
Truly Nested Data-Parallelism: Compiling SaC
for the MicroGrid Architecture?

Stephan Herhut1, Carl Joslin1, Sven-Bodo Scholz1, and Clemens Grelck1,2

1 University of Hertfordshire, School of Computer Science
Hatfield, Herts, AL10 9AB, United Kingdom

{s.a.herhut,c.a.joslin,s.scholz,c.grelck}@herts.ac.uk
2 University of Amsterdam, Institute of Informatics
Science Park 107, 1098 XG Amsterdam, Netherlands

c.grelck@uva.nl

Abstract. Data-parallel programming facilitates elegant specification
of concurrency. However, the composability of data-parallel operations
so far has been constrained by the requirement to have only flat data-
parallel operation at runtime. In this paper, we present early results on
our work to exploit hardware support for nested concurrency to directly
map nested data-parallel operations in high-level specifications to low-
level codes that can be efficiently executed. To this effect, we have devised
a compilation scheme from data-parallel operations in SaC to the sys-
tems programming language of the Microgrid architecture. Furthermore,
we present early empirical results to assert the viability of our approach.

1 Introduction

With the advent of multi-core processors in the mainstream, the question of
how to efficiently program concurrent systems has gained more attention again.
Whereas previously existing software profited automatically from advances in
processor design, this is no longer the case with the current trend towards parallel
architectures. Instead, software needs to be explicitly adapted to benefit from the
increased processing power through concurrent execution. However, explicitly
encoding concurrency by means of low-level language constructs is cumbersome.
Firstly, factoring in concurrency makes the already complex art of programming
even more difficult. And secondly, manual concurrency engineering not only is
error-prone but the resulting bugs are hard to catch.

Thus, a different approach for programming in a parallel setting is required
that abstracts from the low-level details and allows the programmer to con-
centrate on the inherent parallelism of an algorithm. Here, the data-parallel
approach towards programming comes to mind. In data-parallel programming,
a, usually uniform, operation is applied to each element of a collection of data.
In case of a parallel map, the result then is a corresponding collection where each

? This work was funded by the European Union Apple-CORE project grant no. FP7
215216.

element is computed by applying the operation to the corresponding element of
the source collection. For parallel folds, a single element is computed by reducing
all elements in the collection using the given operation.

A common scenario in data-parallel computing are operations on arrays,
e.g., computing the element-wise addition or summing up all elements of an ar-
ray. Early incarnations of programming languages that support a data-parallel
programming style on arrays are Hpf [1] and Sisal [2]. The former, High-
Performance Fortran, supports data-parallel intrinsics for array operations and
has a special FORALL construct for data-parallel loops in general. The latter,
Sisal, allows to express concurrency by means of a data-parallel for-loop con-
struct.

Even though both languages have built-in support for data-parallel opera-
tions, they do not facilitate truly data-parallel programming. In both languages,
the composition of data-parallel operations is severely limited. In particular,
data-parallel operations may not be nested, i.e., a data-parallel operation may
not itself contain data-parallel operations. This limits the applicability of data-
parallel operations in the setting of more irregular structures like nested arrays,
sparse arrays or nested lists.

This limitation has partly been removed in later data-parallel languages like
Nesl [3], SaC [4], Nepal [5] and dpH [6]. All four allow the programmer to
specify nested data-parallel operations under certain constraints. However, dur-
ing compilation, the nesting is removed using a flattening transformation [7–
10] that lifts the inner, nested operations to the outer level. At runtime, only
flat data-parallel operations are performed. Where no flattening is possible, the
nested data-parallelism is ignored and sequential execution is used.

Although the trick of flattening nested data-parallelism helps in many situ-
ations, it is not a general solution. If flattening is not possible, valuable concur-
rency is lost. So why is nested data-parallelism not simply mapped to a nested
concurrent execution at runtime?

The answer to this question is architecture dependent. On classical SIMD
vector machines that were the initial target for data-parallel languages, nested
data-parallelism was simply not possible. Such machines were limited to simple
operations on vectors of scalar data.

