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ABSTRACT

We propose a novel execution model for the implicitly parallel execution of data
parallel programs in the presence of general I/O operations. This model is called hy-

brid because it combines the advantages of the standard execution models fork/join and
SPMD. Based on program analysis the hybrid model adapts itself to one or the other on

the granularity of individual instructions. We outline compilation techniques that sys-
tematically derive the organization of parallel code from data flow characteristics aiming
at the reduction of execution mode switches in general and synchronization/communi-
cation requirements in particular. Experiments based on a prototype implementation

show the effectiveness of the hybrid execution model for reducing parallel overhead.

1. Introduction

Data parallel languages such as Hpf, Zpl [3], VectorPascal [5], Sisal [2], or
SaC [21] represent one major approach to high-level parallel programming. Rather
than providing programmers with explicit control over parallel execution, they in-
troduce constructs for processing arrays that are particularly amenable to compiler-
directed parallelization. Whether or not this opportunity is actually exploited in
a specific context is up to the implementation. Details about concrete parallel or
sequential realizations of these constructs are hidden. Fig. 1 illustrates this pro-
gramming model by a simple pseudo code example. Each of the three parfor loops
by itself may or may not be executed in parallel. However, program execution
on the outer level is strictly sequential: The parfor loops and the scalar code in
between them are expected to run in exactly the specified order.

A straightforward parallel implementation employs a dedicated master thread to
execute the whole program essentially in a single-threaded manner. This measure
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automatically preserves the given execution order outside of data parallel constructs.
Only when the master thread encounters a data parallel construct, it activates a
number of worker threads to cooperatively compute only this individual instance
of a data parallel construct. Having passed a subsequent synchronization barrier
worker threads terminate or sleep while the master thread resumes sequential ex-
ecution. This fork/join execution model nicely matches the semantics of the data
parallel programming model and the intuition of the programmer. In other words,
programming model (language semantics exposed to the programmer) and execu-
tion model (effective organization of program execution by compiler and runtime
system) essentially coincide.

1 parfor i=0 to 100 { A[i] = ... ; }
2 print( "hello ");
3 A[x] = 42;
4 parfor i=0 to 100 { B[i] = ... A ...; }
5 print( "world");
6 parfor i=0 to 100 { C[i] = ... ; }

Figure 1: Pseudo code example mixing data parallel and I/O operations.

The simplicity of fork/join as a model of parallel programming is appealing.
Likewise, its simplicity as an execution model facilitates parallel implementation.
Unfortunately, the resulting code is suboptimal with respect to parallel perfor-
mance: Any scalar code in between data parallel constructs enforces costly syn-
chronization of all threads, the termination of the parallel execution environment,
and its re-establishment shortly thereafter. We may re-arrange code such that data
independent parallel constructs form larger regions of parallel execution, but data
dependences like the one in line 3 limit the effectiveness of these measures.

Manually parallelized applications often implement an execution model called
SPMD (“single program, multiple data”). In this model scalar code in between
data parallel constructs is replicated: Each thread executes the same scalar code
concurrently. While this does not improve performance per se, it reduces synchro-
nization and communication overhead since the result of a replicated computation is
immediately available to each thread for further processing. In the fork/join model
a single thread had computed the same result in approximately the same time, but
it would still need to broadcast the data to the other threads, which in turn must
wait for the data to proceed with their work.

In principle, it is feasible to compile fork/join-style programs into SPMD-style
executable code. However, the discrepancy between programming model and ex-
ecution model incurs a subtle problem: correct handling of input/output opera-
tions and, more generally, operations that manipulate some externally visible state,
e.g. the print statements in lines 2 and 5 of Fig. 1. In order to correctly implement
the language semantics a compiler must preserve both the specified sequence of
events as well as the single-threaded execution of each individual event. Regardless
of the number of threads used for executing the code in Fig. 1 the words “hello”
and “world” must appear exactly once and in exactly the given order.

