of the first instance is a subtype
of the type double[*] of the second instance. However, the second
example in Figure 4 does not meet this condition. Although the type
of the first argument of the first instance, double[*], is a supertype

of double[], the type of the corresponding argument of the second
instance, this does not hold for the types of the second arguments.

3. Nested Array Types
The existing type system of SAC only covers multi-dimensional
arrays of primitive data. In order to extend our type system to ho-
mogeneously nested arrays, we introduce a special element type,
which we refer to as nesting constructor; Figure 5 shows its syn-
tax. The nesting constructor comprises an identifier, associating a
name with the nested array-type, an inner element-type and a nest-
ing shape, which specifies the number of nested dimensions and
their extents, respectively. As the inner element-type may again be
a nesting constructor, we can model arbitrary finite nesting struc-
tures in this way. We require a concrete nesting shape to ensure
homogeneity of nested arrays.

Elementtype) int | double | float | char | bool

| < Id = Elementtype F ixedShape >

FixedShape) [[Num [, Num]⇤]]

Figure 5. Nested array-types in SAC.

As an illustration of nested types, consider a vector of com-
plex numbers. An individual complex number can be represented
as a two-element vector of double values. Hence, an n-element
vector of complex numbers can be represented as an n ⇥ 2
array of double values. The corresponding SAC array type is
< complex=double[2] >[.]. Likewise, we may define a nested
array-type for vectors of tuples of two double values as
< tuple=double[2] >[.].

Although both types essentially express the same structural in-
formation, they differ in the name introduced by the nesting con-
structor. The ability to distinguish between types of identical struc-
ture permits different treatment of nested types. As an example con-
sider element-wise multiplication. While the element-wise multi-
plication of two vectors of tuples boils down to the element-wise
multiplication of the tuples themselves, we certainly prefer to have
proper complex arithmetic in the case of the vector of complex
numbers.

To be able to operate on the structure of nested arrays, we de-
fine two operations type_enclose and type_disclose. They
are effectively type coercions and do not actually modify the
representation of an array. The type_enclose operation con-
verts the type of the array passed as the second argument to a
nested type by nesting the inner dimensions using the type passed
as first argument. For example, the application type_enclose(

< complex=double[2] >, A) with A being an array of type
double[5,2] converts the type of array A to type
< complex=double[2] >[5]. Of course, type_enclose requires
the type of the second argument to match the nesting constructor
given as first argument. Similar, the type_disclose operation
converts the type of its argument to the type with one nesting level
stripped off. The application type_disclose(A) with array A

being of type < complex=double[2] >[5] results in the type of
array A being converted to double[5,2].

The type_enclose and type_disclose operations serve a
similar purpose as the APL enclose and disclose functions;
both are used to specify nested arrays. In APL, the enclose func-
tion boxes an array, which can then be used as an element of another
array. Its dual, the function disclose unboxes such a boxed array,
leading to the original array. Using these two operations, arbitrary
nesting structures of arrays can be created and resolved at runtime.

In contrast to the APL functions, type_enclose and its dual
type_disclose solely convert types and do not modify arrays

3 2008/3/6

as such. This way, the concept of nested arrays is lifted from
the level of runtime representations of arrays to the level of the
type system. As a consequence, the use of type_enclose and
type_disclose has no impact on the runtime representation of
an array. In particular, no conversion of array representations at
runtime is needed.

1 int [.] shape(<complex=double [2] >[.] A)

2 {

3 A’ = type_disclose(A);

4 result = drop([-1], shape(A’));

5 return(result);

6 }

7 int [.] shape(double [*] A)

8 {

9 return(_shape_(A));

10 }

11 int [.] shape(<tuple=double [2] >[.] A)

12 {

13 A’ = type_disclose(A);

14 result = drop([-1], shape(A’));

15 return(result);

16 }

Figure 6. Function shape for vectors of complex numbers and
tuples.

Using the nested array-types and the type_enclose and
type_disclose operations introduced above, we can now define
functions inductively on the nesting structure of their arguments.
As an example, consider the shape function, which yields the
shape vector of its argument. Figure 6 provides implementations
of the shape function for both vectors of complex numbers and
vectors of tuples. First, the type of argument array A is de-nested.
Thus, the application of the function shape to array A’ in line 4
is not a recursive application, but instead is dispatched for an ar-
gument of type double[.,.]

