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Abstract—Over recent years, using Graphics Processing
Units (GPUs) has become as an effective method for increasing
the performance of many applications. However, these perfor-
mance benefits from GPUs come at a price. Firstly extensive
programming expertise and intimate knowledge of the underly-
ing hardware are essential for gaining good speedups. Secondly,
the expressibility of GPU-based programs are not powerful
enough to retain the high-level abstractions of the solutions.
Although the programming experience has been significantly
improved by existing frameworks like CUDA and OPENCL,
it is still a challenge to effectively utilise these devices while
still retaining the programming abstractions.

To this end, performing a source-to-source transforma-
tion, whereby a high-level language is mapped to CUDA or
OPENCL, is an attractive option. In particular, it enables one
to retain high-level abstractions and to harness the power of
GPUs without any expertise on the GPGPU programming.

In this paper, we compare and analyse two such schemes.
One of them is a transformation mechanism for mapping a
image/signal processing domain-specific language, ARRAYOL,
to OPENCL. The other one is a transformation route for
mapping a high-level general purpose array processing lan-
guage, Single Assignment C (SAC) to CUDA. Using a real-
world image processing application as a running example, we
demonstrate that albeit the fact of being general purpose,
the array processing language be used to specify complex
array access patterns generically. Performance of the generated
CUDA code is comparable to the OPENCL code created from
domain-specific language.

Keywords-ARRAYOL, SAC, GPGPU, CUDA, OPENCL

I. INTRODUCTION

Over recent years, using Graphics Processing Units
(GPUs) has become increasingly popular and in fact im-
portant for seeking performance benefits in computationally
intensive parallel applications. The relative measure of per-
formance/price and performance/power ratios between GPU-
based architectures and CPU-based architectures further en-
courages the choice of GPUs. Typical modern GPUs contain
hundreds of computational cores and have become one

of the most commonly used many-core architectures. The
architectural aspects of these GPUs are far more complex
than mainstream multi-core CPUs and programming is often
facilitated by programming models such as CUDA [5] and
OPENCL [9]. At present, CUDA and OPENCL are the most
widely used programming models for programming GPUs.

However, these performance gains are not without chal-
lenges: Firstly, the identification and exploitation of any
parallelism in the application is the responsibility of pro-
grammers. Often, this requires intimate understanding of the
hardware and extensive re-factoring work rather than simple
program transformations. Secondly, the high-level abstrac-
tions of a problem can hardly be expressed in the CUDA
or OPENCL programming model. Furthermore, subsequent
manual optimisations distort any remaining abstractions in
the application.

The OPENCL [9] programming model aims to address the
portability issue and offers a route for separating the device
logic from the application logic. However, the application
logic cannot be entirely free from low-level device logic.
Compiler directive-based approaches such as hiCUDA [8]
or support from compilers, such as PGI [14], have enabled
application developers to retain application logic in the
source language such as C and/or Fortran. Essentially this
approach eliminates low-level device-specific logic from the
application but expects the application developers to hint
the compiler. Although this is a significant improvement in
the direction of offering a simple programming model, the
developer is still required to be familiar with the hardware
to provide hints.

There are several ways of addressing this abstraction
vs performance issue in applications. One approach is to
rely on source-to-source transformations [4], [6], whereby a
high-level language is translated into OPENCL or CUDA
source by an external compiler. This compiler-based ap-
proach enables the exploitation of GPUs while retaining
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high-level abstractions of the applications. However, the
ability to get good performance relies on the capability of
the underlying compiler. The nature of the source language,
whether it is a domain-specific or general-purpose language,
partly determines the scope of the transformations that the
underlying compiler can perform.

Another route is to provide a model-to-source transfor-
mation mechanism where the model is captured through
a Model-Driven Environment (MDE) and then subsequent
code generation is handled by templates. The front-end
will capture and retain the abstractions, while the code-
generation phase will help partly addressing the performance
issues. The reason we say that it only partly addresses the
performance issues is that the approach is different from
compiler, and may not perform even simple optimising
transformations.