If the execution model coincides with the programming model, i.e., both are
fork/join, this property comes for free: All print statements outside of data paral-
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lel constructs are executed sequentially by the master thread, anyway. However, in
the SPMD model, execution of scalar code is replicated. Consequently, the number
of observable prints varies with the number of threads, and prints from different
threads may interleave. In order to preserve language semantics the compiler must
identify statements that manipulate an external state and protect their execution
by a condition that ensures exclusive execution by a single thread. Furthermore,
the compiler must introduce appropriate synchronization and communication op-
erations, e.g., for the dedicated thread to broadcast data read from a terminal and
for the other threads to wait for this data to arrive. ∗

In the presence of I/O the fork/join and the SPMD execution models become
surprisingly similar: Both organize program execution as a sequence of alternating
data parallel and single-threaded phases. The bulk of parallel overhead stems from
switching from one execution mode to the other. The two execution models mainly
differ in the way they handle scalar code that may (or may not) be replicated.
Whereas the SPMD model replicates all of this code, the fork/join model replicates
none. Starting from a fork/join execution model one aims at agglomerating parallel
regions of code. Conversely, starting from an SPMD execution model one aims at
agglomerating regions of single-threaded execution. In a sense the fork/join model
and the SPMD model mark the two extremes of the same design space.

As is often the case with extremes, neither the fork/join model nor the SPMD
model is optimal with respect to runtime performance. Therefore, we propose a
hybrid execution model that aims at properly striking the balance between the two.
We systematically distinguish between sequential, parallel, and replicatable code on
the level of instructions. Rather than originating from one of the extremes of the
design space, we start from an unbiased position and decide on the actual replication
of replicatable code based on its context. As a consequence, the proximity to either
the fork/join model or the SPMD model depends on an individual program’s mix
of operations and may differ from program part to program part.

The remainder of the paper is organized as follows: Section 2 introduces two
abstract data parallel skeletons. We elaborate on our hybrid execution model in
Section 3. Section 4 is concerned with code rearrangement techniques. We discuss
experimental data and related work in Sections 5 and 6; Section 7 concludes.

2. Array Skeletons and their Implementation

For the context of this paper we consider two skeletons that capture the essential
aspects of data parallel constructs in the field of array programming:

GenArray( shp, idx → opidx( idx, arg1, . . . , argn) ) ,
FoldArray( shp, idx → opidx( idx, arg1, . . . , argn), fold op, neutral ) .

The GenArray skeleton creates an array of shape shp, where shp must evaluate to a
vector of non-negative integers. Elements of the new array are defined by a mapping

∗Note that I/O statements that appear inside a data parallel construct are less of a concern. In
this case, parallel execution does not affect the number of I/O events. It does, indeed, affect the
order in which they occur, which may be different from program run to program run. However,
this behaviour complies with the language semantics as the execution order in a data parallel
construct is intentionally left unspecified.
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of each legal index represented by idx to some operation opidx. The operation opidx

may in fact specify different computations for each element of the index space; it may
also accept an arbitrary number of arguments. Likewise, the FoldArray skeleton
maps each element of an index space denoted by shp to the computation of a value.
Rather than using these values for initialization of an array, they are reduced to
a single value by applying a suitable folding operation. Both skeletons should be
considered operational templates rather than concrete higher-order functions.

Assuming a fork/join-based parallel implementation of GenArray and FoldArray

we have a dedicated master thread to execute our program in general. Whenever
this master thread encounters a GenArray skeleton, it allocates storage for the result
array (still in single-threaded mode). Afterwards, it writes the base address and the
shape of the result array as well as the arguments of opidx into a global broadcast
buffer and activates the desired number of worker threads. All worker threads uni-
formly execute the same code, but can identify themselves through a unique ID. As
a first step, a worker thread copies the data from the global broadcast buffer onto
its private runtime stack in order to set up an appropriate execution environment.
Then, each worker thread identifies a subspace of the entire index space defined by
shp, based on its ID. For each element of its individual index subspace a worker
thread computes the corresponding value and initializes the result array accord-
ingly. After having completed their individual computations, the worker threads
terminate. The master thread awaits the termination of all worker threads and,
thereupon, proceeds with sequential execution.