1. For primitive element types, the
function shape is defined using the built-in primitive similar to
the definition of the * operation in Figure 3. Using this instance
of shape, the value returned by the application in line 4 is a two-
element vector giving the extent of both dimensions of argument
A’. The subsequent application of drop with first argument [-1]
then strips the extent of the inner dimension, leading to the final
result.2 The definition of shape on vectors of tuples follows the
same idea.

So far, the nesting shape and inner element-type of a nested
array-type are re-defined each time a type is used. To ensure the
consistent use of type names and their corresponding nesting shape
and inner element-type, we introduce type definitions. As an exam-
ple, consider the two type definitions given in Figure 7. The first
type definition (cf. line 1) defines complex numbers as introduced
in Figure 6. A definition for tuples of double values is given in line
2. The syntax for type definitions closely resembles C: the keyword
typedef is followed by the nested array-type and the name of the
defined type.

1 As mixing dots with numbers is not supported by SAC array types, the
type is promoted to double[.,.].
2 Note here that a negative vector as first argument to drop encodes strip-
ping elements from the end of the shape vector.

1 typedef double [2] complex;

2 typedef double [2] tuple;

Figure 7. Type definitions for complex numbers and tuples of
double values.

Given these type definitions, the specification of the nesting
shape and inner element-type in function signatures becomes re-
dundant; it suffices to give the name of a nested array-type. Apart
from added brevity, this can be used to define abstract datatypes
by hiding the actual definition of a type from the programmer.
However, to keep our examples self contained, we will use explicit
nested array-types throughout the paper.

4. Generic Functions on Nested Types
The example of Figure 6 illustrates how functions like shape

can straightforwardly be implemented on arbitrary homogeneously
nested arrays. As the two types — vectors of complex numbers
and vectors of tuples of double values — are structurally identical,
so are the corresponding definitions of the shape functions. This
illustrates a downside of having named nested array types: Each
newly introduced nested array type requires redefinition of basic
operations such as +, * and shape. While definitions of these
functions in most cases are not complicated to derive, specifying
all the basic operations for every nested array type is both tedious
and error-prone. This calls for a more generic solution.

A closer examination of the function shape reveals that its
definition does not depend on the semantics of type complex or
tuple, but merely on the nesting structure of the type: Its result is
computed from the inner nesting-shape and the de-nested type of
the argument. This pattern is common to many functions that can
be defined inductively on the nesting structure of arrays. Instead
of defining functions on a specific type, we introduce a generic
definition based on the nesting constructor. All that is needed to
give such a generic specification is the nested and de-nested type
of the arguments and the nesting shape. Figure 8 shows a generic
definition of the shape function.

1 int [.] shape(<a=b[shp]>[*] A)

2 {

3 A’ = type_disclose(A);

4 return(drop([-len(shp)], shape(A ’)));

5 }

Figure 8. Nesting generic definition of function shape.

Instead of using the concrete types complex and double in the
nesting constructor of the type declaration, we use a type variable
a to represent the name of the nested type and two placeholders
b and shp for its element type and the inner nesting-shape, re-
spectively. The type variable a is implicitly universally-quantified,
i.e., it ranges over all nested array-types in the current module.
The actual computation of the shape is quite similar to the non-
generic versions of shape in Figure 6. The number of elements to
be dropped from the shape of the de-nested array is deduced from
the length of the nesting shape, represented by shp. Syntactically,
generic instances can be distinguished from type-specific instances
by the use of a variable as nesting shape rather than a concrete list
of numbers.