In the setting of SMP and multi-core systems with their thread based pro-
gramming model, nested data-parallel operations can, in theory, be expressed.
However, in practice, such concurrent execution seldom pays off. Creating and
synchronizing threads is a rather expensive operation. It therefore is prohibitive
to use one thread per single computation. Instead, usually multiple computations
of one data-parallel operation are scheduled to form one thread. In the setting
of flat data-parallel operations, most of this scheduling can be performed stati-
cally. However, with nested data-parallelism, efficient static scheduling becomes
impossible. Scheduling computations to threads at runtime, however, involves a
major overhead. Thus, the gain from additional concurrency in many cases is
overshadowed by the cost for managing threads.

The novel Microgrid architecture developed at the University of Amsterdam
is about to change the rules of the game [11]. Other than existing multi-core
designs, in a Microgrid threads are entirely managed by the hardware. Further-
more, threads in a Microgrid are considerably more lightweight than the classical
pthreads as found on today’s multi-core machines: Thread creation and synchro-
nisation is cheap and a single core may support up to 1000 active threads at any
one time and a conceptually unlimited number of waiting threads given sufficient
resources.

Having cheap threads in abundance lead us to the idea to map each single
computation of a data-parallel operation to its own thread. Thus, scheduling be-
comes straight forward. Furthermore, as the Microgrid allows for nested threads,
in which a thread may spawn off new threads, such a one-to-one mapping allows
us to express nested data-parallel operations as just that, nested parallelism, at
hardware level, as well.

In this paper, we report on first experiences we have made with the above
approach. We have devised a compilation scheme for one of SaC’s data-parallel
constructs that targets the systems-programming language of the Microgrid ar-
chitecture. A corresponding prototypical implementation is available as part of
our research compiler sac2c3. To give a first idea of the effectiveness of our
approach, we have evaluated it using one of the kernels of the Livermore loop
suite.

The remainder of this paper is structured as follows. In the first three sec-
tions, we give a short introduction to SaC, the Microgrid architecture and its
systems programming language µTC. Then, in Section 5, we present a compi-
lation scheme for one of SaC’s data-parallel operations. Early empirical results
are given in Section 6 before we close with some conclusions and future work.

2 Single Assignment C

As the name suggests, SaC is a functional subset of C, extended by multi-dimen-
sional arrays as first class citizens. SaC has adopted as much of the syntax of C
as possible to ease adaptation for programmers with a background in imperative
programming. Despite its C-like appearance, the semantics of SaC code is de-
fined by context-free substitution of expressions. “Imperative” language features
like assignment chains, branches, or loops are semantically explained and inter-
nally represented as nested let-expressions, conditional expressions, and tail-end
recursive functions, respectively. Nevertheless, wherever SaC code syntactically
coincides with C code, the functional semantics of SaC also coincides with the
imperative semantics of C. As a consequence, programmers may keep their pre-
ferred model of thinking while the SaC compiler may exploit the functional
semantics for advanced optimisation [12].

In contrast to other array languages, SaC provides only a very small set
of built-in operations on arrays: primitives to retrieve data pertaining to the

3 sac2c is available at http://www.apple-core.info

structure and contents of arrays, e.g., an array’s rank (dim(array)), its shape
(shape(array)), or individual elements (array[index-vector]). Aggregate array
operations are specified in SaC itself using powerful array comprehensions, called
with-loops. By design, these with-loops are data-parallel operations. In the
context of this paper, we will focus on the data-parallel map operation of SaC,
the genarray with-loop. Its syntax is defined in Fig. 1.

Expr ⇒ ...

| with { [Generator : Expr ;]+ } : Operation

Generator ⇒ (Expr <= Identifier < Expr[Filter])

Filter ⇒ step Expr [width Expr]
Operation ⇒ genarray (Expr [, Expr])

Fig. 1. Syntax of with-loop expressions

A with-loop is a complex expression: following the key word with, a non-
empty list of generator–expression pairs defines a mapping from indices to values
while the subsequent operation determines the overall meaning of the with-
loop. In this paper, we only consider the genarray operation, which is expressed
syntactically as genarray(shp, default) and creates a new array of shape
shp .

