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Abstract

Data-parallel processing of multi-dimensional functional/immutable
arrays is characterized by a fundamental trade-off between software
engineering principles on the one hand and runtime performance
concerns on the other hand. Whereas the former demand code to
be written in a generic style abstracting from structural proper-
ties of arrays as much as possible, the latter require an optimizing
compiler to have as much information on the very same struc-
tural properties available at compile time. Asynchronous adaptive
specialization of generic code to specific data to be processed at
application runtime has proven to be an effective way to reconcile
these contrarian demands.

In this paper we revisit asynchronous adaptive specialization
in the context of the functional data-parallel array language SAC.
We provide a comprehensive analysis of its strengths and weak-
nesses and propose improvements for its design and implemen-
tation. These improvements are primarily concerned with making
specializations available to running applications as quickly as pos-
sible. We propose four complementary measures to this effect. Bulk
adaptive specialization speculatively waits for future specialization
requests to materialize instead of addressing each request individ-
ually. Prioritized adaptive specialization aims at selecting the most
profitable specializations first. Parallel adaptive specialization re-
serves multiple cores for specialization and, thus, computes mul-
tiple specializations simultaneously. Last but not least, persistent
adaptive specialization preserves specializations across indepen-
dent program runs and even across unrelated applications.

Categories and Subject Descriptors ~ Software and its engineering
[Software notations and tools]: Dynamic compilers

Keywords  Array processing, Single Assignment C, runtime opti-
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1.

SAC (Single Assignment C) is a purely functional, data-parallel ar-
ray programming language [9, 13, 15]. As such, SAC puts the em-
phasis on homogeneous, multi-dimensional arrays as the most rel-
evant data aggregation principle. SAC advocates shape- and rank-
generic programming on multi-dimensional arrays, i.e. SAC sup-
ports functions that abstract from the concrete shapes and even
from the concrete ranks (number of dimensions) of argument and
result arrays. Depending on the amount of compile time structural
information we distinguish between different runtime representa-
tions of arrays.

From a software engineering point of view it is (almost) always
desirable to specify functions on the most general input type(s) to
maximize code reuse. For example, a simple structural operation
like rotation should be written in a rank-generic way, a naturally
rank-specific function like an image filter in a shape-generic way
(i.e. for 2-dimensional arrays). Very infrequently it can be desir-
able to write code in a non-generic way. Consequently, the exten-
sive SAC standard library is full of generic, mostly rank-generic
functions.

However, genericity comes at a price. In comparison to non-
generic code the runtime performance of equivalent operations
is substantially lower for shape-generic code and again for rank-
generic code [25]. There are various reasons for this observa-
tion and often their relative importance is operation-specific, but
nonetheless we can identify three categories of overhead caused
by generic code: First, generic runtime representations of arrays
need to be maintained, and generic code tends to be less efficient,
e.g. no static nesting of loops can be generated to implement a
rank-generic multidimensional array operation. Second, many of
the SAC compiler’s advanced optimizations [12, 14] are not as
effective on generic code because certain properties that trigger
program transformations cannot be inferred. Third, in automati-
cally parallelized code [5, 7, 8, 18] many organizational decisions
must be postponed until runtime, and the ineffectiveness of opti-
mizations inflicts frequent synchronization barriers and superfluous
communication.

In order to reconcile the desires for generic code and high
runtime performance, the SAC compiler aggressively specializes
rank-generic code into shape-generic code and shape-generic code
into non-generic code. However, regardless of the effort put into
compiler analysis for rank and shape specialization, this approach
is fruitless if the necessary information is not available at compile
time as a matter of principle. For example, the corresponding data
may be read from a file, or the SAC code may be called from
external (non-SAC) code, to mention only two potential scenarios.

Introduction



Such scenarios and the ubiquity of multi-core processor archi-
tectures form the motivation for our asynchronous adaptive special-
ization framework [16, 17]. The idea is to postpone specialization,
if necessary, until runtime, when complete structural information
is always available. Asynchronous with the execution of a generic
function, potentially in a data-parallel fashion on multiple cores,
a specialization controller generates an appropriately specialized
binary variant of the same function and dynamically links the ad-
ditional code into the running application program. Eligible func-
tions are indirectly dispatched such that if the same binary function
is called again with arguments of the same shapes as previously, the
corresponding new and fast non-generic clone is run instead of the
old and slow generic one.

In contrast to standard just-in-time compilation approaches for
(byte code) interpreted languages we take advantage of today’s
ubiquity of multi-core architectures and the continuously growing
number of available cores in average computing environments.
With asynchronous adaptive specialization the re-compilation of
specialized intermediate code happens in parallel with the running
application. The rationale here is that, with a large number of cores,
having one core less available for data-parallel program execution
typically has a negligible effect on runtime performance, if any.

The effectiveness of our approach, in general, depends on mak-
ing specialized, and thus considerably more efficient, binary vari-
ants available to a running application as quickly as possible. The
contribution of this paper, in addition to a comprehensive analy-
sis of the situation, is to investigate optimizations and extensions
of our framework proposed in [16, 17] to this effect. These fully
complementary extensions fall into four categories:

e QOur first approach is to combine multiple specialization re-
quests to be served in one compiler run. Here we aim at re-
ducing dynamic compilation times per specialized function by
harnessing common synergy effects in compilation.

Our second approach is to prioritize those specialization re-
quests that promise the highest return on investment, where the
investment is dynamic compilation time and the return is the
relative improvement of execution time comparing specialized
and generic versions of the same function.

Our third approach is to parallelize the specialization controller
in order to produce multiple specializations concurrently. In-
stead of a fixed classification of the host architecture’s cores
as either compute cores or specialization cores, we propose a
demand-driven dynamic adjustment of hardware resources.