In this paper we compare and analyse two such ap-
proaches. The first scheme is a MDE-based code generation
mechanism where a image processing model is mapped
to OPENCL. Underlying basic building blocks of these
domain-specific operations are specified in a specification
language, ARRAYOL. The second scheme maps a general
purpose, functional array programming language, Single As-
signment C(SAC), to CUDA. In this setup, the optimisation
space is relatively unrestricted to any domain and therefore
often conservative.

By using a simple image processing application, H.263
video compression, as a running example, we compare,
analyse and share our experiences in resorting to these two
approaches for harnessing the power of GPUs.

The rest of this paper is organised as follows: In Section II
we provide a short background on both of programming
languages. Section III discusses the image compression
problem. Section IV discusses how the decoding is imple-
mented in the ARRAYOL language, which is then followed
by the description of the mapping process from ARRAYOL
to OPENCL. This is then followed by the decoding process
in SAC. The SAC to GPU mapping process is described in
Section VII. These two schemes are then evaluated for their
performance benefits and corresponding results are reported
in Section VIII. We finally conclude the paper in Section IX.

II. SOURCE LANGUAGES

A. ARRAYOL

ARRAYOL [1] is a specification language for formalis-
ing multi-dimensional signal processing operations as array
transformations. The specification is a two-fold process,
known as GILR (Globally Irregular, Locally Regular). The
overall processing transformation is described at the global
level using a graph whose nodes exchange multidimensional
arrays. The local operations performed within nodes are then
expressed separately at the node level.

Since, ARRAYOL is only a specification language, no
rules are specified for executing an application described

with ARRAYOL, but a scheduling can be easily computed
using this description. The following are the basic principles
underlying the ARRAYOL language:
• ARRAYOL can be considered as a first order functional

language, single-assignment language. The static single
assignment formalism ensures that no data element is
ever written twice although it can be read several times.

• In ARRAYOL, only the true data dependences are
expressed in order to express the full parallelism of
the application, defining the minimal order of the
tasks. Thus any schedule respecting these dependences
will lead to the same result and thus the language is
deterministic.

• All the potential parallelism in the application has to
be available in the specification, both task parallelism
and data parallelism.

• Data accesses are done through sub-arrays, called pat-
terns.

• The language is hierarchical to allow descriptions at dif-
ferent granularity levels and to handle the complexity of
the applications. The data dependences expressed at a
level (between arrays) are approximations of the precise
dependences of the sub-levels (between patterns).

• The spatial and temporal dimensions are treated equally
in the arrays. In particular, time is expanded as a dimen-
sion (or several) of the arrays. This is a consequence
of single assignment.

The semantics of ARRAYOL is that of a first order
functional language manipulating multidimensional arrays.
Although it is not a data flow language, it can be projected
on such a language.

B. Single Assignment C (SAC)

SAC, in contrast to ARRAYOL, is a full, standalone
functional and data-parallel programming language. Most of
its basic language constructs are identical to those of C, not
only with respect to their syntax but also with respect to
their semantics. Despite this rather imperative look and feel,
a side-effect free semantics is enforced by the exclusion of
a few features of C, most notably the notion of pointers. As
a replacement, the language incorporates extensive support
for compiler-managed multi-dimensional arrays.

The language features an elegant yet powerful construct,
WITH-loop, for expressing data-parallel operations. The for-
mal syntax of a WITH-loop is sketched in Figure 1. Note here
that we look at a simplified form that suffices to explain the
main aspects of this paper. A complete discussion can be
found in [13].

A WITH-loop expression in SAC consists of one or more
generator parts and an operation. The latter determines
the overall behaviour of a WITH-loop. In the context of
this paper we only look at operations that have the forms
genarray( Expr ) and modarray( Identifier ).
They define the creation and modification of an array where
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Expr ⇒ ...

| with { [ Generator : Expr; ]+ } :

Operation

Generator ⇒ ( Expr <= Id < Expr[ Filter ] )
Filter ⇒ step Expr [ width Expr ]
Operation ⇒ genarray ( Expr )

| modarray ( Identifier )

Figure 1. Syntax of WITH-loop in SAC

Expr is the new array shape and Identifier represents
the array to be modified. The elements of the result array
are defined by the generators, which specify mappings from
indices to values. Each generator specifies an index range
and an expression that is to be evaluated for each index
within that range.