The type variable a in the example given in Figure 8 serves two
purposes. First, it is used as a type variable within the function sig-
nature of the function shape. Thus, the above function definition

4 2008/3/6

1 <a=b[shp]>[] (⇤)(<a=b[shp]>[] A,

2 <a=b[shp]>[] B)

3 {

4 A’ = type_disclose(A);

5 B’ = type_disclose(B);

6 result = A’ ⇤ B’;

7 result ’ = type_enclose(<a=b[shp]>, result);

8 return(result ’);

9 }

Figure 9. Nesting generic definition of multiplication on scalars.

defines the function shape for all nested array types a. Second, the
type variable is used to bind an identifier a within the function body
to the type of the argument of the function. This is merely a syntac-
tical convenience to simplify the specification of type_enclose
operations. The two other variables, the nesting type b and the nest-
ing shape shp serve the second purpose; they bind the nesting type
and nesting shape to the identifiers b and shp, respectively. For the
function signature they are redundant: the nesting type and the nest-
ing shape are part of the nested array-type and are encoded within
the type variable a.

Figure 9 shows another example of a function that inductively
extends over array nestings: a generic definition of the arithmetic
function *. In general, the * operation expects two arguments of
the same type. We encode this in our syntax by using the same type
variables for the generic types of both arguments. This ensures that
the given instance can only be applied to arguments of the same
type. Furthermore, we use a generic return-type in the definition
of function *. Other than the function shape, whose result is,
regardless of its argument’s type, of type int[.], the type of
the result of the function * equals its arguments’ type. Again, we
express this type equality by using the same type variables in the
return type as in the argument types. However, for return types we
only permit the use of type variables that occur at least in one type
of the arguments. This is to ensure that the result type of a function
is uniquely determined by the type of its arguments.

As the result of function * is a homogeneously nested array,
we use the dual to the de-nesting of arguments in line 7. The
type_enclose operation nests the type of the result array with
the nesting constructor. This illustrates how type variables bound
by generic function signatures may be used in function bodies.

Since the application of function * in line 6 within the func-
tion body is dispatched for the de-nested type, it is not a recursive
call of the given instance of *. Instead, the * operator is induc-
tively extended across array nestings. The above definition of *

is fully generic, in the sense that it defines multiplication for all
nested array-types, regardless of their inner nesting-structure. Fur-
thermore, it defines multiplication on multiply-nested arrays, e.g.
arrays of tuples of complex values. As the nesting structure is fi-
nite, the recursion contained in the definition of * terminates with
a call to an instance of the * function on a built-in type, as defined
in Section 2.

5. Overloading on Nested Array Types
The generic definition of * yields the correct result, as long as
the semantics of the multiplication operation is the same for both,
the nested and de-nested type. This is not always the case. For
instance, the semantics of * on complex numbers differs from the
semantics of * on tuples of double values. As both instances are not
homomorphic, no common generic instance can be defined.

An ad-hoc approach to solve this problem would be to define a
second function, e.g., complexmul, implementing the semantics of
multiplication for complex numbers. However, this would force the
programmer to be aware of which function to use, depending on the
underlying semantics of a nested array. Again, choosing the correct
instance by hand is an error-prone task and implicitly distributes
structural information throughout the program.

Instead of defining multiple functions for different nested array-
types, we adopt a similar approach as we use for shape-generic
functions. As introduced in Section 2, SAC exploits the subtyping
structure of array shapes for function overloading. The same can
be done for the nesting structure of array types by introducing a
subtyping relation on nested element types.

< a=b[shp] >

< complex=double[2] > < tuple=double[2] >

[*]

[]

[1,2,3]

[*]

[]

[1,2,3]

[*]

[]

[1,2,3]

Figure 10. Extended SAC subtyping hierarchy.

Quite naturally, every concrete nesting type is a subtype of the
generic nesting type used for generic function definitions. Further-
more, this subtype relation neatly integrates with the existing sub-
typing on array shapes. An array of known nesting structure and
shape is a subtype of an array of unknown (generic) nesting struc-
ture and unknown shape. More precisely, type ↵ is a subtype of
another type � if both its element type and shape component are
in subtype relation with the element type and shape component of
�. Figure 10 gives a schematic overview of this extended subtype
hierarchy. The grey triangles indicate the shape subtyping hierar-
chy, whereas the structural subtyping hierarchy is illustrated for two
example types. Subtype relations are denoted by arrows, pointing
from the supertype to the subtype. The dashed arrows illustrate an
exemplary subset of the combined subtyping relation.