Each generator defines a set of indices, more precisely index vectors, along
with an index variable representing elements of this set. Two expressions, which
must evaluate to integer vectors of equal length, define lower and upper bounds
of a rectangular index vector range. For each element of this set of index vectors
the associated expression is evaluated. Depending on the variant of with-loop,
the resulting value either defines the corresponding element value of the array to
be created (genarray) or it is given as an argument to the fold operation (fold).
In the case of a genarray-with-loop, elements of the result array that are not
covered by the generator are initialised by the (optional) default expression in
the operation part. For example, the with-loop

with {
([1 , 1] <= iv < [3 , 4]) : i v [0] + iv [1] ;

} : genarray ([3 , 5] , 0)

yields the matrix

0@ 0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

1A. The generator in this example with-loop defines

the set of 2-element vectors in the range between [1,1] and [3,4]. The index
variable iv represents elements from this set (i.e., 2-element vectors) in the
associated expression iv[0] + iv[1]. Therefore, we compute each element of
the result array as the sum of the two components of the index vector, whereas
the remaining elements are initialised with the value of the default expression.

Multiple generator–expression pairs allow us to map different index sets to
entirely different expressions. As a simple example, the with-loop

with {
([0 , 0] <= iv < [1 , 4]) : 0 ;
([0 , 0] <= iv < [3 , 1]) : 1 ;
([1 , 1] <= iv < [3 , 4]) : i v [0] + iv [1] ;

} : genarray ([3 , 5] , 0)

yields the matrix

0@ 1 0 0 0 0
1 2 3 4 0
1 3 4 5 0

1A. In case the generators define index sets that are

not pairwise disjoint, their (textual) sequence matters: the last mapping from
the list is taken.

An optional filter may be used to further restrict generators to periodic grid-
like patterns, e.g.,

with {
([1 , 1] <= iv < [3 , 8] s tep [1 , 3] width [1 , 2]) : 1 ;

} : genarray ([3 , 1 0] , 0)

yields the matrix

0@ 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 0 0
0 1 1 0 1 1 0 1 0 0

1A . An elidet width specification defaults

to 1 in each dimension; an elidet step specification likewise defaults to 1, i.e.,
no stepping whatsoever. A width specification that equals or exceeds the step
in some dimension is equivalent to a dense generator. It is noteworthy that
lower and upper bounds as well as step and width specifications are fully-fledged
expressions and not restricted to constants as in our illustrative examples.

More formal descriptions of with-loops along with detailed introductions to
SaC and its programming methodology can be found in [13–15].

3 Microgrids of Self-Adaptive Virtual Processors

The key idea of the Microgrid architecture is to create a common framework
for standard processing cores which have been extended in their ISAs so that
they can be used concurrently in a cooperative fashion. As a unifying concept,
all such cores need to adhere to the model of a Self-Adaptive Virtual Processor
(SVP).

In a Microgrid, the unit of work is a family of homogeneous and indexed
threads, called microthreads. Families of microthreads are created at places. A
place is an abstraction of a set of processing resources configured into a ring
network somewhere on chip. Families of threads are usually created on the local
place, i.e., on the place where the create is initiated. However, all places also do
accept remote SVP actions to create families of threads from other processors.
This is called a delegation. Delegation is a mechanism for coarse-grain distribu-
tion of work in a Microgrid. The place accepts the create parameters, distributes
and executes the threads that make up the family and responds to any SVP

control actions for that family. In the conventional setting, this is equivalent
to the remote execution of a unit of work (a job) on a set of processors. For
more information about the SVP model see [16] and for more information about
Microgrids see [11].

The threads in a family are automatically distributed to the cluster of pro-
cessors but not necessarily all at the same time. If the number of threads exceeds
the resources available there, thread creation may be delayed on those resources.
The distribution is, however, completely deterministic and built into the im-
plementation of the create instruction in the DRISC processors comprising the
cluster. The distribution is primarily parameterised by

1. the number of threads in a family (N),
2. the number of processors in the place (P) and
3. the distribution strategy which is either local or default.

A local distribution creates all threads in one processor whereas a default dis-
tribution tries to involve all processors of a place evenly. However, this rule may
be overridden whenever a paucity of resources occurs on a processor.