The implementation of FoldArray is very similar to that of the GenArray skele-
ton. However, instead of having the master thread first allocate storage, each worker
thread initializes a private accumulation variable with the neutral element of the
folding operation and computes a partial fold result. Having completed its share of
work a worker thread communicates this partial result to the master thread prior to
termination. The master thread in turn waits for all partial fold results, computes
the final result in a single-threaded manner and resumes sequential execution. A
detailed presentation of the compilation schemes can be found in [14].

3. Towards a Hybrid Execution Model

There are basically two approaches to reduce runtime overhead without aban-
doning the fork/join execution model. Firstly, we may combine multiple data
independent instances of skeletons into a single instance of some more versatile
skeleton [13]. Secondly, we may improve the implementation of thread creation
and termination, e.g. by caching worker threads during periods of sequential ex-
ecution [14]. While the first approach reduces the number of costly synchroniza-
tion and communication events, the second approach reduces the costs associated
with each individual such event. If this optimization potential is thoroughly ex-
ploited, substantial speedups can be achieved [12,16]. Nevertheless, there are many
non-artificial situations in which the conceptual constraints of the fork/join model
effectively hinder successful parallelization. For example, in the code fragment

A = GenArray( [1000], idx -> op1(idx,U,V,W,X,Y,Z));
B = A[0];
C = GenArray( [1000], idx -> op2(idx,B,U,V,W,X,Y,Z));
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the two skeletons computing A and C are separated by a trivial computation. Due
to data dependencies we can neither move the scalar code in front of the first skele-
ton nor behind the second one. Hence, the parallel execution environment must be
terminated after the computation of A and restarted for the computation of C. This
is particularly dissatisfying as nearby skeletons typically share arguments.

Even without scalar code involved, the constraints imposed by the fork/join
model may lead to dissatisfying results. For example, in the code fragment

A = GenArray( [1000], idx -> op1(idx,U,V,W,X,Y,Z));
B = GenArray( [1000], idx -> op2(idx,U,V,W,X,Y,Z));
C = GenArray( [1000], idx -> op3(idx,A,U,V,W,X,Y,Z));

the only data dependency is between the first and the third GenArray skeleton. This
data dependency rules out the combination of all three skeletons into a single one,
leaving us with the equally undesirable choices of synchronizing after computing A

or after computing B. Instead of a traditional synchronization barrier we would pre-
fer a scheme which separates notification of completion of some computation from
waiting for completion of some computation. In the given example each thread
could immediately signal completion of A. Rather than waiting for other threads
to complete A, too, all threads could proceed with computing B. Only after having
computed B as well, threads must wait for other threads to have completed com-
putation of A. Separating barrier synchronization into a signal and a wait phase
increases synchronization distances and reduces idle times.

Both examples have in common that they cannot be realized within the con-
ceptual bounds of the fork/join model. Hence, we need a more complex execution
model that allows us

• to execute non-skeletal code in a replicated manner by worker threads in order
to reduce the number of expensive execution mode changes and

• to combine multiple skeletons with data dependencies in larger regions of
SPMD-style parallel execution in order to exploit opportunities for relaxed
split-phase synchronization.

The idea of replicating code in certain contexts raises the question of why not
replicate the entire program execution and only synchronize and communicate when
executing a skeleton, effectively switching to an SPMD execution model. The prob-
lem here is that replication is not generally feasible because we must preserve the
program’s extensional behaviour. For example, an I/O operation must be performed
by a single thread only, in order to mimic sequential program behaviour. Shared
memory systems typically also share file systems and I/O channels. Hence, concur-
rent access to such resources requires careful synchronization. Memory allocation
in the course of GenArray skeletons must be single-threaded, too. Moreover, pro-
grams may contain parts, for which thread-safety cannot be guaranteed, e.g. calls
to libraries that were designed without multithreaded execution in mind. In many
cases, it is not even sufficient to restrict execution to a single thread, but all other
threads must remain dormant while the unsafe code is executed.