Various application studies have demonstrated that the
compiler generated codes can achieve: (i) competitive se-
quential runtimes comparable to those of hand-written C and
FORTRAN codes, and (ii) almost linear speedups from auto-
parallelisation for shared memory systems [3]. More detailed
introductions into SAC can be found in [13].

III. CASE STUDY: H.263 VIDEO COMPRESSION

The case study concerned in this paper deals with specific
aspect of H.263-based video compression standard, scaling.
The scaling during video-compression is considerably im-
portant for previews or for streaming for small form factor
devices, such as mobile phones. The application consists
of a classical downscaler, which transforms a video signal,
which, for instance, is expressed in Common Intermediate
Format (CIF), into a smaller size video. In this situation,
the downscaler can be composed of two components: a
horizontal filter that reduces the number of pixels from 352-
lines to 132-lines and a vertical filter that reduces the number
of pixels from 288-lines to 128-lines by interpolating packets
of 8 pixels both row- and column-wise.

In a typical case of handling a 25-frames-per-second video
signal lasting for 80-seconds, the downscaler may process up
to 2000 frames in CIF format, with each input frame being
represented by a two-dimensional array of size 352 × 288
and should emit 2000 output frames of size 132 × 128.
Since each video pixels is encoded in 24-bit RGB colour
model, the frame generation process is repeated for each
frame and for each pixel of different colour space along
two different directions. The final frame is produced by
using these outputs from different colour space. Depending
on the composing function, a broad-range of output colours
are possible for each pixel and thus for each frame. The
Figure 2 illustrates this basic operation for a given frame in
high-definition format.

As can be observed, the operations concerned with the
scaling is highly parallel and repetitive. The interpolation
is repeated for each frame, each pixel and for each colour
channel.

HDTV Resolution 1920x1080 720x1080

DVD Resolution
720x480

Horizontal Filter Vertical Filter

Figure 2. Horizontal and vertical filter processes

IV. IMAGE COMPRESSION IN ARRAYOL

As mentioned in Section I and in Section II, ARRAYOL
is a specification language, which underpins the exact opera-
tional and coordination aspects of the functional blocks cap-
tured by the MDE. In particular, the scaling operation, when
performed in parallel, boils down to specifying scatter/gather
operations, specifying the ARRAYOL patterns, requirements
which are well captured by the ARRAYOL language. The
distributed data-flow aspect of the down-scaler is illustrated
in the figure 3.

Downscaler

beta: divScalarfg: frameGenbeta: divScalarfg: frameGen beta: divScalarfg: frameGenbeta: divScalarhf: HorizontalFilter beta: divScalarfg: frameGenbeta: divScalarvf: VerticalFilter beta: divScalarfg: frameGenbeta: divScalarfc: frameCon

beta: divScalarfg: frameGenbeta: divScalarr: RBlockTin Tout

Figure 3. Downscaler overview

One of the fundamental aspects of the ARRAYOL lan-
guage is a tiler, a special connector which binds input and
output ports of different operational blocks. In other words,
tilers represent data flow between components. For example,
in Figure 3, each iteration of the repetitive task instance r of
the RBlock task definition has its ports connected to external
ports by special connectors called tilers.

The tiler expresses how multidimensional arrays are tiled
by patterns. When applied to a connector, a tiler connects
an external port with a port of an internal part. The shape of
the external ports defines the shape of input/output arrays of
a task. The port shape of the internal part defines the pattern
shape and the shape of the part itself defines the repetition
space. A tiler uses three main information to define the tiling
operation:
• origin vector o, which specifies the origin of the refer-

ence tile in the array;
• fitting matrix F, which specifies how the patterns are

filled with array elements;
• paving matrix P, which specifies how an array is

covered by pattern elements.
Thus, we can summarise the tiler operations as follows:
• ∀i, o ≤ i < spattern, ei = o+ F.i mod sarray

enumerates all the elements of a pattern (ei) for each i
in the pattern shape.

• ∀r, o ≤ r < sarray, refr = o+ P.r mod sarray
gives all the reference elements of the patterns, sarray
being the shape of the repetition domain.