1 <a=b[shp]>[.] (+)(<a=b[shp]>[.] A, <a=b[shp]>[.] B)

2 {

3 return({ iv -> A[iv] + B[iv] });

4 }

5 <complex=double [2] >[*] (+)(<complex=double [2] >[*] A,

6 <complex=double [2] >[*] B)

7 {

8 return({ iv -> A[iv] + B[iv] });

9 }

Figure 11. Example for ambiguity of dispatch on the combined
subtype relation.

Given this two-dimensional subtype relation, the notion of least
supertype needed for function dispatch is not uniquely defined
anymore. As an example consider the two instances of + given in
Figure 11. Both define addition on nested arrays. The first instance
(cf. lines 1ff.) is defined on arguments of type <a=b[shp]>[.],
i.e., vectors of nested arrays. The definition of the second instance
(cf . lines 5ff.) uses <complex=double[2]>[*] as argument type,

5 2008/3/6

i.e., it defines a + operation for arrays of complex values. Although
both instances comply with the covariance restriction introduced in
Section 2, function dispatch may be ambiguous. When applied to
arguments of type <complex=double[2]>[.], both instances of
the overloaded function + match equally well. For the first instance,
the shape component of the actual argument type matches exactly,
whereas the nesting component <a=b[shp]> is a supertype of
<complex=double[2]>. The second instance matches the nesting
component of the actual argument type, but the shape component
[*] is a supertype of [.].

To disambiguate the dispatch decision in these cases, we give
precedence to the shape subtyping over the structural subtyping.
Thus, whenever possible, a function application is dispatched for
the specific nesting type. Only if no non-nesting-generic instance
matches, the nesting-generic instances are considered for dispatch.
Using this precedence rule, the application of function +, as defined
in Figure 11, to arguments of type <complex=double[2]>[.] is
dispatched to the second instance.

Our decision to give precedence to the shape subtyping is
guided by the intuition that nesting-type specific instances are usu-
ally defined only if the semantics of the function differs for the
specific type from the one implemented by the generic instance.
This, for example, is the case for the type complex introduced
earlier. For shape-specific instances, the intuition is the other way
round. Here, one need not specify instances on a more specific
shape as they have the same semantics as the more shape-generic
version.

1 <a=b[shp]>[*] (⇤)(<a=b[shp]>[*] A, <a=b[shp]>[*] B)

2 {

3 return({ iv -> A[iv] ⇤ B[iv] });

4 }

5 <complex=double [2]>[] (⇤)(<complex=double [2] >[] A,

6 <complex=double [2]>[] B)

7 {

8 A’ = type_disclose(A);

9 B’ = type_disclose(B);

10 result = [A’[0]⇤B’[0] - A’[1]⇤B’[1],
11 A’[0]⇤B’[1] + A’[1]⇤B ’[0]];

12 result ’ = type_enclose(<complex=double[2]>,

13 result);

14 return(result ’);

15 }

Figure 12. Definition of complex multiplication.

Given this extended subtype relation, we can now overload
functions on the shape and structure of their arguments. Figure 12
demonstrates the expressive power that comes with this dual over-
loading by means of the ⇤ example extended to arrays of both com-
plex numbers and tuples. In conjunction with the code in Figures 3
and 9 we have four overloaded instances of the function ⇤:

1. a generic instance on nested arrays of arbitrary shape,
2. a generic instance on a nested array of scalar outer shape,
3. a non-generic instance on complex numbers and
4. a non-generic instance on double values.

As an example, consider the dispatch of application of * to two
vectors of complex numbers. The initial dispatch chooses the first,
most general instance, which maps multiplication to the level of in-
dividual complex numbers. Here, the dispatch takes the specialised
instance for complex numbers, that in turn maps multiplication to

the level of double values, which is taken care of by the fourth in-
stance.

As an alternative example, consider multiplication of two ma-
trices of tuples. Once again, we start with the first instance, which
maps the computation to the level of individual tuples. In contrast
to the example of complex vectors, there is no specialised multi-
plication on tuples and, hence, we dispatch to the generic instance
(instance 2), which by mapping multiplication again to the element
level of the tuple, perfectly suits our needs. Eventually, we again
employ the fourth instance of function * to do the numerical com-
putation.