Our key idea is to classify each atomic piece of code in a program into one of
these four categories:
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• MT (multi-threaded): code that may be executed by multiple threads in a
cooperative manner, i.e. our data parallel skeletons.

• ST (single-threaded): code that must be executed by a single thread only,
e.g. certain memory allocations or I/O operations.

• ET (exclusive-threaded): code that must be executed by a single thread only
without other threads being active at the same time, e.g. library calls.

• AT (any-threaded): code that may be executed either in a replicated man-
ner by multiple threads or by a single thread either in ST or in ET mode,
e.g. simple reentrant function calls like a = sin(b).

While skeletons make opportunities for parallel execution explicit, it is generally
non-trivial to identify code that must not be replicated. In practice, this requires
us to make conservative assumptions and to rely on ET classification if in doubt.

ST a_mem = Allocate(...);
MT a = GenArray( a_mem, ...);
MT h = FoldArray( ...);
AT b = a[0];
MT c = FoldArray( ...b...);
ET d = StrangeFun1( c);
AT e = sin(d);
ET f = StrangeFun2( c);

ST a_mem = Allocate(...);
MT a = GenArray( a_mem, ...);
MT h = FoldArray( ...);
MT b = a[0];
MT c = FoldArray( ...b...);
ET d = StrangeFun1( c);
ET e = sin(d);
ET f = StrangeFun2( c);

Figure 2: Classification of code example.

As our aim is to reduce the number of execution mode changes, we extend MT,
ST, and ET classifications as far as possible by absorbing adjacent AT-classified
code. Following this idea, we build larger code regions featuring the same execution
mode. Fig. 2 illustrates this procedure by a small example. We make the initial
allocation instruction of a GenArray skeleton explicit here because it must be exe-
cuted by a single thread only. In the example we have two instructions classified as
AT. By expanding MT, ST, and ET classifications as far as possible we turn one
into MT and the other into ET. If an entire function is classified as AT, we may
build specializations for applications in MT, ST, and ET contexts. If a function
contains both ET and MT classified code, it is marked ET.

MT a = GenArray( a_mem, ...);
MT h = FoldArray( ...);
MT b = a[0];
MT c = FoldArray( ... b ...);

MT a = GenArray( a_mem, ...);
MT a = signal( a);
MT h = FoldArray( ...);
MT a = wait( a);
MT b = a[0];
MT c = FoldArray( ... b ...);

Figure 3: Introduction of explicit split-phase synchronization in MT-cells.

After successful expansion of classifications we build cells of code with the same
execution mode. In order to realize split-phase synchronization within MT cells, we
explicitly introduce signal and wait operations into the code. This is done in two
steps: First, we insert a signal operation after each skeleton and a corresponding
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wait operation before the first reference to a data structure computed by a skeleton.
In a subsequent optimization step, we remove superfluous signal/wait pairs, e.g.,
if some data is concurrently computed before other data and used later, then the
inner signal/wait pair implies the outer. Fig. 3 illustrates the introduction of
signal and wait operations for the example MT-cell of Fig. 2.

4. Rearrangement of Code

Unfortunately, the techniques described in the previous section are often not
as effective as desired. The problem is that sequences of assignments constitute a
total order while the data dependencies only enforce a partial order. In practice,
concrete sequences of assignments in intermediate code often stem from pure coinci-
dence. Maybe, an unaware programmer has written the code without the necessary
knowledge about parallelization or simply without parallelization in mind. Maybe,
preceding compilation steps have already reorganized the code in some way not
taking parallelization sufficiently into account.