Our fourth approach is to make specializations persistent across
multiple runs of the same application or even across multiple
unrelated applications that make use of an overlapping set of
libraries.

All four approaches are orthogonal and can be combined without
restriction. Jointly, they define a comprehensive and ambitious re-
search agenda in the area of dynamic compilation.

The remainder of the paper is organized as follows. In Section 2
we explain SAC in general and the calculus of multi-dimensional
arrays in particular. In Section 3 we elaborate on the runtime spe-
cialization framework in more detail. Sections 4, 5 and 6 illustrate
the benefits of our approach in general by means of three case stud-
ies: generic convolution, matrix multiplication and n-body simula-
tion, respectively. They are followed by a comprehensive analysis
of the strengths and weaknesses of asynchronous adaptive special-
ization in Section 7. In Sections 8, 9, 10 and 11 we discuss the
above four research directions. Finally, we sketch out some related
work in Section 12 and draw conclusions in Section 13.
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rank: 3
J shape:  [2,2,3]
data: [1,2,3,4,5,6,

7,8,9,10,11,12]

rank: 2
shape:  [3,3]
data: [1,2,3,4,5,6,7,8,9]
rank: 1
[1,2,3,4,5,6] shape: [6]
data: [1,2,3,4,5,6]
rank: 0
42 shape: []
data: [42]

Figure 1. Truly multidimensional arrays in SAC and their repre-
sentation by data vector, shape vector and rank scalar

2. SAC and its Multi-Dimensional Arrays

As the name “Single Assignment C” suggests, SAC leaves the
beaten track of functional languages with respect to syntax and
adopts a C-like notation. This choice is primarily meant to facilitate
familiarization for programmers who rather have a background in
imperative languages than in declarative languages. Core SAC is
a functional, side-effect free subset of C: we interpret assignment
sequences as nested let-expressions, branching constructs as condi-
tional expressions and loops as syntactic sugar for tail-end recursive
functions. Details on the design of SAC can be found in [9, 13].

Following the example of interpreted array languages, such as
APL[6, 20], J[21] and NIAL[22, 23], an array value in SAC is
characterized by a triple (r, s, J) The rank r € N defines the
number of dimensions (or axes) of the array. The shape vector § €
N" yields the number of elements along each of the » dimensions.
The data vector d € TH® contains the array elements (in row-
major unrolling), the so-called ravel. Here I" denotes the element
type of the array. Some relevant invariants ensure the consistency of
array values. The rank equals the length of the shape vector while
the product of the elements of the shape vector equals the length of
the data vector.

AUD Class:
rank: dynamic
shape: dynamic
AKD Class:
rank: static
shape: dynamic
AKS Class:
rank: static
shape: static

int int[1] ...

int[42] .. int[1,1] .. int[3,7] ...

Figure 2. Three-level hierarchy of array types: arrays of unknown
dimensionality (AUD), arrays of known dimensionality (AKD) and
arrays of known shape (AKS)

Fig. 1 illustrates the calculus of multi-dimensional arrays that is
the foundation of array programming in SAC. The array calculus
nicely extends to scalars, which have rank zero and the empty vec-
tor as shape vector. Consequently, every value in SAC has rank,
shape vector and data vector as structural properties. Both rank
and shape vector can be queried by built-in functions. The data
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Figure 3. Software architecture of asynchronous adaptive specialization framework

vector can only be accessed element-wise through a selection fa-
cility adopting the square bracket notation familiar from other C-
like languages. Given the ability to define rank-generic functions,
whose argument array’s ranks may not be known at compile time,
indexing in SAC is done using vectors (of potentially statically
unknown length), not (syntactically) fixed sequences of scalars as
in most other languages. Characteristic for the calculus of multi-
dimensional arrays is a complete separation between data assem-
bled in an array and the structural properties (rank and shape) of
the array.

The type system of SAC is monomorphic in the element type of
an array, but polymorphic in the structure of arrays. As illustrated
in Fig. 2, each element type induces a conceptually unbounded
number of array types with varying static structural restrictions on
arrays. These array types essentially form a hierarchy with three
levels. On the lowest level we find non-generic types that define
arrays of fixed shape, e.g. int [3,7] or just int. On an intermedi-
ate level of genericity we find arrays of fixed rank, e.g. int[.,.].
And on the top of the hierarchy we find arrays of any rank, and
consequently any shape, e.g. int [*]. The hierarchy of array types
induces a subtype relationship, and SAC supports function over-
loading with respect to subtyping.

The array type system leads to three different runtime represen-
tations of arrays depending on the amount of compile time struc-
tural information, as illustrated in Fig. 2. For AKS arrays both rank
and shape are compile time constants and, thus, only the data vec-
tor is carried around at runtime. For AKD arrays the rank is a com-
pile time constant, but the shape vector is fully dynamic and, hence,
must be maintained alongside the data vector. For AUD arrays both
shape vector and rank are dynamic and lead to corresponding run-
time data structures.

3. Asynchronous Adaptive Specialization

In order to reconcile software engineering principles for generality
with user demands for performance we have developed the asyn-
chronous adaptive specialization framework illustrated in Fig. 3.
The idea is to postpone specialization if necessary until runtime,
when all structural information is eventually available no matter
what. A generic SAC function compiled for runtime specialization
leads to two functions in binary code: the original generic and pre-
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sumably slow function definition and a small proxy function that is
actually called by other code instead of the generic binary code.

When executed, the proxy function files a specialization request
consisting of the name of the function and the concrete shapes of
the argument arrays before calling the generic implementation. Of
course, proxy functions also check whether the desired specializa-
tion has been built before, or whether an identical request is cur-
rently pending. In the former case, the proxy function dispatches
to the previously specialized code, in the latter case to the generic
code, but without filing another request.