As all nested array types are named in SAC, the specific in-
stance for complex values does not affect the generic definition
for arrays of tuples of double values. Although the structure of
type < tuple=double[2] > is equivalent to the structure of type
< complex=double[2] >, once an application of * to two vectors
of tuples of double values has been mapped down to scalar level, it
is dispatched to the generic instance for scalar values and thereby
transparently mapped onto the inner dimension. The programmer is
thus fully liberated from the task to choose the correct instance of a
function depending on the underlying semantics of a given nested
array.

6. Putting it all together
We now give a generic definition of a dot product function on
nested arrays to demonstrate the interplay of nested array-types,
generic function definitions on the nesting structure and function
overloading.

1 module ArrayGenerics;

2 import Array : all;

3 export all;

4 int [.] shape(<a->b[shp]>[*] A)

5 {

6 return(drop(- [len(shp)], shape(A)));

7 }

8 <a<-b[shp]>[] (⇤)(<a->b[shp]>[] A, <a->b[shp]>[] B)

9 {

10 return(A ⇤ B);

11 }

12 <a=b[shp]>[*] (⇤)(<a=b[shp]>[*] A, <a=b[shp]>[*] B)

13 {

14 return({ iv -> A[iv] ⇤ B[iv] });

15 }

16 <a=b[shp]>[] dotproduct(<a=b[shp]>[.] A,

17 <a=b[shp]>[.] B)

18 {

19 return(sum(A ⇤ B));

20 }

Figure 13. Generic definition of basic array operations on homo-
geneously nested arrays.

Figure 13 shows the definition of a SAC module
ArrayGenerics that provides the basic generic definitions for
nested array-types. The scalar operations on built-in types are im-
ported from module Array using an import statement in line
2. Most functions shown in Figure 13 have already been used
in this paper. However, we use the opportunity to introduce a
more concise notation. As applying type_disclose to the ar-
guments is a common pattern, we use < complex->double[2] >

6 2008/3/6

in argument-type position to implicitly convert the type of an argu-
ment to its de-nested counterpart within the function body. Dually,
< complex<-double[2] > as return type is used as equivalent to
applying the type_enclose function to the return values. The ad-
ditional dotproduct function in line 16 defines the dot product
of two arbitrary vectors of homogeneously nested arrays. The ap-
plication of sum in line 19 computes the sum of all elements of a
given vector.

1 module Complex;

2 import ArrayGenerics : all;

3 typedef double [2] complex;

4 export all;

5 <complex <-double [2] >[] (⇤)(<complex ->double [2]>[] A,

6 <complex ->double [2] >[] B)

7 {

8 return([A[0]⇤B[0] - A[1]⇤B[1],
9 A[0]⇤B[1] + A[1]⇤B[0]]);

10 }

Figure 14. Definition of basic array operations on complex num-
bers.

The type complex and multiplication thereon can now be de-
fined using the module ArrayGenerics from Figure 13, as shown
in Figure 14. The import statement in line 2 makes all functions
and generic definitions from module ArrayGenerics available in
the current module. Thus, the generic definitions for *, shape and
dotproduct become immediately available for type
< complex=double[2] > defined in line 3. We further overload
the * operation for the type < complex=double[2] >[] to rep-
resent the difference in semantics of the * operation on complex
numbers.

As can be seen, the techniques presented in this paper simplify
the introduction of new nested array-types. In most cases it suf-
fices to use the generic instances. Specialised instances need to be
defined only for those cases in which a specific behaviour is de-
manded. As a consequence, programmers may focus on the inter-
esting parts of a program, leaving all boiler-plate code to be gener-
ated through generic instance specifications.

Given the definition of module Complex in Figure 14, we
can apply basic arithmetic functions to the nested array-type
<complex=double[2]> just as well as to basic datatypes. As an
example, consider the application of the dotproduct function to
two vectors of complex numbers. As the arguments of the appli-
cation are vectors, the application of * within dotproduct is dis-
patched to the generic array instance, which maps the application
to scalar level. Since we defined an explicit instance of * for scalar
arguments of type < complex=double[2] >[], within the generic
array instance of function * the instance for scalar complex val-
ues is used for dispatch. This instance computes the product of the
two elements. Finally, the application of sum within the function
dotproduct (cf. line 19 in Figure 13) computes the result.