As the programming model for Microgrids is recursive, threads that have
been distributed can themselves create subordinate families. For example, a 2-
dimensional data-parallel operation could be implemented as a family of threads,
each of which creates a subordinate family. Alternatively, we could create a single
flat family of threads, one per element. With the former choice a pair of indices
is generated automatically, whereas in the latter case we have a single index.
For a nested create, each such subordinate family is distributed relative to its
own parent’s location in the ring. Note that there is no theoretical limit to the
depth of recursion. However, a practical limit exists based on the resources used
by existing threads on a processor.

It should also be noted that in order to make global identification of a dis-
tributed family feasible, we have implemented a sequentialisation of creates over
the cluster’s ring network. Only one thread at a time may acquire a token in the
ring allowing it to create a family at a central registration place referred to as
default place. Local creates can be executed concurrently across processors.

4 Programming Microgrids through µTC

The programming language µTC is an extension of standard C. In essence, it
adds language support for thread creation and thread management. For the
context of this paper, it suffices to introduce the two most important language
constructs of µTC: create and sync. Their syntax is summarised in Figure 2.
A create-statement of the form

create(fid ; start ; limit ; step ; block ; location ; timer)
statement-block

creates a new family of threads, where each thread executes the statement block
statement-block. The various parameters of the create-statement have the fol-
lowing meaning:

Statememt ⇒ ...

| create (Id ; Expr ; Expr ; Expr ; Expr ; Location ; Expr)
Block

| sync (Id)

Location ⇒ (local | default)

Fig. 2. Syntax of µTC extensions

fid is an integer variable provided by the creating context; it receives the unique
family identifier, which is needed for subsequent synchronisation or termi-
nation of the family.

start is an integer expression that defines the start of the index sequence for
the family of threads (default value: 0).

limit is an integer expression that defines the limit of the index sequence for
the family of threads (default value: unlimited).

step is an integer expression that defines the increment between index values
(default value: 1).

block is an integer expression that defines the maximum number of threads
allocated per processor in a single allocation round (default value: system
defined).

location defines the resource on which the family will execute. A special re-
source called local forces execution of this family on the same processor as
the creating environment while the default resource delegates the schedul-
ing of work onto resources to the system (default value: system defined).

timer is an integer expression that restricts the number of allocation rounds to
at most one per tick of a clock (default value: threads created as resources
become available, subject to the constraints imposed by block).

All parameter expressions are evaluated exactly once upon execution of the
create-statement. Any parameter except for the family identifier may be left
out in favour of the default value as defined above.

Complementary to the create-statement, a sync-statement of the form

sync(fid)

synchronises the family of threads identified by the variable fid . Execution of
the thread that issues the sync-statement is delayed until all members of the
given family of threads have completed.

In addition to the create and sync statements µTC features two type quali-
fiers that can be used within the statement block of a thread: index and shared.
An “index” variable must be of type int; it provides access to the thread’s in-
dex within a family. “Shared” variables can be of any type; they realise a data
flow style dependency chain through the family of threads. More precisely, the
family member with the start-index takes the value of a shared variable from
the creating context, where a variable of the same name must exist. All threads
block upon reading a shared variable until its immediate predecessor or, in case

of the thread associated to the start-index, the creating thread performs its
first write operation on the shared variable. After the family has been synchro-
nised using the sync-statement the value written by the thread with the greatest
index becomes available in the creating context.

. . .
i n t f i d , sum=0;
c r e a t e (f i d ; 0 ; n ; 1 ; ; ;) {

index i n t i ;
shared i n t sum ;
sum = sum + V[i] ;

}
sync (f i d) ;
. . . sum . . .

Fig. 3. µTC example code fragment for a reduction operation.

Fig. 3 illustrates the interaction of create and sync statements with index
and shared type qualifiers through the example of a simple reduction operation
on some previously defined vector V of size n. We create one thread per element
of V. While the index variable i provides access to the local thread ID for in-
dexing into the vector V, the shared variable sum establishes a dependency chain
that guarantees a deterministic left-to-right sequence of additions, despite the
concurrent execution of the threads. In practice, each thread starts by fetching
the corresponding value of V from memory and then blocks on the availability
of the reduction variable sum. At first glance, this sequentialises the reduction
operation, but in fact each thread loads the necessary data from memory fully
concurrently. Only the final reductions are sequentialised, thus ensuring deter-
ministic program behaviour. Following the sync-statement the creating context
may safely refer to the value of sum that holds the reduction result, i.e., the sum
of all elements of V.