1184118011801180118011851185



V. COMPILING ARRAYOL TO OPENCL

A. MDE and MARTE

Model Driven Engineering (MDE) [10] aims to raise the
level of abstraction in program specification and increase
automation in program development. The UML profile for
MARTE [11] extends the possibilities for modelling of appli-
cation and architecture and their relations. MARTE consists
in defining foundations for model-based description of real
time and embedded systems. The MARTE profile provides
ARRAYOL support in the repetitive structure modelling
(RSM) package.

B. Model Transformation Chain

In MDE, a model transformation is a compilation process
which transforms a source model into a target model. This
allows for adding, modifying, transforming model elements
in order to achieve a final model closer to the real program
application. For instance, transformed models have explicit
information about variables and task scheduling. In [10]
there is an overview about the tools used in model-to-model
and model-to-text process.

C. OPENCL Code Generation

The approach that allows us generating OPENCL code is
part of GASPARD2 [4] project. In design time, GASPARD2
uses MARTE [11] in order to define a semantics to applica-
tion project. Then, using transformation chains, it allows us
to generate code for a few target languages and platforms
such as OpenMP, SystemC, VHDL, Pthread and OPENCL.
One of the main advantages of MARTE is that it clearly
distinguishes the hardware components from the software
components. This is done via stereotypes provided in part
by the Detailed Resource Modelling (DRM) package, in
particular the HwResource and SwResource stereotypes. For
hybrid (CPU + Compute Device) conception, this separation
is of prime importance as it is usual to create those two parts
of the system simultaneously by different teams. Moreover,
this separation provides a flexible way to independently
change the software part or the hardware part. For instance,
this allows for testing the software on different kind of
hardware architecture, or to reuse an architecture (with a
few or no changes) for different applications.

VI. IMAGE COMPRESSION IN SAC

Since tiler is the most important abstraction in ARRAYOL
to express sophisticated data access patterns, we aim to
implement the same mechanism in SAC using WITH-loops
and maintain a high level abstraction. Both the horizontal
and vertical filters in the downscaler example use two tilers,
one for gathering a pattern of data from an input frame and
the other for scattering the data to an output frame after
copmutation. We refer to these two tilers as Input Tiler and
Output Tiler. In the following discussion, we will only look
at horizontal filter while the same techniques can be applied

to the vertical filter equally. In the context of SAC, the
compression process can be performed in three steps:
• Step 1: The input tiler generates an intermediate array

containing data gathered from the original frame. Shape
of this intermediate array is a concatenation of the
repetition space shape and the input pattern shape.

• Step 2: A WITH-loop performs the compression task
with the intermediate array in a data-parallel fashion.
This generates another intermediate array whose shape
is a concatenation of the repetition space shape and the
output pattern shape.

• Step 3: The output tiler scatters data from the second
intermediate array to the output frame.

int[*] input_tiler(int[*] in_frame, int[.] in_pattern,
int[.] repetition, int[.] origin,
int[.,.] fitting, int[.,.] paving)

{
output = with {
(. <= rep <= .) {
tile = with {
(. <= pat <= .) {
off = origin +

MV( CAT( paving, fitting) , rep++pat);
iv = off % shape(in_frame);
elem = in_frame[iv];
} : elem;
} : genarray( in_pattern, 0);
} : tile;
} : genarray( repetition);
return( output);
}

Figure 4. Input tiler function in SAC

Both the input and output tilers need to be specified
generically so that they can be reused other access patterns.
Figure 4 shows a function in SAC implementing the generic
input tiler. The three main tiler components, origin vector,
fitting matrix and paving matrix, are passed as arrays with
generic shapes to the function. The function contains a
WITH-loop nest to generate an intermediate array output

from the input in_frame. The outer WITH-loop iterates the
entire repetition space while the inner WITH-loop generates
a single tile during each iteration. To gather data for a tile, an
index vector iv for accessing the input frame is calculated
from the origin, paving, fitting and pattern arrays. Calcula-
tion of iv is based on the formulae described in Section IV.
Note that MV and CAT are functions performing matrix-vector
multiplication and array concatenation respectively.