7. Related Work
In SHARP APL [BB93], nested arrays are handled using ex-
plicit applications of enclose and disclose functions. The
function enclose boxes an array, whereas its dual operation
disclose unboxes it. J [HI04] makes use of two functions box

and open with equivalent semantics. Similar functions are present
in APL2 [Ben91] in the form of mix and split. These functions

permit an array to be split in between two dimensions, e.g., a matrix
can be split up into a vector of vectors.

The array-language NIAL [JJ93] was explicitly designed with
nested arrays in mind. In contrast to the approach presented in this
paper, the nesting structure of an array in NIAL has to be explicitly
defined by the programmer using a nesting vector. Furthermore, it
is the programmer’s responsibility to explicitly state the mapping
of each function application to the nesting level it is intended to
operate on.

A similar approach is taken by FISH [Jay98]: the nesting is part
of the shape vector on which nesting and de-nesting operations,
similar to what we presented in this paper, can be defined. As
shapes are fully static in FISH and cannot be altered for a given
array other than by explicitly copying the elements into an array of
the new shape, the uses of these nesting and de-nesting operations
are limited. As a further difference to the approach presented here,
the nesting levels are not named and thus cannot be exploited for
function overloading. The programmer has the responsibility to
choose the appropriate operations depending on the semantics of
the data handled.

For all APL-like languages, as with nesting vectors in NIAL
and FISH, the programmer has to be aware of the nesting structure
and has to manually insert the appropriate nesting and de-nesting
operations to extend function applications across array nestings. As
the nesting operations are operations on arrays, they are scattered
throughout the code. Besides the additional work and complexity
during the initial development of a program, the distributed na-
ture of data-structure definitions complicates the maintenance and
refactoring of existing code: Every change in the nesting structure
forces the programmer to adapt the function definitions to that par-
ticular nesting structure.

For functional languages like HASKELL [Pey03] and
CLEAN [PvE01], generic programming extensions for algebraic
datatypes have been proposed [JJ97, Hin00, AP02]. These exten-
sions provide support for defining generic instances inductively
on the three basic data constructors of algebraic datatypes: unit,
product and sum. Combining generic and specific instances to one
overloading function, e.g., by using subtyping as in our approach,
is not supported. To our best knowledge, these approaches have not
been applied to forms of datatypes other than algebraic datatypes.
Specifically, we are not aware of any datatype-generic program-
ming approach that uses explicit array type-constructors.

8. Conclusion
We have presented a structure-generic programming extension for
SAC that eases the use of nested arrays by reducing the amount
of boiler-plate code that is needed to introduce nested array types.
This is achieved by lifting the nesting information from the array
level to the type level. By exploiting this type structure for inductive
function definitions, we enable the programmer to specify generic
functions for arbitrarily nested arrays. Moreover, we gave an ex-
ample of how this neatly integrates with the function overload-
ing capabilities of SAC and its existing shape-generic program-
ming model. By combining these two approaches, homogeneously
nested arrays can be used to model data structures like arrays of
complex numbers without loosing the ability to write generic algo-
rithms on n-dimensional arrays. Furthermore, as the nesting struc-
ture is encoded in the type, the programmer is liberated from expli-
citly encoding the nesting structure in the program code.

Our approach combines shape-generic and structure-generic
programming on arrays. However, the way we introduce generic
programming, namely the restriction to homogeneously nested
arrays, allows us to use our existing optimisation techniques, in par-
ticular with-loop scalarisation [GST04], to compile highly generic
specifications on nested arrays into efficiently executable non-

7 2008/3/6

generic code that operates on flat arrays at runtime. Our approach
of using inductive function definitions on the nesting structure of
arrays is not limited to homogeneously nested arrays. Extending the
optimisations and the type system of SAC to non-homogeneously
nested arrays remains as future work.

Acknowledgments
This work was funded by the European Union ÆTHER project
(cf. http://www.aether-ist.org).