5 Compiling SaC to µTC

All data-parallelism in SaC is expressed in terms of the multi-generator with-
loops as introduced in Section 2. During the compilation process of SaC pro-
grams, these are transformed by means of several optimisations (see [14] for
details). These transformations try to avoid the creation of arrays that hold in-
termediate results and, more importantly, they ensure that the resulting multi-
generator with-loops have non-overlapping generators. This property together
with the side-effect free nature of SaC guarantees that all index-vector sets in
any given multi-generator with-loop can be traversed in arbitrary order with-

out affecting the overall result, i.e., they can be translated directly into create
instructions of µTC.

As discussed in the previous two sections, the Microgrid architecture allows
for a large number of active threads and facilitates nested concurrency by means
of nested create operations. This allows us to compile each generator into a
nesting of create instructions, where each dimension of the generator leads to
one create instruction. Only if the width option is being used, we may actually
create two nested create instructions per dimension. In either case, each element
of the result of a with-loop is computed by its own thread.

Figure 4 shows a formalisation of the basic compilation scheme for multi-
generator genarray-with-loops. It consists of rules of the form C[[D, expr]] =

C

26664
26664D,

a = with {
(l1 <= iv <= u1 step s1 width w1) : Op1(iv);

.

.

.
.
.
.

(lm <= iv <= um step sm width wm) : Opm(iv);
} : genarray(shp);

37775
37775 (1)

=

8>>><>>>:
a = MALLOC(shp);
C[[global, (l1 <= iv <= u1 step s1 width w1) : a[iv] = Op1(iv)]]

.

.

.
C[[global, (lm <= iv <= um step sm width wm) : a[iv] = Opm(iv)]]

C
hh
D,

([li...ln−1] <= [ivi...ivn−1] <= [ui...un−1]
step [si...sn−1] width [wi...wn−1]) : Ass

ii
(2)

=

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

{
int fid;
create(fid, li; ui; si;;D;) {

index int ivi;
int stop = MIN(ivi+wi-1, ui);
int fid;
create(fid; ivi, stop; 1;;local;) {

index int ivi;

C
hh
local,

([li+1...ln−1] <= [ivi+1...ivn−1] <= [ui+1...un−1]
step [si+1...sn−1] width [wi+1...wn−1]) : Ass

ii
}
sync(fid);

}
sync(fid);

}
C[[D, ([] <= iv <= [] step [] width []) : Ass]] = Ass; (3)

Fig. 4. Compilation of multi generator genarray-with-loops.

expr′, which denote context-free substitutions of SaC program fragments expr
by µTC program fragments expr′. We use the argument D to distinguish between
the two distribution modes global and local. The distribution mode global
triggers the distribution of the computation of the current level among all cores
in a Microgrid. If the distribution local is used, the following level will be

computed on the current processing core only. Previous experiments have shown
that distributing the threads at all levels of a nested create globally can have
an adverse effect on runtime performance [17]. We therefore have chosen to only
distribute the threads created by the outermost create operation globally. D
can initially be set to any value.

Rule (1) allocates the memory for the result using a = MALLOC(shp); and it
triggers the successive compilation of the individual generators. An explicit ini-
tialization of the result array is not required as the generator sets are guaranteed
to be a partition of all legal index vectors. In the applications of the compilation
scheme to the individual generators, the expressions to be evaluated are trans-
formed into assignments of the form a[iv] = Op(iv), which ensures correct
insertion of the computed values into the result array. Furthermore, as we trans-
form the outermost dimension next, we set the distribution to global. Thus, the
outermost dimension of every with-loop is distributed across the Microgrid.

The last two rules concern the compilation of generator expressions into a
nesting of create-instructions. As shown in rule (2), for each component of the
indexing vector iv, two nested create-instructions are created: An outer create
which creates threads using the lower bound li, upper bound ui and the step si

as thread indices. Hence, the index of that create can directly be utilised as index
component ivi. The inner create is used for treating width components larger
than 1. Note here that the inner create, as well as the subsequent sync can safely
be omitted whenever the width component under consideration is 1. The body
of the inner create derives from recursively applying the compilation scheme
to the generator with its leading index vector components being eliminated. We
use the local distribution scheme during the recursive descend and for inner
create operations. This ensures that only the outermost create instruction of
a with-loop is globally distributed.