Fig. 4 illustrates how a small change in the sequence of assignments may hinder
generation of efficient parallel code. In the first example (left) we have moved the
FoldArray skeleton that computes h to the bottom. As a consequence, we end up
with two MT-cells instead of one. In the second example (right) we have moved
the same FoldArray skeleton only one line down. As a consequence, we end up
with a single MT-cell, but split-phase synchronization no longer has the desired
effect: the wait immediately follows the signal thus effectively forming a regular
synchronization barrier.

ST a_mem = Allocate(...);
MT a = GenArray( a_mem, ...);
MT a = signal( a);
MT a = wait( a);
MT b = a[0];
MT c = FoldArray( ...b...);
ET d = StrangeFun1( c);
ET e = sin(d);
ET f = StrangeFun2( c);
MT h = FoldArray( ...);

ST a_mem = Allocate(...);
MT a = GenArray( a_mem, ...);
MT a = signal( a);
MT a = wait( a);
MT b = a[0];
MT h = FoldArray( ...);
MT c = FoldArray( ...b...);
ET d = StrangeFun1( c);
ET e = sin(d);
ET f = StrangeFun2( c);

Figure 4: Two variants of Fig. 2 that motivate the need for code rearrangement.

In order to successfully apply the proposed techniques, we need a preprocessing
code rearrangement phase that decouples MT, ST, and ET classified code as far
as data dependencies allow. Within individual MT-cells, code must be arranged in
a way that renders split-phase synchronization effective. Our code rearrangement
algorithm is divided into four consecutive steps that turn the total ordering of a
given sequence of assignments into the partial ordering of a data flow graph and
then re-introduce a refined total ordering step-by-step.

4.1. Step 1 — Creating a data flow graph

The aim of this step is to abstract from a concrete execution order of assign-
ments. Creation of a data flow graph critically depends on properties of the pro-
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gramming language. In intermediate SaC code, an exact cycle-free data flow graph
can easily be inferred. Control flow instructions like loops and if-statements are
represented by equivalent tail-end recursive functions and conditional expressions
in a variant of static single assignment form. Side-effects in function applications
are made explicit through a variant of uniqueness types [15]. In other languages
more conservative assumptions may be necessary. Fig. 5 shows an example data
flow graph, which will be used for the illustration of our rearrangement algorithm
throughout the remainder of this section.
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Figure 5: Example data flow graph to illustrate the rearrangement algorithm (left)
and result of step 2 (right).

4.2. Step 2 — Reducing execution mode changes

To reduce the number of execution mode changes between ET-, ST-, and MT-
mode, we identify clusters of nodes of the same mode and create a list of sets of
such nodes. While this step determines the execution order of the sets, ordering
within individual sets is postponed.

As mentioned in Section 3, each function containing at least one node in ET-
mode is tagged ET. Hence, either the current task is trivial or the execution mode
of the function’s return statement is ET. Therefore, the algorithm starts putting
all ET-coloured sinks of the function’s data flow graph G into one set.† This set
will be the last set of the list returned by step 2. Afterwards, the algorithm takes
the subgraph G′, created by G’s nodes without the nodes already collected, and
puts all ET-coloured sinks of G′ into a new set. This set will be the new head of
the resulting list. This procedure continues until G′ includes no more ET-coloured
sinks. The ST- or AT-property of a node gives us the opportunity to execute it
in ET-mode as well. Therefore, the algorithm continues collecting AT- and ST-
coloured nodes into the initial set. Each AT- and ST-collection phase is followed by
another ET-collection phase. Collection of nodes into the initial set continues until
no more ET-, AT- or ST-coloured sinks are available in G′.