References
[AP02] A. Alimarine and R. Plasmeijer. A generic programming

extension for clean. In IFL ’02: Selected Papers from the 13th
International Workshop on Implementation of Functional
Languages, pages 168–185, London, UK, 2002. Springer-
Verlag.

[BB93] R. Bernecky and P. Berry. SHARP APL Reference Manual.
Iverson Software Inc., 2nd edition, 1993.

[Ben91] J.P. Benkard. Extending Structure, Type, and Expression in
APL-2. In Proceedings of the International Conference on
Array Processing Languages (APL’91), Palo Alto, California,
USA, volume 21 of APL Quote Quad, pages 20–29. ACM
Press, 1991.

[BML97] Joseph A. Bank, Andrew C. Myers, and Barbara Liskov.
Parameterized types for java. In POPL ’97: Proceedings of
the 24th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 132–145, New York, NY,
USA, 1997. ACM Press.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and
Philip Wadler. Making the future safe for the past: adding
genericity to the java programming language. In OOPSLA
’98: Proceedings of the 13th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, pages 183–200, New York, NY, USA, 1998.
ACM Press.

[GJSB05] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha.
The Java Language Specification. Java series. Prentice Hall
PTR, third edition, 2005.

[GS03] C. Grelck and S.-B. Scholz. Axis Control in SAC. In R. Peña
and T. Arts, editors, Proceedings of the 14th International
Workshop on Implementation of Functional Languages
(IFL’02), Madrid, Spain, Revised Selected Papers, volume
2670 of Lecture Notes in Computer Science, pages 182–198.
Springer-Verlag, Berlin, Germany, 2003.

[GST04] C. Grelck, S.-B. Scholz, and K. Trojahner. WITH-Loop
Scalarization – Merging Nested Array Operations. In
G. Michaelson and P. Trinder, editors, Proc. of the 15th
International Workshop on Implementation of Functional
Languages (IFL’03), Edinburgh, UK, Selected Papers,
volume 3145 of LNCS, pages 118–134. Springer, 2004.

[HI04] R.K.W. Hui and K.E. Iverson. J Introduction and Dictionary.
Jsoftware Inc., 2004.

[Hin00] Ralf Hinze. A new approach to generic functional pro-
gramming. In POPL ’00: Proceedings of the 27th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 119–132, New York, NY, USA, 2000.
ACM Press.

[Int93] International Standards Organization. Programming Lan-
guage APL, Extended. ISO N93.03, ISO, 1993.

[Int03] International Standards Organization. ISO/IEC 23270:2003:
Information technology — C# Language Specification.
International Standards Organization, 2003.

[Jay98] C. B. Jay. The FISh language definition. Technical report,
University of Technology, Sydney, 10 1998.

[JJ93] M.A. Jenkins and W.H. Jenkins. The Q’Nial Language and
Reference Manuals. Nial Systems Ltd., Ottawa, Canada,
1993.

[JJ97] P. Jansson and J. Jeuring. PolyP—A polytypic programming
language extension. In Conf. Record 24th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages,
POPL’97, Paris, France, 15–17 Jan 1997, pages 470–482.
ACM Press, New York, 1997.

[OW97] Martin Odersky and Philip Wadler. Pizza into java: translating
theory into practice. In POPL ’97: Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 146–159, New York, NY,
USA, 1997. ACM Press.

[Pey03] S.L. Peyton Jones. Haskell 98 Language and Libraries.
Cambridge University Press, Cambridge, UK, 2003.

[Pie02] Benjamin C. Pierce. Types and programming languages.
MIT Press, Cambridge, MA, USA, 2002.

[PvE01] R. Plasmeijer and M. van Eekelen. Concurrent Clean 1.3.1
Language Report. High Level Software Tools B.V. and
University of Nijmegen, 2001.

[Sch99] S.-B. Scholz. On Defining Application-Specific High-
Level Operations by Means of Shape-Invariant Programming
Facilities. SIGAPL Quote Quad, 29(3):32–39, 1999.

[Sch03] S.-B. Scholz. Single Assignment C — efficient support for
high-level array operations in a functional setting. Journal of
Functional Programming, 13(6):1005–1059, 2003.

[Str00] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

8 2008/3/6