Rule (3) covers the creation of the innermost body. It simply replaces the
empty generator by the assignment associated to it.

Since we use nested create operations to spawn the threads for the data-
parallel computation, we have to synchronize on the results on each level. How-
ever, as all threads of a with-loop are independent, it suffices to synchronize on
whole families of threads. We implement this barrier synchronisation by inserting
appropriate sync statements after each create operation in rule (2).

A compilation scheme for entire SaC programs is beyond the scope of this
paper and would not provide any further insights into the code generation for
with-loops.

6 Performance Evaluation

We have extended our research compiler sac2c with a prototypical backend
for the Microgrid architecture using the compilation scheme presented in the
previous section. For the experiments discussed in this section, we have used
revision 16308 of sac2c. The resulting µTC code was then compiled using build
2668-2661 of the mgsim-slc toolchain. To obtain runtimes, we have used the

cycle accurate MGSim2 emulator for the Microgrid architecture. The emulator
was configured to emulate a banked memory system and varying numbers of
processing cores.

For our early evaluations, we have chosen the first Livermore loop kernel.
This kernel belongs into the category ’embarrassingly parallel’ and was small
enough to be run on emulated hardware. We have used a comparatively small
problem size of 995 data elements to keep emulation runs sufficiently fast.

To investigate whether our approach yields competitive runtimes on the Mi-
crogrid architecture, we have furthermore evaluated the Microgrid reference im-
plementation of the first Livermore loop. The setup of the emulator and the
problem size were identical in both measurements.

The actual runtimes were measured by instrumenting the emulator. We have
recorded the cycle counter just before and after the code that computes the
actual loop. This allows us to factor out the runtime cost for setup and tear
down of the different runtime systems used by the SaC implementation and the
hand-coded µTC version. In particular, the SaC version uses dynamic memory
allocation whereas the hand-coded version uses static, pre-allocated memory
regions. However, the actual loop bodies were not modified.

1 2 4 8 16 32 64
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Livermore Loop Kernel 1

hand-coded

SAC

number of cores

cl
o
ck

 c
y
cl

e
s

Fig. 5. Number of clock cycles required to compute one iteration of the Livermore loop
kernel 1 using a varying number of cores.

Figure 5 shows the results of our experiment. As can be seen, the hand-coded
µTC version slightly outperforms the corresponding SaC implementation re-
gardless of the number of cores used. Nonetheless, both version scale equally well
with increasing number of cores. We have plotted the corresponding speedups
in Figure 6 to better visualise the scaling behaviour of the two implementations.
Note here that we use logarithmic scales for both the x-axis (number of cores)
and the y-axis (speedup).

As can be seen, both implementations have nearly the same scaling be-
haviour. They scale linearly up to 32 cores. For more than 32 cores, the speedup
grows more slowly. We explain this with the relatively small problem size: Be-

1 2 4 8 16 32 64

1

10

100

Livermore Loop Kernel 1, Speedup

hand coded

SAC

number of cores

sp
e
e
d

u
p

Fig. 6. Relative speedup when computing one iteration of the Livermore loop kernel 1
using a varying number of cores.

yond a certain amount of cores, the amount of available computation simply
does not suffice to keep all cores under full load.

7 Conclusions and Future Work

This paper presents early results from evaluating the implementation of truly
nested data-parallelism using the Microgrid architecture. Other than existing
approaches, our implementation of nested data-parallelism is true as we do not
flatten nested concurrency into flat operations. Instead, we directly map the con-
currency that arises from nested data-parallel operations in SaC to the executing
machinery.

To this effect, we have devised a compilation scheme that translates the
genarray with-loop of SaC to nested parallel loops. As our runtime evaluation
shows, such a direct approach yields competitive runtimes for the first Livermore
loop kernel.

We are still in the early stages of exploring the Microgrid architecture as a
target platform for SaC. In particular, our compiler is currently limited to simple
cases like the embarrassingly parallel subset of the Livermore loops. For the full
version of this paper, we hope to be able to show runtimes for more complex
nested algorithms like Barnes-Hut n-body or sparse-matrix vector products.