Now, the algorithm switches into collecting MT-coloured nodes. The ST-coloured
nodes are the last nodes collected before because nodes in ST-mode can be executed
in parallel to nodes in MT-mode. In contrast to the collection of ET-coloured nodes,

†In the absence of dead code the function’s return statement is the only sink of the graph.
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which puts dependent nodes into consecutive sets, dependent MT-coloured nodes
are put into sets with sets of AT-coloured and ST-coloured nodes in-between when-
ever possible. For short, the algorithm puts as few other sets as possible in between
ET-sets, but as many other sets as possible in between MT-sets.

This procedure is motivated by reducing the idle time of threads waiting at the
corresponding barriers. The reason to handle AT-coloured nodes earlier than ST-
coloured nodes is to increase the distance between nodes in ST-mode and dependent
nodes in MT-mode. Thus, the master thread is given as much time as possible to
compute an ST-set of nodes before the first worker thread reaches a dependent
MT-set. Due to the use of the SSA form, a constructed data flow graph does not
contain cycles. Therefore, the algorithm always finds a sink in the data flow graph
G or any of its subgraphs. Hence, the algorithm always terminates.

The effect of the second step of our rearrangement algorithm on the running
example is shown on the right hand side of Fig. 5. We have identified a sequence
of 12 sets. While most sets contain a single node only, the more interesting cases
are S5 = {E,F,G}, S8 = {J,K,L}, and S10 = {N,O}. Each set contains data
independent nodes with equal execution modes.

4.3. Step 3 — Preorder nodes of the same set

The third step of the rearrangement algorithm leaves the order of the sets Si

untouched, but introduces a partial ordering within the sets. Technically, each set Si

of nodes is transformed into a corresponding list Li of sets of nodes. Each node n is
tagged with an additional attribute, called minimum backward dependence distance.
This attribute yields the minimum number of sets Si in between n’s set and each
of the nodes on which n depends. In the running example of Fig. 5 the minimum
backward dependence distance of node K of set S8 is 1 (K ∈ S8 depends on I ∈ S7)
while the minimum backward dependence distance of nodes J and L of the same
set is 3 (J ∈ S8 depends on F ∈ S5, L ∈ S8 depends on G ∈ S5).

The nodes of a set Si are grouped into subsets li,∗ ∈ Li in ascending order of
their associated minimum backward dependence distances. In the running example
we get L5 = [{E,F,G}], L8 = [{J, L}, {K}], and L10 = [{N,O}]. If two nodes have
the same minimum backward dependence distance, they remain in the same subset,
and the decision which one to execute first is postponed to the next step.

The rationale for establishing this kind of order is to avoid execution of data
dependent nodes immediately one after the other. Instead, we aim at arranging
other nodes in between data dependent nodes to increase the potential distance be-
tween notification of other threads about completion by one thread and the waiting
for completion of a multithreaded computation by all threads. This way, we relax
synchronization requirements and reduce thread idle time. Since these considera-
tions do not apply to sets Si tagged as ET-mode, we simply preserve the original
sequence of nodes in these cases.

4.4. Step 4 — Committing the final order

The last step of the rearrangement algorithm determines the final execution
order. Only those lists li,j that contain non-singleton sets require our further at-
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tention. We traverse the list of lists of sets of nodes li,j in reverse order starting
with the last element of the last nested sublist. Nodes are collected in an initially
empty list NL. If li,j contains only one element, this node is pushed on top of NL.
Otherwise, we choose that element of li,j that has the maximum forward dependence
distance, i.e., that element whose first dependency in NL is closest to the end of the
list. The motivation of this procedure is very similar to that of Step 3: we aim
at separating the computation of data as far as possible from where this data is
needed in order to relax synchronization requirements. If two nodes have the same
maximum forward dependence distance, we re-establish the original order.

Cell 1 ST: A
Cell 2 MT: B -> C
Cell 3 ET: D
Cell 4 ST: E -> F -> G
Cell 5 MT: H -> I -> J -> L -> K -> M -> N -> O
Cell 6 ET: P -> Q

Figure 6: Effect of code rearrangement on the running example.