Concurrent with the running application, a specialization con-
troller (thread) takes care of specialization requests. It runs the
fully-fledged SAC compiler with some hidden command line ar-
guments that describe the function to be specialized and the spe-
cialization parameters in a way sufficient for the SAC compiler to
re-instantiate the function’s partially compiled intermediate code
from the corresponding module, compile it with high optimization
level and generate a new dynamic library containing the specialized
code and a new proxy function. Eventually, the specialization con-
troller links the application with that library and replaces the proxy
function in the running application.

The effectiveness of asynchronous adaptive specialization de-
pends on how often the dynamically specialized variant of some
function is actually run instead of the original generic version. This
depends on two connected but distinguishable properties. Firstly,
the application itself must apply an eligible function repeatedly to
arguments with the same shape. Secondly, the specialized variant
must become available sufficiently quickly to have a relevant im-
pact on application performance. In other words, the application
must run considerably longer than the compiler needs to generate
binary code for specialized functions.

The first condition relates to a property of the application. Many
applications in array processing do expose the desired property, but
obviously not all. We can only deal with unsuitable applications by
dynamically analyzing an application’s properties and by stopping
the creation of further specialized functions at some point.

The second condition sets the execution time of application
code in relation to the execution time of the compiler. In array
programming, however, the former often depends on the size of
the arrays being processed, whereas the latter depends on the size
and structure of the intermediate code. Obviously, execution time



and compile time of any code are unrelated with each other and,
thus, many scenarios are possible.

In the sequel we demonstrate potential runtime behaviour of ap-
plications in the context of dynamic specialization by three case
studies. We begin with a generic convolution kernel with conver-
gence check in the next section and continue with matrix multipli-
cation and n-body simulation in Sections 5 and 6, respectively.

4. Case study 1: generic convolution

Fig. 4 shows a SAC module ConvolutionAuxiliaries that de-
fines and exports two rank-generic functions: convolution_step
and is_convergent. The former defines a single convolution step
that computes each element of a multi-dimensional grid as the
arithmetic mean of its direct neighbours along each axis. The latter
implements a predicate whether or not all corresponding elements
of two given arrays differ by less than a given threshold. Due to us-
ing the rotate function imported from the comprehensive SAC ar-
ray library this convolution step implements cyclic boundary condi-
tions. The C-style for-loop is merely syntactic sugar for an inlined
tail-recursive anonymous function, and tod refers to a conversion
function from integer numbers (int) to double precision floating
point numbers (double).

1 module ConvolutionAuxiliaries;

2

3 use Array: all;

4

5 export {convolution_step, is_convergent };
6

7 double [*]

8 convolution_step (double[x] A)

9

10 R = A;

11

12 for (i=0; i<dim(A); i++) {

13 R =R + rotate( i, 1, A)

14 + rotate( i, =1, A);

15 }

16

17 return R / tod( 2 % dim(A) + 1);
8 }

19

20 bool

21 is_convergent (double[*] new,

22 double [x] old,

23 double epsilon)

24 {

25 return all( abs( new — old) < epsilon);
26

Figure 4. Case study: SAC module that exports generic convolu-
tion step and convergence check functions

Fig. 5 shows a second module named Convolution. This mod-
ule defines and exports a single function named convolution,
which computes a series of convolution steps until sufficient con-
vergence is reached. More precisely, in every iteration of the
do/while-loop (again syntactic sugar for an inlined tail-recursive
anonymous function) the function convolution applies both im-
ported functions convolution_step and is_convergent. We
interpret C-style statement sequences as nested let-expressions,
and consequently support repeated assignment to the apparently
same variable. However, these are in fact different purely func-
tional place-holder variables that bear the same name.

A more detailed description of the compositional style of array
programming advocated by SAC along with a more thorough ex-
planation of a variant of the code shown here can be found in [9].
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1 module Convolution;

2

3 use Array: all;

4

5 import ConvolutionAuxiliaries: all;
6

7 export {convolution};

8

9 double[x]

10 convolution (double[*] A, double epsilon)
11

12 A_new = A;

13

14 do {

15 A_old = A_new;

16 A_new = convolution_step( A_old);
17 }

18 while (!is_convergent( A_new, A_old,
19 epsilon));
20 return A_new;

21 }

Figure 5. Case study: SAC module that implements a generic
convolution kernel with convergence check based on the functions
shown in Fig. 4

Since this is not a paper about programming in SAC or the language
design of SAC, we refrain from repeating this information here and
refer the interested reader to the above resource.

We compile the module ConvolutionAuxiliaries (Fig. 4)
with and without runtime specialization enabled and import either
version into the module Convolution. We conducted a series of
experiments with different array ranks and shapes on an AMD
Phenom II X4 965 quad-core system. The machine runs at 3.4GHz
clock frequency and is equipped with 4GB DDR3 memory. The
operating system is Linux with kernel 2.6.38-rc1.

A representative plot of the runtimes achieved is shown in
Fig. 6. It reports on a convolution experiment with a 3-dimensional
array of 100 x 100 x 100 double precision floating point num-
bers. The figure shows individual iterations on the x-axis and mea-
sured execution time for each iteration on the y-axis. The two lines
show measurements with runtime specialization disabled and en-
abled, respectively. We run the application code sequentially on
one core and the asynchronous adaptive specialization controller
on a second core. Thus, what the graphs in Fig. 6 do not show is
competition of application threads and specialization controller for
limited computing resources. We leave such experiments to future
work.