The intermediate array is then passed to the task function
where a WITH-loop performs the actual frame compression
(See Figure 5). During each iteration of the repetition
space, an output tile is constructed from the corresponding
input tile. This function creates a second intermediate array,
output, whose shape is a concatenation of the repetition
space shape repetition and the output pattern shape
out_pattern.

Finally, the output tiler scatters the data of the newly
compressed frame back to an output frame out_frame.
Figure 6 shows a generic output tiler function in SAC. It
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int[*] task(int[*] input, int[.] out_pattern,
int[.] repetition)

{
output = with {
(. <= rep <= .) {
tile = genarray(out_pattern, 0);
tmp0 = input[rep][0] + input[rep][1] +

input[rep][2] + input[rep][3] +
input[rep][4] + input[rep][5];

tile[0] = tmp0 / 6 - tmp0 % 6;
tmp1 = input[rep][2] + input[rep][3] +

input[rep][4] + input[rep][5] +
input[rep][6] + input[rep][7];

tile[1] = tmp1 / 6 - tmp1 % 6;
tmp2 = input[rep][5] + input[rep][6] +

input[rep][7] + input[rep][8] +
input[rep][9] + input[rep][10];

tile[2] = tmp2 / 6 - tmp2 % 6;
} : tile;
} : genarray( repetition);
return( output);
}

Figure 5. Task function in SAC

int[*] generic_output_tiler(int[*] out_frame,
int[*] input, int[.] out_pattern, int[.] repetition,
int[.] origin, int[.,.] fitting, int[.,.] paving)
{
for( i=0; i< repetition[[0]]; i++) {
for( j=0; j< repetition[[1]]; j++) {
for( k=0; k< out_pattern[[0]]; k++) {
off = org + MV( CAT(paving, fitting), [i,j,k]);
iv = off % shape( out_frame);
out_frame[iv] = input[[i,j,k]];
}
}
}
return( out_frame);
}

Figure 6. Generic output tiler in SAC

contains a for-loop nest iterating through each element of
the intermediate array input. Similar to the input tiler, each
element is scattered to a specific index position in the output
frame determined by the formulae described in Section IV.

int[*] nongeneric_output_tiler(int[*] output,
int[*] input

{
output = with {
([0,0]<=[i,j]<=. step [1,3]):input[[i,j/3,0]];
([0,1]<=[i,j]<=. step [1,3]):input[[i,j/3,1]];
([0,2]<=[i,j]<=. step [1,3]):input[[i,j/3,2]];
} : modarray( output);
return( output);
}

Figure 7. Non-generic output tiler in SAC

This generic implementation can be used by applications
with different tiler specifications. However, as we will see
in the next section, nested for-loops in SAC can potentially
hinder effective optimizations of the compiler. To be able to
evaluate the performance impact of different programming
abstractions, we implemented a non-generic output tiler
shown in Figure 7. In this implementation, we assume prior
knowledge of output tile size (i.e. 3 in the case of horizontal
filter). One WITH-loop generator is created for accessing
all elements at the same index position within a tile. Each

generator iterates along the data scattering dimension in step
equal to the tile size (i.e. step [1,3]) and the accessing
index of that dimension is the quotient of the corresponding
WITH-loop index and the tile size (e.g. j/3).

VII. COMPILING SAC TO CUDA

As discussed in the previous section, the image com-
pression can be logically divided into three distinct steps,
each implemented by an SAC function. This abstract and
modularised approach encourages code reuse at the expense
of potentially compromising program performance. As we
have seen, two intermediate arrays are created: one from the
input tiler and the other from the task function. If they are
actually allocated in memory, it will not only increase the
total memory footprint but also incur expensive data copy
and hinder effective data reuse.

int[1080, 1920] in_frame;
int[1080, 720] output;

output = with {
( [0,0] <= iv < [1080,1] step[1,3] width[1,1] {
res1 = ...in_frame[...]...;
} : res1;
( [0,1] <= iv < [1080,2] step[1,3] width[1,1] {
res2 = ...in_frame[...]...;
} : res2;
( [0,3] <= iv < [1080,720] step[1,3] width[1,1] {
res3 = ...in_frame[...]...;
} : res3;
( [0,4] <= iv < [1080,720] step[1,3] width[1,1] {
res4 = ...in_frame[...]...;
} : res4;
( [0,2] <= iv < [1080,1] step[1,3] width[1,1] {
res5 = ...in_frame[...]...;
} : res5;
} : genarray( [1080, 720]);