Fig. 6 shows the effect of code reordering on the running example. We success-
fully avoid the inapt sequences [. . . , L, J, . . . , N,O . . .] and [. . . , J, L, . . . , O,N . . .],
where data dependent skeletons become adjacent in final code. In contrast, the se-
quence [. . . , J, L,M,N, . . .] increases the synchronization distance by inserting data
parallel node L in between nodes J and M .

5. Experimental Evaluation

To quantify the impact of our compilation techniques we have built a prototype
implementation, which we used for experiments on three different machine architec-
tures: a SUN Enterprise 4000 with 6 UltraSparc II processors, a Linux server with
two hyper-threaded Intel Xeon processors, and a SUN SF15k with 72 UltraSparc III
processors. These experiments use the benchmark kernel fragment shown in Fig. 7.
It consists of 6 GenArray skeletons, each computing a vector of N elements in a
fairly simple manner. Applications of the function fun basically serve two purposes.
Firstly, they lead to a more realistic argument set size without introducing addi-
tional data dependences. Secondly, they allow us to systematically create workload
imbalances among threads without making the example overly complicated. Apart
from reflecting the irregularity of more complex real world applications, this feature
allows us to mimic highly loaded multiprocessor systems. Our benchmark serves as
test bench to quantify the potential performance impact of our proposed measures
in a rather simple sand box environment.

A = GenArray( [N], idx -> 1 + fun(U,V,W,X,Y,Z));
B = GenArray( [N], idx -> 2 * B[idx] + fun(U,V,W,X,Y,Z));
C = GenArray( [N], idx -> 2 + fun(U,V,W,X,Y,Z));
D = GenArray( [N], idx -> A[idx] + C[idx] + fun(U,V,W,X,Y,Z));
E = GenArray( [N], idx -> 3 + fun(U,V,W,X,Y,Z));
F = GenArray( [N], idx -> E[idx] + B[idx] + fun(U,V,W,X,Y,Z));

Figure 7: Code fragment used in experimental evaluation.
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Figure 8: Results of experimental evaluation for various architectures (top to bot-
tom) with (right) and without (left) workload imbalances. The x-axis denotes the
length of the vectors involved, i.e., smaller vector size means more frequent syn-
chronization and communication events.
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We have investigated three parallelizations of this benchmark kernel: the first
one follows a fork/join execution model, the second one our new hybrid model,
and the third one additionally applies code rearrangement. The fork/join approach
treats each skeleton in isolation, i.e., we end up with six communication operations
to broadcast parameters to worker threads and with six synchronization barriers.
The hybrid model described in Section 3 leads to a single large MT cell comprising
all six individual skeletons. However, data dependences enforce immediate synchro-
nization after computing A, C, and E, respectively. If we additionally apply code
rearrangement, as introduced in Section 4, we achieve a maximum distance of 2
between signal and wait of our split-phase barriers, i.e., we compute two more
vector operations before waiting for completion of the first one.

We have intentionally left out I/O operations or other scalar code in Fig. 7
to keep the example short. Taking the code literally, our hybrid approach would
coincide with the SPMD model, code rearrangement apart. However, assuming I/O
operations scattered between the skeletons, the SPMD model would coincide with
the fork/join model. Therefore, we dispense with specific treatment of the SPMD
execution model in the following.

Fig. 8 shows the results of our experiments. We normalize the execution time
of the fork/join-based variant to 100%, and show the relative performance increase
when switching to the hybrid model without and with code rearrangement. Using
different vector sizes N allows us to systematically vary the frequency of synchroniza-
tion/communication events. Furthermore, we have made each experiment without
(left hand side) and with (right hand side) introducing workload imbalances.

The results essentially back the initial assumptions that motivated our work.
With frequent synchronization substantial performance gains can be realized. They
gradually vanish as we reduce the synchronization frequency by increasing the vec-
tor size. The gains are generally lower on the Linux server than on the SUN servers.
Synchronization and communication overhead typically grows with system size.
Likewise, larger thread counts benefit more from our optimizations than smaller
ones. These observations can be made in particular on the large SF15k system.