Instead, we can read from the graphs that for the given example
runtime specialization does not inflict any measurable overhead
in the startup phase and while the specialization controller is still
working on the first specialization.

After 8 iterations running completely generic binary code a
shape-specialized version of the convolution_step function be-
comes available. Switching from a generic to a non-generic imple-
mentation of the convolution step reduces the execution time per
iteration from about 1.5 seconds to roughly 0.25 seconds. This ex-
ample demonstrates the tremendous effect that runtime specializa-
tion can have on generic array code.

The 3-dimensional case requires a total of six rotations of the
argument array. Rotation is not a built-in function in SAC, but itself
is implemented using two consecutive basic array operations (with-
loops). Rank-generic binary code cannot further be optimized and
leads to a total of 19 intermediate arrays to compute the final
result of a single convolution step. For the specialized intermediate
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Figure 6. Case study: running the generic convolution kernel defined in Fig. 4 and Fig. 5 on a 3-dimensional argument array of shape
100 x 100 x 100 with and without asynchronous adaptive specialization

code the compiler unrolls the for-loop three times due to the
three dimensions of the chosen example. As a consequence of this
instance of loop unrolling the rotation axes, previously given by
the induction variable i, become constants. This enables a series of
partial evaluations in the inlined definitions of the rotate function
and ultimately the fusion of all with-loops in the intermediate
representation of the convolution step. Consequently, the entire
convolution step will be computed in one step, and not a single
intermediate array materializes in memory.

As soon as the specialization of the convolution step is com-
pleted, the specialization controller starts working on the already
pending specialization request for the convergence check. As illus-
trated in Fig. 6, the specialized binary code for the convergence
check becomes available after 26 iterations and reduces the ex-
ecution time of a single iteration further from 0.25 seconds to
0.065 seconds. The main reason for this considerable performance
improvement again is the effectiveness of optimizations that fuse
consecutive array operations and, thus, avoid the creation of in-
termediate arrays. In the relatively simple case of the convergence
criterion, as shown in Fig. 4, we could in principle fuse the whole
pipeline of basic array operations without knowing the concrete
rank and shape because they are effectively simple homogeneous
zip-, map- and reduce-operations over the entire index space of the
original argument arrays. However, our original version of with-
loop folding [27] does not cover rank- or shape-generic code and
more recent extensions [4] are not yet fully operational.

With all binary code specialized for the relevant array shape
100 x 100 x 100 no further improvements are to be expected for
the remainder of the application runtime. This represents a very
desirable case for our approach, meaning we reach a fixed point in
dynamic code adaptation. Consequently, the remainder of program
execution benefits from the adapted code without continuously
causing further overhead for on-going runtime specialization.
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5. Case study 2: matrix multiplication

In order to demonstrate that the benefits of asynchronous adaptive
specialization are not specific to the convolution kernel illustrated
in the previous section we now look at a different case study: ma-
trix multiplication. Fig. 7 shows a possible SAC definition of ma-
trix multiplication that makes heavy use of the so-called axis con-
trol notation. For any details about the latter we refer the interested
reader to [11] for a comprehensive coverage. Given the simplicity
of the code and assuming general familiarity with matrix multipli-
cation as numerical kernel, we believe the code can be understood
straightforwardly. First, we transpose the second argument matrix.
Then, we compute for each element of a 2-dimensional index space
bounded by the number of rows of argument matrix A and the num-
ber of columns of argument matrix B (or the number of rows of its
transpose Bt) the sum of element-wise product of the correspond-
ing rows of A and Bt.

1 module MatMul;

2

3 use Array: all;

4

5 export {matmul}

6

7 double|.,.]

8 matmul (double[.,.] A, double[.,.] B)
9

10 Bt = {[i,j] — mat[j,i]};

11

12 return {[i,j] — sum( A[i] = Bt[j])};:
13

Figure 7. Case study: SAC module that exports a matrix multipli-
cation function
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with and without asynchronous adaptive specialization

To demonstrate any positive effect of asynchronous adaptive
specialization we must repeatedly multiply matrices of the same
shape. Fig. 9 shows a suitable benchmark code. In a real-world
scenario we would expect matrix products to be more interleaved
with other computations. This would, of course, reduce the visible
effect of our efforts, depending on the ratio of operations in the
code, but not change the situation in principle.

double [. ,.]
multi_matmul( double[.,.] A,
double[.,.] B,
int iter)
i++) {

A = matmul( A, B);
}

1

2

3

4

5

6 for (i=0; i<iter;
7

8

9

0 return A;
1

}

Figure 9. Case study: SAC benchmark code that implements re-
peated matrix multiplication based on the definition shown in Fig. 7

This time we run our experiments on a large 48-core SMP ma-
chine with 4 AMD Opteron 6172 Magny-Cours processors running
at 2.1 GHz and a total of 128 GB of DRAM. Each processor core
has 64 KB of L1 cache for instructions, 64 KB of L1 cache for
data, and 512 KB of L2 cache. Each group of 6 cores shares one
L3 cache of 6 MB. The system runs Linux kernel 2.6.18 with Glibc
2.5.

Fig. 8 shows the outcome of our experiments for matrices of
shape 1000 x 1000 in a similar style as Fig. 6 for the generic con-
volution kernel. In fact, despite the numerical differences we ob-
serve almost the same dynamic behaviour for both applications.
The overhead of asynchronous adaptive specialization in the be-
ginning is reproducible but marginal. For the given problem size,
we link with the specialized variant of the matrix multiplication
function after nine iterations of the benchmark code and reduce the
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(fairly stable) execution time from 1.6 seconds per benchmark iter-
ation to about 0.65 seconds.