Acknowledgements

We would like to thank Raphael Poss and Michael Hicks from the University
of Amsterdam for providing a reference implementation of the livermore loop
kernels in µTC and corresponding runtimes on the Microgrid architecture.

References

1. High Performance Fortran Forum: High Performance Fortran language specifica-
tion V1.1. (1994)

2. Feo, J.: SISAL. Technical Report UCRL-JC-110915, Lawrence Livermore National
Laboratory, LLNL, Livermore California (1992)

3. Blelloch, G.: NESL: A Nested Data-Parallel Language (Ver sion 3.0). Carnegie
Mellon University. (1994)

4. Grelck, C.: Shared memory multiprocessor support for functional array processing
in SAC. Journal of Functional Programming 15 (2005) 353–401

5. Chakravarty, M.M., Lechtchinsky, R., Keller, G., Pfannenstiel, W., Informatik, F.,
Informatik, F.: Nepal - nested data-parallelism in haskell. In: In Euro-Par 01,
Springer-Verlag (2001) 524–534

6. Chakravarty, M.M.T., Leshchinskiy, R., Jones, S.P., Keller, G., Marlow, S.: Data
parallel haskell: a status report. In: DAMP ’07: Proceedings of the 2007 workshop
on Declarative aspects of multicore programming, New York, NY, USA, ACM
Press (2007) 10–18

7. Blelloch, G.E., Sabot, G.W.: Compiling collection-oriented languages onto mas-
sively parallel computers. J. Parallel Distrib. Comput. 8 (1990) 119–134

8. Chakravarty, M.M.T., Keller, G.: More types for nested data parallel programming.
In: ICFP ’00: Proceedings of the fifth ACM SIGPLAN international conference on
Functional programming, New York, NY, USA, ACM (2000) 94–105

9. Leshchinskiy, R., Chakravarty, M.M.T., Keller, G.: Higher order flattening. In:
In Third International Workshop on Practical Aspects of High-Level Parallel Pro-
gramming (PAPP 2006), Springer-Verlag (2006) 920–928

10. Grelck, C., Scholz, S.B., Trojahner, K.: WITH-Loop Scalarization – Merging
Nested Array Operations. In Michaelson, G., Trinder, P., eds.: Proc. of the 15th
International Workshop on Implementation of Functional Languages (IFL’03), Ed-
inburgh, UK, Selected Papers. Volume 3145 of LNCS., Springer (2004) 118–134

11. Bernard, T., Bousias, K., Guang, L., Jesshope, C., Lankamp, M., van Tol, M.,
Zhang, L.: A general model of concurrency and its implementation as many-
core dynamic RISC processors. In: Embedded Computer Systems: Architectures,
Modeling, and Simulation, 2008. SAMOS 2008. International Conference on, IEEE
(2008) 1–9

12. Grelck, C., Scholz, S.B.: Merging compositions of array skeletons in SAC. Journal
of Parallel Computing 32 (2006) 507–522

13. Scholz, S.B.: Single Assignment C — efficient support for high-level array op-
erations in a functional setting. Journal of Functional Programming 13 (2003)
1005–1059

14. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-
threaded execution. International Journal of Parallel Programming 34 (2006)
383–427

15. Grelck, C., Scholz, S.B.: Sac: off-the-shelf support for data-parallelism on multi-
cores. In: DAMP ’07: Proceedings of the 2007 workshop on Declarative aspects of
multicore programming, New York, NY, USA, ACM (2007) 25–33

16. Jesshope, C.: A model for the design and programming of multi-cores. In
Grandinetti, L., ed.: High performance Computing and Grids in Action. Volume 16
of Advances in Parallel Computing., IOS Press (2008) 37–55

17. Grelck, C., Herhut, S., Jesshope, C., Joslin, C., Lankamp, M., Scholz, S.B., Sha-
farenko, A.: Compiling the Functional Data-Parallel Language SaC for Microgrids
of Self-Adaptive Virtual Processors. In: 14th Workshop on Compilers for Paral-
lel Computing (CPC’09), IBM Research Center, Zurich, Switzerland, accepted for
publication (2009)