Figure 8. Code after WITH-loop folding

To minimize the performance overheads of using large
intermediate arrays, the SAC compiler performs one crucial
optimization - WITH-loop Folding (WLF) [12]. This opti-
mization identifies consecutive WITH-loops with Use-Def

relationship and fuses them aggressively. This renders allo-
cation of intermediate arrays in memory unnecessary and
more importantly, avoids expensive data copy and enables
better data reuse. In the case of non-generic output tiler,
we have three consecutive WITH-loops, each consuming the
result of a previous one. This triggers WLF and eventually
generates a single WITH-loop similar to the one shown in
Figure 8 (we assume the frame size is 1080 × 1920 and
omit the actual compression code inside each generator for
clarity). On the other hand, WLF fails in the case of generic
output tiler as it does not attempt to fuse program constructs
other than WITH-loops (the output tiler is specified as a
for-loop nest). Here, we essentially trade abstraction for
performance and the these two approaches will be evaluated
in Section VIII.

After performing all high level optimizations in SAC, the
intermediate program is passed to the CUDA backend for
generating actual GPU code. Instead of performing whole-
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program transformation, we focus on translating individual
data-parallel WITH-loops to equivalent CUDA kernel func-
tions. Here we briefly outline the three main steps of this
transformation process. A more thorough discussion of the
formal compilation schemes can be found in [7]:
• Identifying WITH-loops eligible to be executed on

GPUs (i.e. CUDA-WITH-loops). Inherent limitations of
the CUDA architecture and the programming model,
such a lack of support for stack and nested thread
creation, render certain WITH-loops un-parallelisable.
The CUDA backend therefore only parallelises the
outermost WITH-loops containing no function invoca-
tions. This both satisfies the constrains and increases
the granularity of parallelism to better amortize various
GPU overheads (e.g. device initialisation and kernel
launch).

• Inserting data transfer instructions for CUDA-WITH-
loops. We introduce two dedicated instructions,
host2device and device2host , to transfer data
between host and device memory for both free variables
and results of CUDA-WITH-loops. The orginal variables
are then replaced by their device counterparts.

• Creating CUDA kernel functions from CUDA-WITH-
loop. We outline each WITH-loop generator as a kernel
function and replace it by the corresponding invocation.
Kernel configurations are derived from the generator
bounds. Code of each generator becomes the function
body.

VIII. EVALUATION

The main aim of our evaluation is to quantify the
performance impacts of different programming models on
modern heterogeneous architectures. For this purpose, we
compile and execute the downscaler application operating
on 1080×1920 image frames. The test system contains an
Nvidia Fermi GTX480 GPU. The device has 15 stream-
ing multiprocessors. Each multiprocessor has 32 streaming
processors clocked at 1.4 GHz. The total amount of device
memory is 1.5 GB. The CPU is an Intel 2.8 GHz i7-930 quad
core processor with 8 MB L2 cache. The GPU is connected
to the CPU through a PCIe x16 Gen2 bus. We use CUDA
version 3.1 and enable -O3 option for all compilations.

A. Performance Evaluation of the SAC Implementations

To compare the performance of the generic and non-
generic downscaler implementations in SAC, we measure
the runtimes of both horizontal and vertical filters, each
executed for 300 iterations. We also compare the perfor-
mance of both the sequential and CUDA code generated by
the SAC compiler (denoted as SAC-Seq and SAC-CUDA
respectively). The execution times of different implementa-
tions are shown in Figure 9. The first thing we can observe
is that the CUDA code performs significantly better than
its sequential counterpart. This is because each output frame