The reason for this improvement lies in the successful fusion
of the inner kernel that defines the value of each element of the
product matrix. Here, we select one row of matrix A and one row
of the transposed matrix B before we compute the element-wise
product. This leads to the creation of three temporary vectors prior
to the final reduction operation (sum). In the specialized version
of the matmul function we are again able to fuse these various
operations and to avoid effective creation of temporary arrays at
runtime.

6. Case study 3: n-body simulation

Our third case study, n-body simulation, has extensively been stud-
ied and discussed in [31]. Therefore, we restrict ourselves here to
present the top-level driver function, which can be found in Fig. 10.
The main compute effort is hidden within the function advance
that computes one step of the n-body simulation. More precisely, it
computes a new vector of body positions and a new vector of body
velocities based on old positions and old velocities as well as the
individual masses of the bodies and a given threshold. Both posi-
tions and velocities are defined as triples of floating point numbers
corresponding to the three spatial dimensions.

To make the example more interesting for our purpose we com-
pute the collective energy of the simulated system before and after
the simulation itself by means of the energy function and print
the results to the standard output. Regarding purely functional in-
put/output with a C-like look-and-feel we refer the interested reader
to [9, 10] for more information.

In Fig. 11 we show experimental results for our n-body simu-
lation obtained on the same AMD Opteron Magny-Cours system
as used in the previous section for matrix multiplication. We study
two problem sizes: 768 bodies and 1024 bodies. We can observe
a very similar overall behaviour as in the previous experiments on
generic convolution in Section 4 and on matrix multiplication in
Section 5. As expected, the execution time per step is higher for
1024 bodies than for 768 bodies, and thus it takes less steps for the
asynchronously specialized, better performing variant to become



1 double[.,.], double].,.]

2 nbody_sim( double[.,.] body_pos, double[.,.] body_vel, double[.] body_mass,
3 int steps, double threshold)

4 A

5 printf ("%.9f\n”, energy( body_pos, body_vel, body_mass));

6

7 for (i=0; i<steps; i++) {

8 body_pos, body_vel = advance( body_pos, body_vel, body_mass, threshold);
9

10

11 printf ("%.9f\n", energy( body_pos, body_vel, body_mass));

12

13 return (body_pos, body_vel);

14}

Figure 10. Case study: excerpt from a SAC implementation of n-body simulation; for more details see [31]
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Figure 11. Case study: running the n-body simulation kernel illustrated in Fig. 10 and discussed intensively in [31] with and without

asynchronous adaptive specialization

available. Of course, the time it takes to compile the specialization
is independent from the problem size. We attribute the variation in
per-step execution times after specialization as measurement arti-
facts and consider them irrelevant in our context.

7. Analysis

As pointed out earlier, the time it takes to make an asynchronously
specialized binary variant of some originally generic function avail-
able to a running application is constant (for a given intermediate
code, compiler version and compiler options). In contrast, the time
it takes to complete one iteration of an application depends on the
rank and shape of the argument array(s).

Running the very same application on a considerably larger
problem size may lead to a situation in which all specializations be-
come available long before the application moves on to the second
iteration. The other extreme is likewise possible: For small prob-
lem sizes the entire application may have terminated before even
the first specialization becomes available. In this case, the special-
ization controller discards the specialization attempt and terminates
with the application itself.

As the three case studies demonstrate, the relative performance
difference between generic and specialized binary variants of the
same function can be very relevant. How relevant it is in practice,
crucially depends on the individual programming style. For the
generic, compositional programming style advocated by SAC (see
[9]) and applied in the three case studies we can generally expect a
high performance gain due to specialization, may it be static where
possible or dynamic where needed. It must, however, be said as
well that where functions are defined in a more low-level, direct
and application-specific style, the gain could likewise be marginal.

As a matter of principle, asynchronous adaptive specialization is
most effective for long-running applications. Therefore, any mea-
sure that contributes to making specialized binary variants available
to a running application more quickly is beneficial in practice and
improves the applicability of the entire approach.

A number of aspects affect the time that it takes from filing a
specialization request by the running application to the specialized
binary effectively becoming available for dispatch. The most rel-
evant aspect in one way or another is the execution speed of the
compiler. For good reasons the design of the SAC compiler is di-
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ametrically opposed to that of typical just-in-time compilers for
byte-code interpreted languages. Whereas the latter are optimized
for short compilation times, the SAC compiler has from the very
beginning been optimized for speed of compiled code, not speed of
the compiler.

Many different large-scale code transformations/optimizations
contribute to this design at the expense of considerable compilation
times even for relatively short source codes. Of course, the most
time-consuming optimizations could be switched off for the run-
time specialization use case, but this would be counter-productive.
It is exactly this optimization capacity that is essential for achiev-
ing the substantial performance gains through specialization, as
demonstrated in the previous section. Thus, speeding up asyn-
chronous adaptive specialization in general is limited and would
require a long-term engineering investment.

In the sequel we investigate four approaches to effectively re-
duce the time to availability of dynamically specialized functions
that can be pursued without touching the SAC compiler as a whole.

8. Bulk Asynchronous Adaptive Specialization

Our first research direction focuses on the way the specialization
controller retrieves specialization requests from the specialization
request queue. Our initial approach, as detailed in Section 3, fol-
lows the straightforward approach to service one request after the
other. In practice, however, it may be considered fairly common
that multiple specialization requests residing in the queue actually
refer to functions from the same module or even to the same func-
tion to be specialized for different argument shapes. In either case
we can potentially harness substantial synergy effects by combin-
ing several individual specialization requests into one combined re-
quest prior to servicing it.