The right hand side of Fig. 8 shows data gained by repeating the entire ex-
periment with workload imbalance introduced by substantially delaying individual
threads. The positive effect of our hybrid execution model on runtime performance
is even greater than before. The decoupling of threads due to the removal of syn-
chronization barriers gains in importance with load imbalance. In contrast to the
first experiment this effect is rather independent of the vector size and, hence, of the
frequency of (enforced) synchronization. This is owing to the amount of imbalance
we introduced. Our aim was to demonstrate how the impact of the hybrid execution
model may grow with increasing load imbalance, which is typical for both complex
applications and for large, heavily loaded multi-processor environments.

6. Related Work

Reduction of synchronization and communication overhead has long been con-
sidered as critical for the success of parallel execution. Some approaches are specific
to parallelization, while others are beneficial in sequential execution as well. Exam-
ples of the latter case are deforestation [22] and tupling [4]. They avoid multiple
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traversals of the same data structure by combining the necessary computations in
a single sweep. Deforestation addresses computational pipelines that transform an
aggregate data structure in a sequence of steps, whereas tupling aims at computing
several results from the same aggregate data structure at the same time. Assuming
data parallel execution deforestation and tupling lead to a reduction of synchro-
nization barriers in compiled code. However, their applicability is restricted by
properties of the operations involved that are independent of parallelization.

Algorithmic skeletons are a popular approach to high-level parallel program-
ming [6,7,18,1]. In this context, frameworks of meaning-preserving transformation
rules have been developed, that aim at replacing multiple related instances of skele-
tons by a presumably more efficient combination [9,10,19]. More specific to high-
level array processing is the psi-calculus [20] that offers transformation rules on
Apl-like array operations. Similar optimizations have been proposed on the level
of collective operations in Mpi [11]. All these approaches have in common that
code transformation always remains within a pre-defined set of operations. Our
own work described in [13] also falls into this category. In contrast, the problems
we address in our current work stem, among others, from optimizing skeleton-like
code with arbitrary non-skeletal code.

The data-flow language Sisal [2] circumvents the entire problem by restrict-
ing input/output to reading input data at program startup and writing output
data upon program termination. Hence, parallel execution of Sisal programs may
follow an SPMD model without penetrating the sequential extensional behaviour.
OpenMP [8] supports the explicit specification of hybrid program execution, but
the programmer alone is responsible for correct interaction with the execution envi-
ronment. The idea of split-phase synchronization was, to our best knowledge, first
proposed under the term fuzzy barriers in [17].

7. Conclusion and Future Work

Compilation of a data parallel language with I/O for multithreaded execution
inevitably leads to alternating single-threaded and multi-threaded supersteps, re-
gardless of whether we adopt a fork/join or an SPMD execution model. In the
fork/join model data parallel operations remain pockets of parallel activity in an
otherwise sequentially executed program as a matter of principle. However, in the
presence of I/O or other non-replicatable operations even the SPMD approach can-
not avoid pockets of single-threaded execution in an otherwise parallel program.
Effectively, the two approaches mainly differ in the default case for code sections
that may or may not be replicated.

Neither replicating all replicatable code (SPMD) nor dispensing with replication
at all (fork/join) is likely to yield best parallel performance. Therefore, we have
proposed a hybrid execution model that decides about replication of instructions
based on the individual context. We have outlined a compilation framework that
aims at reducing communication and synchronization requirements. Large-scale
code-restructuring techniques improve the effectiveness of our approach in practice.

Experiments on three different shared memory architectures using a prototype
implementation demonstrate the effectiveness of our approach in principle. There-
fore, we aim at incorporating these techniques into the production compiler of our
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functional array language SaC to further investigate the impact of our techniques
on a larger range of applications in the future.
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