SAC-Seq Generic SAC-Seq Non-Generic SAC-CUDA Generic SAC-CUDA Non-Generic
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Figure 9. Filter execution times of different SAC implementations (300
iterations)

element can be computed independently, therefore providing
abundant fine-grain parallelism for GPU’s massive parallel
architecture to exploit. Another interesting finding is that,
while execution times of sequential code do not vary signif-
icantly between generic and non-generic implementations,
the non-generic filters execute 4.5× (horizontal) and 3×
(vertical) faster than the generic versions on GPU. As we
discussed in Section VII, the generic output tiler is specified
as a for-loop nest. Since the SAC compiler does not attempt
to parallelise loops apart from WITH-loops, the for-loop
nest is executed on the host. Since both the input tiler
and task function are executed on the GPU and produce
intermediate results in the GPU memory, the intermediate
result has to be transferred back to the host memory before
the output tiler can access it. This device-to-host transfer
time significantly increases the total runtime of the filters.
On contrary, the input tiler, task function and output tiler are
fused into one single WITH-loop by the WLF optimization in
the non-generic implementation. Therefore, it is executed on
the GPU completely without any intermediate data transfers,
improving performance dramatically.

B. Performance Evaluation of the GASPARD2 Implementa-
tion

The downscaler application in GASPARD2 is modeled in
Papyrus [2] in the Eclipse environment using four macro
tasks:

1) FrameGenerator, which is an elementary task linked
to an IP (intellectual property) that reads frames from
a video file or camera using the OpenCV library;

2) HorizontalFilter, which is hierarchically composed by
three elementary tasks that become kernels in the
GPU environment and it is responsible for horizontal
scaling;

3) VerticalFilter, which is equivalent to HorizontalFilter
for vertical scaling;

4) FrameConstructor, which is an elementary task linked
to an IP that writes frames out to a file or display
device using the OpenCV library.
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The model of the HorizontalFilter, with some additional
information about tilers and input and output data, is il-
lustrated in the figure 10. This component is composed of
three similar tasks that deals with RGB components of the
video frame. For instance, the bhf (horizontal filter for B
component) has a shape size of 1080x240 and this is the
repetition space for the tiler specifications.

IN{11}

{1080,720}

{1080,240}

{1080,1920}

Frame
OUT{3}

TILER Specification

array shape={1080,1920}
pattern shape={11}
origin={0,0}
fitting={{0,1}}
paving={{1,0},{0,8}}
repetition space={1080,240}

TILER Specification

array shape size={1080,720}
pattern shape size={3}
origin={0,0}
fitting={{0,1}}
paving={{1,0},{0,3}}
repetition space={1080,240}

origin

1
s
t 

D
im

2nd Dim

Figure 10. Downscaler tiler specification

Since we have the models defined in design time, a single
step triggers the transformations and generates code for the
chosen target. We use the downscaler model (UML file)
in the Eclipse project tree navigator, then we execute the
OPENCL chain. This produces source files (.cpp, .cl) and a
makefile. The Figure 11 is part of a resulting kernel source
code file. This part is related to the tiler creation and it is
responsible to transfer the pattern elements from the global
memory to the work-item private memory (latest lines).

//--- Tiler TFunc_in_bhf_bhf_KRNPAR::in_bhf_bhf ---
{ //start block
uint tlIter[2];
uint tl[1];
uint ref[2];
uint index[2];
//get indexes based on work-item Global ID
tlIter[0]=iGID%1080;
tlIter[1]=abs(iGID/1080);
//reference point based on Paving matrix
ref[0] = 0 + 1*tlIter[0] + 0*tlIter[1];
ref[1] = 0 + 0*tlIter[0] + 8*tlIter[1];
//pattern filling based on Fitting matrix
for(tl[0]=0; tl[0] < 11; tl[0]++) {
index[0]= (ref[0] + 0*tl[0])%1080;
index[1]= (ref[1] + 1*tl[0])%1920;
in_bhf_bhf[tl[0] * 1] =
in_bhf_bhf_KRNPAR[index[0] * 1920 +index[1] * 1];

} //end for
} // end block

Figure 11. Generated code of a tiler

The running results for GASPARD2 version are showed
in the Table I. More than half of the time is dedicated to
data transfers, mainly in the beginning when the host needs
to transfer an entire frame. We have three kernels to do the
horizontal filter and three to do the vertical filter as well.
The horizontal filter kernels take more time to execute due to
their larger grid size. This application takes 2.86s to process
300 frames. This is suitable for real time playing of a 25
fps high-definition video that takes 12s to finish.