These synergy effects stem from a variety of sources. First of
all, specializing the same function twice still only requires the re-
instantiation of the precompiled intermediate code representation
once. More importantly, a SAC module typically imports a con-
siderable amount of external symbols, may they come from other
application specific modules or the extensive SAC standard library.
Many of these symbols are inline functions whose precompiled in-
termediate code is incrementally made available to the dynamic
compilation process, very much with the same techniques that al-
low us to retrieve intermediate representations of our specialization
candidates.

In practice, compilation of a SAC module typically attracts con-
siderable amounts of intermediate code beyond the actual special-
ization candidates. All this additional code, however, is exactly the
same no matter how many times we specialize the same function
for different argument shapes. Even if we aim at specializing dif-
ferent functions from the same module, the described effect is more
than noticeable. In typical cases a large fraction of the imported in-
termediate code can be shared between specialization candidates.
In practice, we can indeed observe that the number of specializa-
tions (within reason) has a minor effect on compilation times. Thus,
combining multiple specializations in one compilation process ap-
pears to be an attractive option.

There are, however, a few complications to be observed. Look-
ing at our first case study discussed in Section 4, the generic convo-
lution kernel with convergence check, we must admit that at least a
straightforward realization of the proposed approach does not yield
the desired advantages. The reason for this is simple: each time the
specialization controller retrieves a request from the request queue
the queue has exactly one entry. The first time the example appli-
cation files a specialization request the specialization controller is
eagerly waiting for it and immediately retrieves it. The second time
the application files a specialization request this is already the fi-
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nal one before the application reaches a fixed point with respect to
dynamic adaptation.

Of course, we can expect from less simple applications that
when the specialization controller completes the first specializa-
tion, it will indeed find a request queue with multiple entries.
Notwithstanding, our case studies highlight an issue: the greedily
waiting specialization controller. In many scenarios it may actu-
ally prove advantageous to wait a certain (relatively short) period
of time to give further specialization requests a fair chance to effec-
tively materialize in the request queue.

Obviously, postponing the first dynamic specialization has a
speculative character. If the whole application merely creates a
single specialization request during its entire runtime then we waste
the additional waiting time, and this approach has a small and
bounded detrimental effect on application performance. Of course,
in many cases some static code analysis could clarify the situation.

9. Prioritized Asynchronous Adaptive
Specialization

Our second approach, like the first, is concerned with how the
specialization controller retrieves requests from the request queue.
Whereas our previous approach is concerned with the combination
of multiple requests involving the same specialization candidate or,
at least, the same module of origin, we now look into unrelated
specialization requests to functions from different modules. This
scenario does not allow us to exploit similar synergy effects as in
the previous case, but it gives us an opportunity to consciously
select one specialization candidate rather than simply taking the
first from the queue. There is no semantic requirement to process
requests in the order that they originate during the execution of
an application. Thus, the specialization controller could likewise
traverse the entire queue, sort it into buckets referring to the same
module and then make a choice which bucket appears to be the
most promising in terms of expected return on investment.

Which bucket is the most promising is a-priori undecidable.
However, we expect simple heuristics to already have a measurable
positive effect. For instance, we can choose the bucket with the
largest number of functions. On the more sophisticated side we can
monitor both the dynamic compilation time of functions as well as
their execution time prior to and after specialization. On the basis
of such monitoring information we can at least make a a fairly well
educated guess. It goes without saying that, as in the first approach,
any attempt to predict the performance of still to be specialized
functions inevitably involves an element of speculation.

Another basis for prioritization is the (predicted) number of po-
tential applications of some dynamically specialized function. Our
third case study, n-body simulation as described in Section 6, gives
a good example for this. In our initial approach, as explained in
Section 3, the first dynamic specialization request is for function
energy, but this will only be applied once more at the end of the
simulation. At the same time, specialization of the much more rel-
evant function advance that is repeatedly used in the loop is de-
layed. This could be identified by static code analysis and dynamic
specialization of the advance function consequently be prioritized
over dynamic specialization of the energy function.

10. Parallel Asynchronous Adaptive
Specialization

With compute cores promised to be available in abundance in the
near future, if not already today, the same argument that we used
to motivate setting aside one core for specialization instead of data-
parallel execution of the application likewise holds for more than
one core. Looking back at Fig. 6, Fig. 8 and Fig. 11 we observe that
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Figure 12. Software architecture of asynchronous adaptive specialization framework with persistent storage

the relative performance improvements realized by adaptive asyn-
chronous specialization by far outweigh potential improvements
through data-parallel execution even under the assumption of lin-
ear speedups. On systems with tens of cores parallel specialization
through multiple concurrent specialization controllers should be
beneficial even if the relative performance improvements achieved
are less impressive.

For our first case study of generic convolution it is fairly clear
that two specialization controllers would be optimal. One would
then specialize the convolution step while the other could concur-
rently specialize the convergence check. According to Fig. 6 the
former takes about 12 seconds (8 iterations of 1.5 seconds each)
while the latter takes about 5 seconds (18 iterations of 0.25 sec-
onds plus some share of last slow iteration). Looking at the dif-
ferent complexities of the definitions of the convolution step and
the convergence check, as shown in Fig. 4, these numbers appear
plausible.

In other words, it proves to be rather unfortunate that we first
specialize the convolution step and only after completing this task
turn towards the convergence check. If we would specialize the
convergence check first, partially specialized code would already
be available after 3—4 iterations. Unfortunately, the specialization
order is beyond our control because the generic implementation of
the convolution step is simply run before that of the convergence
check in the application code (unless we would apply prioritized
specialization, as described in the previous section).

In any case, with two concurrent specialization controllers we
can expect that the specialized convergence check becomes avail-
able after only 3—4 iterations while the specialized convolution step
still becomes available in exactly the same time as with a single
specialization controller. Of course, due to the specialized conver-
gence check we would already have computed more iterations at
this point in time than before.