Operation #calls GPU time(µsec) GPU time (%)
H. Filter (3 kernels) 300 844185 29.51
V. Filter (3 kernels) 300 424223 14.83
memcpyHtoDasync 900 1391670 48.74
memcpyDtoHasync 900 197057 6.89
Total - 2.86sec 100.00

Table I
KERNEL EXECUTION AND DATA TRANSFER TIMES OF GASPARD2

IMPLEMENTATION

Operation #calls GPU time(µsec) GPU time (%)
H. Filter (5 kernels) 300 1015137 29.60
V. Filter (7 kernels) 300 762270 22.22
memcpyHtoDasync 900 1454400 42.40
memcpyDtoHasync 900 198000 5.77
Total - 3.43sec 100.00

Table II
KERNEL EXECUTION AND DATA TRANSFER TIMES OF SAC

IMPLEMENTATION

C. Performance Comparison of SAC and GASPARD2

Table II shows a detailed breakdown of kernel execution
time and data transfer time the non-generic SAC implemen-
tation takes to process 300 frames. Similar to the GASPARD2
implementation, data transfers represent approximately 50%
of the total execution time. The reason is that both ap-
proaches transfer the same amount of frame data to the
device memory before compression starts and back to the
host memory afterwards for displaying. Figure 12 shows
runtime comparison between these two approaches. As we
can see, horizontal and vertical filters in GASPARD2 perform
slightly better than SAC. Upon further investigation, we
discover that each filter in GASPARD2 is specified as a
single OPENCL kernel. As discussed in Section VII, the final
fused WITH-loop for horizontal filter after applying WLF
has 5 generators (the vertical filter has 7 generators). Since
the CUDA backend creates one kernel for each generator,
this means 5 kernels need to be launched during runtime.
Such large number of kernel invocations is inefficient in two
aspects and causes slowdowns of the SAC implementation:
• Each kernel launch incurs context overheads. The more

kernels a program executes, the higher this cost will be.
• Data in certain memory of the GPU is not persistent

Horizontal Filter Vertical Filter Host2Device Device2Host
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Figure 12. Comparison of the operation times
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across different kernels, such as the on-chip L1 cache.
Therefore, separating computations of the same data
array into different kernels hinders effective data reuse.

IX. CONCLUSIONS

In this paper, using the H.263 video compression as a
running example, we investigated two different approaches
for retaining high-level abstractions in applications, while
targeting modern GPUs for performance. One of our ap-
proaches is to rely on high-level, generic source-to-source
transformation using a compiler. The other approach is to
rely on a model-to-source code generation technique based
on functional building blocks and a model-driven design
environment. The former is a widely applicable technique
crossing domain boundaries while the latter is tied to a
specific domain, and in our case signal/image processing.
Based on our programming experience and experimental
evaluation, we make the following observations:

• Both techniques enable high-level program specifica-
tion, including the expression of data parallelism. The
ARRAYOL language provides functional specification
capturing the parallelism, which in turn can be lever-
aged from a front-end. The SAC programming language
provides abstractions at a higher-level, with a self-
contained full expression of the problem.

• Both approaches can lead users to a GPU-specific
solution without detailed knowledge of the GPGPU
programming. The ARRAYOL-based approach leads
to an OPENCL-based solution, while the SAC-based
approach provides a CUDA-based solution.

• Despite the differences in the high-level program ab-
stractions and in the final GPU-specific targets, per-
formance benefits of both approaches are comparable,
varying within 85% of the best runtimes.

• Upon further investigation, the ARRAYOL-based ap-
proach leads to a solution with considerably fewer
number of kernels than the SAC-based solution. This is
mainly due to WLF in SAC. As a result, the ARRAYOL-
based solution achieves relatively better performance.

In our case, we were able to use a general purpose array
programming language, SAC for successfully modelling
a complex domain-specific problem expressed in a spec-
ification language, ARRAYOL. Although compiler-driven
optimisations often lead to benefits, we witnessed that in
the context of GPGPU programming, they can equally add
overheads such that simple model-to-source code genera-
tion technique can yield better results. Finally and most
importantly, both the approaches can lead to significant
performance benefits, as much as 11× speedups on GPUs
compared to sequential counterparts — all without losing
the abstractions.
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