While parallelizing asynchronous adaptive specialization ap-
pears to be beneficial no matter what if only sufficiently many com-
pute cores are available, the question arises how many cores would
be best to use for specialization and how many for data-parallel ex-
ecution of the application program itself. For our first case study,
looked at in more detail here, this question seems to be straight-
forward to answer: two. However, even for this admittedly simple
application this is not the optimal number. Once both specializa-
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tions have been created, the two specialization controllers would
wait in vain for any other requests to come and thus would waste
two compute cores until the termination of the application. It seems
plausible that these two cores should rather help running the appli-
cation, in particular on a small quad-core system as we used for
these experimentats but also on a larger system as we had access to
for the further experiments.

Starting out with some default ratio, the expectation is that an
application initially requires more specializations while in many
cases a fixed point is reached after some time or at least the need for
further specializations reduces as the application continues to run.
Thus, we propose to adapt the number of specialization controllers
to the actual demand and leave as many cores as possible to the
(implicitly) parallelized application.

11. Persistent Asynchronous Adaptive

Specialization

Our last area of refinement lies in making asynchronous adap-
tive specializations persistent. So far specializations are accumu-
lated during the execution of an application, but are automatically
removed upon the application’s termination. Consequently, any
follow-up run of the same application program starts again from
scratch as far as specializations are concerned. Of course, the next
run may use arrays of different shape, but in many scenarios it is
quite likely that a similar set of shapes will prevail as in previous
runs.

Therefore, we propose to store specialized binary functions in
persistent collections alongside the original generic binary mod-
ules. Fig. 12 shows a sketch of the extended framework architec-
ture. The most notable difference to Fig. 3 is the database of spe-
cialized functions shown in the lower right corner. Whenever a new
specialized binary version of some generic function is created, it is
not only linked into the running application that requested this par-
ticular specialization, but it is additionally stored in the database.

The other area that needs refinement is the specialization con-
troller. Instead of checking only for potentially existing specializa-
tions created previously in the same application run or currently
pending, the specialization controller additionally consults the ex-
ternal persistent database to figure out whether or not the required
specialization already exists. Depending on the outcome of this



query the application either dispatches to the specialized imple-
mentation immediatetely or files a specialization request to be taken
care of by a specialization controller.

The main advantage of persistent storage is that the overhead
of actually compiling specializations at application runtime can of-
ten be avoided. Our assumption is that for many applications the
proposed approach in practice results in a sort of training phase,
after which most required specializations have become available.
Only in case the user runs an application on a not previously en-
countered array shape, does the dynamic specialization machinery
become active again.

A potential scenario could be image filters. They can be applied
to any image pixel format. In practice, however, users only deal
with a fairly small number of different image formats. Still, the con-
crete formats are unknown at compile time of the image processing
application. Purchasing a new camera may introduce further image
formats to be used. This scenario would result in a short training
phase until all image filters have been specialized for the additional
image formats of the new camera.

Persistence, however, also creates a new range of research ques-
tions. For instance, specialization repositories cannot grow ad in-
finitum. We propose to employ statistical methods like least re-
cently used or least often used to decide which specializations may
be displaced by new ones and when. In other words, persistent stor-
age is managed like a cache memory for specializations.

12. Related Work

Our approach is related to a plethora of work in the area of just-in-
time compilation; for a survey see [3]. Our work, however, differs
from just-in-time compilation of (Java-like) byte code in several
aspects. In the latter hot spots of byte code are adapted to the plat-
form they run on by generating native code at runtime, whereas
the execution platform was deliberately left open at compile time.
This form of adaptation (conceptually) happens in a single step [3].
In contrast, our approach adapts code not to its execution environ-
ment but to the data it operates on. This is an incremental process
that may or may not reach a fixed point. The number of different
array shapes that a generic operation could be confronted with is in
principle unbounded, but in practice the number of different array
shapes occurring in a concrete application is often fairly limited.

There are of course also projects that use just-in-time compila-
tion for iterative runtime optimizations. One such project is Sam-
bamba [28], an LLVM based system that generates parallel exe-
cutable binaries from sequential source code. Such optimization
can only be partially applied at compile time because of data depen-
dencies that are only fully known at runtime. Sambamba generates
optimization hints at compile time that can be used by a runtime
component to further optimize the code based on the then avail-
able information. While this is conceptually similar to our system,
the focus of Sambamba is still on optimizing towards the runtime
platform and not towards the data that is being worked with.

A step closer to our proposed system is COBRA [24] (Con-
tinuous Binary Re-Adaptation). COBRA collects hardware usage
information during application execution and adapts the running
code to select appropriate prefetch hints related to coherent mem-
ory accesses as well as reduce the aggressiveness of prefetching to
avoid system bus contention. The concept here, while still focusing
on optimization towards the platform the code runs on, is already
also taking the data that is being worked on into account. The archi-
tecture employed for performing those optimizations shows simi-
larities to our approach as well. Specifically the use of a controller
thread managing optimization potential and a separate optimization
thread applying the selected optimization. One of the main differ-
ences between COBRA and our approach is that COBRA relies
on information from hardware performance counters to trigger op-
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timizations whereas our approach triggers optimizations on data
format differences.

Another project with architecture similarities to our proposed
system is Jikes RVM [1, 2]. Jikes RVM has an adaptive optimiza-
tion system that monitors the execution of an application for meth-
ods that can likely improve application performance if further op-
timized. These candidates for optimization are put in a priority
queue, which in turn is monitored by a controller thread. The con-
troller dequeues the optimization request, forwards it to a recompi-
lation thread which invokes the compiler and installs the resulting
optimized method into the virtual machine. While this architecture
matches our system already quite closely, the optimizations per-
formed are still platform oriented.

Other similar systems include ADAPT [29, 30], a system that
uses a domain specific language to specify optimization hints that
can be made use of at runtime, ADORE [26], a predecessor of
COBRA for single threaded applications, and earlier work on an
adaptive runtime optimization system for FORTRAN [19].

It is noteworthy that while we explore our dynamic compilation
approach in the context of the functional data-parallel language
SAC, our work is not specific to SAC, but can be carried over to
any context of data-parallel array processing.

13. Conclusions

Asynchronous adaptive specialization is a viable approach to rec-
oncile the desire for generic program specifications in (functional)
array programming with the need to achieve competitive runtime
performance under limited compile time information about the
structural properties (rank and shape) of the arrays involved. This
scenario of unavailability of shapely information at compile time is
extremely relevant. Beyond potential obfuscation of shape relation-
ships in user code data structures may be read from files or func-
tional array code could be called from less information-rich envi-
ronments in multi-language applications. Furthermore, the scenario
is bound to become reality whenever application programmer and
application user are not identical, which rather is the norm than the
exception in (professional) software engineering.

In this paper we have proposed several improvements and ex-
tensions to asynchronous adaptive specialization that generally
broaden its applicability by making specialized binary code avail-
able quicker. Persistent asynchronous adaptive specialization aims
at sharing runtime overhead across several runs of the same ap-
plication or even across multiple independent applications sharing
some library code and thus to effectively eliminate the observable
overhead in many situations (Section 11). The parallelization of
the specialization process itself with a variable distribution of cores
between specialization and data-parallel application execution al-
lows us to satisfy specialization requests as quickly as possible
(Section 10). Combining multiple specialization requests in one
dynamic compilation process helps to reduce the effective over-
head per specialization (Section 8), and consciously selecting the
most promising specialization requests (prioritized asynchronous
adaptive specialization, Section 9) aims at making the best possible
use of the available computing resources.

We are occasionally asked whether it would not be sufficient to
statically compile prophylactic specializations of generic functions
to arguments with, say, one, two and three dimensions and keep
their shape dynamic. This, however, is not the case for essentially
two reasons. Firstly, functions are not limited to a single parameter.
Hence, we would need to speculatively specialize each function
to all combinations of potential argument ranks. Already for a
function with three arguments specialization to ranks one, two
and three would result in 27 different specialized versions. More
parameters and more dimensions quickly lead to an undesirable
combinatoric explosion of variants.



Secondly, non-trivial intermediate code representations, e.g. the
one stemming from the convolution step example with the multiple
rotations (see Section 4), do in practice very much benefit from the
availability of concrete shapes for the effectiveness of our various
compiler optimizations [12, 14]. Without the ability to continuously
simplify intermediate code through partial evaluation, the various
index subdomains resulting from repeated intersection of existing
index subdomains quickly become intractable.

In this paper we demonstrate the effects of runtime code adapta-
tion by means of three case studies that, despite implementing very
different numerical algorithms, expose very similar runtime be-
haviour under asynchronous adaptive specialization. This demon-
strates the wide applicability of the proposed techniques.

Indeed, their benefit stems from the runtime performance dis-
crepancy of generic and specialized binary code alternatives. This
discrepancy, in turn, very much depends on programming style.
With the compositional programming methodology advocated by
SAC and illustrated in the three case studies the difference is typ-
ically substantial. The whole optimization potential of the SAC
compiler is required to systematically transform code from a form
that is amenable to software engineering into a form that allows for
efficient execution on computing machinery. The practical effec-
tiveness of many of these intermediate code optimizations critically
depends on the availability of rank and shape information. In this
case, performance improvements of more than an order of magni-
tude, as demonstrated by the case studies, is not only possible but
can be considered typical.

With a more low-level programming style in SAC, where con-
crete algorithms are implemented in a more direct style using with-
loops (SAC’s underlying versatile array comprehension and reduc-
tion construct), the performance difference could be much smaller.
In this case, performance improvements would entirely stem from
different runtime representations of arrays and could be not more
than about 10-15%.

The main insight here is that the benefit of asynchronous
adaptive specialization and the proposed refinements does only
marginally depend on the concrete problem solved by some (frag-
ment of) SAC code. Instead, it critically depends on the individual
programming style used in an application. Following the composi-
tional style of programming advocated by SAC and used through-
out the three case studies would, under a naive compilation regime,
lead to large numbers of temporary arrays. This gives rise to large-
scale compiler optimization and, consequently, a substantial dif-
ference between original and optimized code. The effectiveness
of optimization, however, critically depends on the availability of
rank and shape information. Therefore, we can expect a substantial
performance difference. In contrast, with code written in a low-
level, direct style the performance gain of asynchronous adaptive
specialization might end up being only marginal.

A positive side-effect of asynchronous adaptive specialization is
that we can rather on-the-fly also adapt dynamically generated code
to the concrete compute architecture the application is running on.
In many dynamic compilation settings this sort of adaptation is the
primary motivation. In our case, however, it is rather a side product.
Dynamic generation of code customized to a specific architecture
in our case would merely require the invocation of the back-end C
compiler with specific parameters, while the mostly target archi-
tecture agnostic compilation from SAC to C would mostly remain
unaffected. In the experiments described in Sections 4 through 6
we have not yet made use of this opportunity. So, additional per-
formance gains could still be realized wth negligible effort on our
compiler and specialization framework.

We are currently busy working on implementing the various
proposed improvements for asynchronous adaptive specialization.
Our future work, hence, is dominated by completing this imple-
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mentation and conducting extensive experiments to evaluate the
benefits of the proposed extensions in detail.
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